Preparation and high temperature resistance of modified boron phenolic resin with almandine micropowder
-
摘要: 针对纤维增强酚醛树脂复合材料耐热性不足、抗烧蚀性能差的问题,采用岛状硅酸盐矿物-石榴石微粉(AM)作为可陶瓷化填料来改性硼酚醛树脂(BPR),采用模压工艺制备不同填料含量的AM/BPR可陶瓷化复合材料及高硅氧玻璃纤维(HSF)-AM/BPR可陶瓷化复合材料,探究AM对BPR体系的耐热、耐烧蚀和力学性能的影响及在不同温度下材料的物相转变及微观形貌变化。结果表明,随着AM含量的提高,AM/BPR复合材料的耐热性提高,800℃以上形成液相,并在1100℃时形成较致密的陶瓷层,对复合材料高温性能、抗烧蚀性能提高有重要作用,当AM含量为50wt%时,线烧蚀率为0.221 mm/s,质量烧蚀率为0.103 g/s,与纯BPR相比分别降低了44.05%和43.6%;当AM含量为40wt%时,HSF-AM/BPR可陶瓷化复合材料高温处理前后的弯曲强度比未加填料前分别提高了29%和47.97%,其优良的耐热、耐烧蚀和力学性能有望作为热防护材料应用于航天领域。Abstract: In view of the insufficient heat resistance and poor ablation resistance of fiber-reinforced phenolic resin composites, island silicate mineral-almandine micropowder (AM) was used as ceramicized filler to modify the boron phenolic resin (BPR), and the molding process was used to prepare different filler contents. AM/BPR ceramizable composite material and high silica glass fiber (HSF)-AM/BPR ceramizable composite material with different filler contents were prepared by molding process. The influence of AM on the heat resistance, ablation resistance and mechanical properties of the boron phenolic resin system, as well as the phase transition and microscopic morphology changes of the material at different temperatures were explored. The results show that as the content of AM increases, the heat resistance of AM/BPR composites increases. A liquid phase is formed above 800℃, and a denser ceramic layer is formed at 1100℃, which is important for the high-temperature performance and ablation resistance of the composite material. When the AM content is 50wt%, the linear ablation rate is 0.221 mm/s, and the mass ablation rate is 0.103 g/s, which is 44.05% and 43.6% lower than that of pure BPR. When the content of AM is 40wt%, the flexural strength of HSF-AM/BPR ceramic composites at room temperature and after high temperature treatment are increased by 29% and 47.97% compared with those without filler, respectively. Its excellent heat resistance, ablation resistance and mechanical properties are expected used as a thermal protection material in the aerospace field.
-
图 8 1200℃高温处理20 min后不同AM含量的HSF-AM/BPR可陶瓷化复合材料的表面形貌变化(AM含量从左向右依次是0wt%、20wt%、30wt%、40wt%和50wt%)
Figure 8. Surface morphology change of HSF-AM/BPR ceramizable composites with different AM contents after high temperature treatment at 1200℃ for 20 min (Content of AM is 0wt%, 20wt%, 30wt%, 40wt% and 50wt% from left to right)
表 1 石榴石微粉(AM)/硼酚醛树脂(BPR)可陶瓷化复合材料配方(wt%)
Table 1. Formula of almandine micropowder (AM)/boron phenolic resin (BPR) ceramizable composites (wt%)
Sample BPR AM 1 100 0 2 80 20 3 70 30 4 60 40 5 50 50 6 40 60 表 2 AM/BPR可陶瓷化复合材料的热分解特性
Table 2. Thermal decomposition characteristics of AM/BPR ceramizable composites
Mass fraction of
