留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚环氧棕榈油/聚乳酸共混物的动态硫化制备与性能

吴宇超 李超 陈婷婷 刘文地 邱仁辉 邱建辉

吴宇超, 李超, 陈婷婷, 等. 聚环氧棕榈油/聚乳酸共混物的动态硫化制备与性能[J]. 复合材料学报, 2022, 39(6): 2668-2678. doi: 10.13801/j.cnki.fhclxb.20210916.003
引用本文: 吴宇超, 李超, 陈婷婷, 等. 聚环氧棕榈油/聚乳酸共混物的动态硫化制备与性能[J]. 复合材料学报, 2022, 39(6): 2668-2678. doi: 10.13801/j.cnki.fhclxb.20210916.003
WU Yuchao, LI Chao, CHEN Tingting, et al. Preparation and properties of poly(epoxidized palm oil)/poly(lactic acid)blends via dynamic vulcanization[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2668-2678. doi: 10.13801/j.cnki.fhclxb.20210916.003
Citation: WU Yuchao, LI Chao, CHEN Tingting, et al. Preparation and properties of poly(epoxidized palm oil)/poly(lactic acid)blends via dynamic vulcanization[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2668-2678. doi: 10.13801/j.cnki.fhclxb.20210916.003

聚环氧棕榈油/聚乳酸共混物的动态硫化制备与性能

doi: 10.13801/j.cnki.fhclxb.20210916.003
基金项目: 国家自然科学基金(32071699;31800486)
详细信息
    通讯作者:

    刘文地,博士,教授,硕士生导师,研究方向为生物质复合材料 E-mail:wendi.liu@fafu.edu.cn

    邱仁辉,博士,教授,博士生导师,研究方向为生物质复合材料 E-mail:renhuiqiu@fafu.edu.cn

  • 中图分类号: TB332

Preparation and properties of poly(epoxidized palm oil)/poly(lactic acid)blends via dynamic vulcanization

  • 摘要: 聚乳酸(PLA)具有优异的力学性能,无毒性、可再生、可生物降解,且生物相容性好,是目前应用最广泛的生物基塑料之一。然而,PLA价格高、脆性大、韧性差等缺点严重限制了其在更多领域的应用。为克服这些缺点,采用双螺杆挤出和注塑成型技术制备生物基的聚环氧棕榈油(PEPO)/聚乳酸(PLA)共混物以增强PLA的韧性,表征了共混物的结晶行为、流变性能、力学性能、热稳定性和微观形貌,以揭示PEPO与PLA的动态硫化机制及PEPO橡胶相对PLA的增韧机制。结果表明:环氧棕榈油(EPO)与PLA熔融共混过程中,EPO在阳离子引发剂的作用下发生自聚,进而在PLA基体中形成颗粒状PEPO橡胶相;两相结构的形成使共混物受力时发生塑性形变,导致PLA的韧性显著提升;当PEPO的用量为20wt%时,共混物的断裂伸长率和拉伸韧性分别从纯PLA的10%和4.7 MJ/m3提高至100%和30.4 MJ/m3,但其拉伸强度、拉伸模量、储存模量和玻璃化转变温度均呈现下降趋势。

     

  • 图  3  (a) 过氧酸法合成EPO路线;(b) BF3NH2Et引发EPO的阳离子聚合

    Figure  3.  (a) Synthesis of EPO by peroxylation; (b) Proposed cationic polymerization of EPO initiated by BF3NH2Et

    图  1  棕榈油(PO)和环氧棕榈油(EPO)的ATR-FTIR图谱

    Figure  1.  ATR-FTIR spectra of palm oil (PO) and epoxidized palm oil (EPO)

    图  2  EPO的1H NMR (a) 和13C NMR (b) 图谱

    Figure  2.  1H NMR (a) and 13C NMR (b) spectra of EPO

    图  4  EPO阳离子聚合过程的DSC曲线 (a)、聚环氧棕榈油(PEPO)/聚乳酸(PLA)中PLA的GPC曲线 (b)

    Figure  4.  DSC curve of cationic polymerization of EPO (a) and GPC profiles ofpoly(lactic acid) (PLA) dissolved from poly(epoxidized palm oil) (PEPO)/PLA blends (b)

    图  5  PEPO/PLA共混物的DSC曲线

    Figure  5.  DSC curves of PEPO/PLA blends

    Tg—Glass transition temperature; Tcc—Cold crystallization temperature; Tm—Melting temperature

    图  6  190°C时PEPO/PLA共混物的复数黏度 (a)、相角δ (b)、弹性模量和损耗模量 (c) 随频率的函数关系

    Figure  6.  Complex viscosity (a), phase angle δ (b), elasticity modulus and loss modulus (c) vs. frequency of PEPO/PLA blends at 190 °C

    图  7  PEPO/PLA共混物的DMA曲线:(a) 储能模量;(b) 阻尼参数

    Figure  7.  DMA curves of PEPO/PLA blends: (a) Storage modulus; (b) Damping parameter

    图  8  PEPO/PLA共混物拉伸应力-应变 (a)、弯曲强度和模量 (b)、拉伸强度和断裂伸长率 (c)、拉伸模量和拉伸韧性 (d)

    Figure  8.  Tensile stress-strain (a), flexural strength and modulus (b), tensile strength and fracture elongation (c) and tensile modulus and toughness of PEPO/PLA blends (d)

    图  9  PLA (a)、5wt%PEPO/PLA (b)、10wt%PEPO/PLA (c)、15wt%PEPO/PLA (d)、20wt%PEPO/PLA (e)和高倍数(×20000)20wt%PEPO/PLA低温断面 (f) 的SEM图像

    Figure  9.  SEM images of cryo-fractured surfaces of PLA (a), 5wt%PEPO/PLA (b), 10wt%PEPO/PLA (c), 15wt%PEPO/PLA (d), 20wt%PEPO/PLA (e), and 20wt%PEPO/PLA with higher magnification (×20000) (f)

    图  10  PLA (a)、5wt%PEPO/PLA (b)、10wt%PEPO/PLA (c)、15wt%PEPO/PLA (d)、20wt%PEPO/PLA (e)和高倍数(×20000)20wt%PEPO/PLA拉伸断面 (f) 的SEM图像

    Figure  10.  SEM images of tensile-fractured surfaces of PLA (a), 5wt%PEPO/PLA (b), 10wt%PEPO/PLA (c), 15wt%PEPO/PLA (d), 20wt%PEPO/PLA (e), and 20wt%PEPO/PLA with higher magnification (×20000) (f)

    表  1  PEPO/PLA共混物的DSC分析结果

    Table  1.   DSC results of PEPO/PLA blends

    SampleTg/°CTcc/°CTm/°CΔHcc/(J·g−1)ΔHm/(J·g−1)Xc/%
    Pure PLA66.9103.3172.428.931.83.1
    5wt%PEPO/PLA66.899.8171.525.235.711.8
    10wt%PEPO/PLA66.399.1172.124.836.714.1
    15wt%PEPO/PLA66.297.0173.420.334.718.2
    20wt%PEPO/PLA65.996.4172.37.636.138.1
    Notes: ΔHcc—Cold crystallization enthalpy; ΔHm—Melting of the blend; Xc—Crystallinity.
    下载: 导出CSV

    表  2  PEPO/PLA共混物的DMA测试结果

    Table  2.   DMA results of PEPO/PLA blends

    SamplesE′ at 25°C/GPaTg/°C
    Pure PLA2.7868.2
    5wt%PEPO/PLA2.3367.4
    10wt%PEPO/PLA2.2166.7
    15wt%PEPO/PLA2.0666.2
    20wt%PEPO/PLA1.6565.8
    Note: E′—Storage modulus.
    下载: 导出CSV
  • [1] 黎永轩, 朱韵来, 彭博, 等. 生物降解聚酯弹性体粒子改性聚乳酸复合材料的制备及性能[J]. 复合材料学报, 2020, 38(8):2536-2546.

    LI Yongxuan, ZHU Yunlai, PENG Bo, et al. Preparation and properties of biodegradable polyester elastomer particle modified poly(lactic acid) composites[J]. Acta Materiae Compositae Sinica,2020,38(8):2536-2546(in Chinese).
    [2] 黄海超, 宋国林, 唐国翌, 等. 驻极体-增塑剂复合改性聚乳酸熔喷非织造材料的制备及性能[J]. 复合材料学报, 2019, 36(3):563-571.

    HUANG Haichao, SONG Guolin, TANG Guoyi, et al. Preparation and characterization of poly(lactic acid) meltblown nonwovens modified by electrets and co-plasticizers[J]. Acta Materiae Compositae Sinica,2019,36(3):563-571(in Chinese).
    [3] WU B, ZENG Q, NIU D, et al. Design of supertoughened and heat-resistant PLLA/elastomer blends by controlling the distribution of stereocomplex crystallites and the morphology[J]. Macromolecules,2019,52(3):1092-1103. doi: 10.1021/acs.macromol.8b02262
    [4] LIU H, CHEN N, SHAN P, et al. Toward fully bio-based and supertough PLA blends via in situ formation of cross-linked biopolyamide continuity network[J]. Macromolecules,2019,52(21):8415-8429. doi: 10.1021/acs.macromol.9b01398
    [5] QUILES-CARRILLO L, BLANES-MARTINEZ M M, MONTANES N, et al. Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil[J]. European Polymer Journal,2018,98:402-410. doi: 10.1016/j.eurpolymj.2017.11.039
    [6] QUILES-CARRILLO L, DUART S, MONTANES N, et al. Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil[J]. Materials and Design,2018,140:54-63. doi: 10.1016/j.matdes.2017.11.031
    [7] QUILES-CARRILLO L, MONTANES N, SAMMON C, et al. Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil[J]. Industrial Crops and Products,2018,111:878-888. doi: 10.1016/j.indcrop.2017.10.062
    [8] https://www.sohu.com/a/365530288_473133. 中国棕榈油行业市场需求与投资规划分析报告 [R]. 前瞻产业研究院, 2019.

    https://www.sohu.com/a/365530288_473133. Analysis report on market demand and investment planning of Chinese palm oil industry [R]. Foreview Industry Research Institute, 2019 (in Chinese).
    [9] 马传国, 郭瑞华, 张科红. 过氧甲酸法环氧棕榈油的制备研究[J]. 中国油脂, 2009, 34(12):57-61. doi: 10.3321/j.issn:1003-7969.2009.12.015

    MA Chuanguo, GUO Ruihua, ZHANG Kehong. Preparation of epoxy palm oil by peroxyformic acid method[J]. China Oils and Fats,2009,34(12):57-61(in Chinese). doi: 10.3321/j.issn:1003-7969.2009.12.015
    [10] TAN S, CHOW W. Thermal properties, fracture toughness and water absorption of epoxy-palm oil blends[J]. Polymer Plastics Technology and Engineering,2010,49(9):900-907. doi: 10.1080/03602551003682042
    [11] ALTUNAl F I, PRTTARIN V, WILLIAMS R J. Self-healable polymer networks based on the cross-linking of epoxidised soybean oil by an aqueous citric acid solution[J]. Green Chemistry,2013,15(12):3360-3366. doi: 10.1039/c3gc41384e
    [12] AL-MULLA E A J, YUNUS W M Z W, IBRAHIM N A B, et al. Properties of epoxidized palm oil plasticized polytlactic acid[J]. Journal of Materials Science,2010,45(7):1942-1946. doi: 10.1007/s10853-009-4185-1
    [13] VIJAYARAJAN S, SELKE S E, MATUANA L M. Continuous blending approach in the manufacture of epoxidized soybean-plasticized poly (lactic acid) sheets and films[J]. Macromolecular Materials and Engineering,2014,299(5):622-630. doi: 10.1002/mame.201300226
    [14] FERRI J, GARCIA-GARCIA D, SANCHEZ-NACHER L, et al. The effect of maleinized linseed oil (MLO) on mechanical performance of poly (lactic acid)-thermoplastic starch (PLA-TPS) blends[J]. Carbohydrate Polymers,2016,147:60-68. doi: 10.1016/j.carbpol.2016.03.082
    [15] CARBONELL-VERDU A, GARCIA-GARCIA D, DOMINICI F, et al. PLA films with improved flexibility properties by using maleinized cottonseed oil[J]. European Polymer Jour-nal,2017,91:248-259. doi: 10.1016/j.eurpolymj.2017.04.013
    [16] FERRI J M, SAMPER M D, GARCÍA-SANOGUERA D, et al. Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly (lactic acid)[J]. Journal of Materials Science,2016,51(11):5356-5366. doi: 10.1007/s10853-016-9838-2
    [17] MAUCK S C, WANG S, DING W, et al. Biorenewable tough blends of polylactide and acrylated epoxidized soybean oil compatibilized by a polylactide star polymer[J]. Macromolecules,2016,49(5):1605-1615. doi: 10.1021/acs.macromol.5b02613
    [18] CHEN Y, YUAN D, XU C. Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase[J]. ACS Applied Materials and Interfaces,2014,6(6):3811-3816. doi: 10.1021/am5004766
    [19] LIU W, QIU J, ZHU L, et al. Tannic acid-induced crosslinking of epoxidized soybean oil for toughening poly(lactic acid) via dynamic vulcanization[J]. Polymer,2018,148:109-118. doi: 10.1016/j.polymer.2018.06.021
    [20] ZHAO T H, YUAN W Q, LI Y D, et al. Relating chemical structure to toughness via morphology control in fully sustainable sebacic acid cured epoxidized soybean oil toughened polylactide blends[J]. Macromolecules,2018,51(5):2027-2037. doi: 10.1021/acs.macromol.8b00103
    [21] ZHAO T H, HE Y, LI Y D, et al. Dynamic vulcanization of castor oil in a polylactide matrix for toughening[J]. RSC Advances,2016,6(83):79542-79553. doi: 10.1039/C6RA13631A
    [22] ASTM. Standard test method for tensile properties of plastics: ASTM D638—2010[S]. West Conshohocken: ASTM, 2010.
    [23] ASTM. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: ASTM D790—2010[S]. West Conshohocken: ASTM, 2010.
    [24] ISO. Plastics—Determination of charpy impact properties—Part 1: Non-instrument impact test: ISO 179—2010[S]. Geneva: ISO, 2010.
    [25] WANG L, LEE R E, WANG G, et al. Use of stereocomplex crystallites for fully-biobased microcellular low density poly (lactic acid) foams for green packaging[J]. Chemical Engineering Journal,2017,327:1151-1162. doi: 10.1016/j.cej.2017.07.024
    [26] CHIENG B W, IBRAHIM N A, THEN Y Y, et al. Epoxidized vegetable oils plasticized poly(lactic acid) biocomposites: Mechanical, thermal and morphology properties[J]. Molecules,2014,19(10):16024-16038. doi: 10.3390/molecules191016024
    [27] CARBONELL-VERDU A, SAMPER M D, GARCÍA-GARCÍA D, et al. Plasticization effect of epoxidized cottonseed oil (ECSO) on poly(lactic acid)[J]. Industrial Crops and Products,2017,104:278-286. doi: 10.1016/j.indcrop.2017.04.050
    [28] FANG H G, JIANG F, WU Q, et al. Supertough polylactide materials prepared through in situ reactive blending with PEG-based diacrylate monomer[J]. ACS Applied Materials and Interfaces,2014,6(16):13552-13563. doi: 10.1021/am502735q
    [29] MENG X, BOCHAROVA V, TEKINALP H, et al. Toughening of nanocelluose/PLA composites via bio-epoxy interaction: Mechanistic study[J]. Materials and Design,2018,139:188-197. doi: 10.1016/j.matdes.2017.11.012
    [30] QIAN S, ZHANG H, YAO W, et al. Effects of bamboo cellulose nanowhisker content on the morphology, crystallization, mechanical, and thermal properties of PLA matrix biocomposites[J]. Composites Part B: Engineering,2018,133:203-209. doi: 10.1016/j.compositesb.2017.09.040
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1324
  • HTML全文浏览量:  492
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-24
  • 修回日期:  2021-08-11
  • 录用日期:  2021-08-29
  • 网络出版日期:  2021-09-16
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回