AM/wt%Tmax/℃ Residue yield(Carbon fixation amount)/% 350℃ 800℃ 1200℃ 1450℃ 0 666.54 87.43(−) 16.43(−) 9.19(−) 6.19(−) 20 696.04 93.81(3.87) 35.36(2.22) 32.37(4.69) 30.00(4.89) 30 577.97 94.45(3.25) 40.55(−0.95) 40.54(3.61) 38.96(4.40) 40 663.16 95.03(2.58) 48.53(−1.33) 48.49(2.32) 46.55(2.53) 50 542.92 97.23(3.52) 63.38(5.17) 63.94(8.52) 62.77(9.29) 60 646.28 97.41(2.44) 66.88(0.31) 67.78(3.11) 67.26(4.32) Notes: Tmax—Temperature at which the rate of thermal mass loss is maximum;
Carbon fixation amount—Difference between the actual residue yield and the theoretical residue yield. -
[1] 傅华东, 秦岩, 王辉, 等. 2.5D石英纤维增强硼酚醛树脂可陶瓷化复合材料的制备与烧蚀性能[J]. 复合材料学报, 2020, 37(4):767-774.FU Huadong, QIN Yan, WANG Hui, et al. Preparation and ablation performance of 2.5D fiber reinforced boron phenolic resin ceramizable composites[J]. Acta Materiae Compositae Sinica,2020,37(4):767-774(in Chinese). [2] 孙超明, 卢东滨, 孙燚. RTM工艺用酚醛树脂性能及耐烧蚀复合材料成型技术研究[J]. 玻璃钢/复合材料, 2018, 10:102-107.SUN Chaoming, LU Dongbin, SUN Yi. Studies on property of phenolic resins for RTM process and processing technology for composite with ablation resistance[J]. Fiber Reinforced Plastics/Composites,2018,10:102-107(in Chinese). [3] 谢永旺, 李峥, 夏雨, 等. 可陶瓷化酚醛树脂基复合材料烧蚀隔热性能研究[J]. 首都师范大学学报(自然科学版), 2019, 40(5):52-56.XIE Yongwang, LI Zheng, XIA Yu, et al. Study on ablation and thermal insulation performance of ceramizable phenolic matrix composites[J]. Journal of Capital Normal University,2019,40(5):52-56(in Chinese). [4] REN J W, QIN Y, PENG Z W, et al. Influence of composite structure design on the ablation performance of ethylene propylene diene monomer composites[J]. E-Polymers,2021,21(1):151-159. doi: 10.1515/epoly-2021-0015 [5] LI Z Z, ZOU Z Y, QIN Y, et al. The effect of fibre content on properties of ceramifiable composites[J]. Plastics, Rubber and Composites,2020,49(5):230-236. [6] 徐博, 丁杰, 王兵, 等. AlB2对高硅氧纤维增强可瓷化酚醛树脂基复合材料及其裂解产物力学性能的影响[J]. 复合材料学报, 2021, 38(1):129-136.XU Bo, DING Jie, WANG Bing, et al. Effects of AlB2 on mechanical properties of high silica fiber reinforced ceramicizable phenolic resin matrix composites and their pyrolysis products[J]. Acta Materiae Compositae Sinica,2021,38(1):129-136(in Chinese). [7] YANG W, XU B, QI M, et al. Improving ablation properties of ceramifiable vitreous silica fabric reinforced boron phenolic resin composites via an incorporation of MoSi2[J]. Plastics, Rubber and Composites,2020,49(10):456-469. doi: 10.1080/14658011.2020.1808758 [8] 陈孝飞, 李树杰, 闫联生, 等. 硼改性酚醛树脂的固化及裂解[J]. 复合材料学报, 2011, 28(5):89-95.CHEN Xiaofei, LI Shujie, YAN Liansheng, et al. Curing and pyrolysis of boron-modified phenolic resin[J]. Acta Materiae Compositae Sinica,2011,28(5):89-95(in Chinese). [9] SHI M X, TANG Q X, FAN S S, et al. Ceramification of composites of MgO-Al2O3-SiO2/boron phenolic resin with different calcine time[J]. Journal of Wuhan University of Technology,2021,36(2):174-182. [10] 王富忠, 秦岩, 黄志雄, 等. 纳米材料改性树脂基耐烧蚀材料研究新进展[J]. 材料导报, 2012, 26(13):93-96. doi: 10.3969/j.issn.1005-023X.2012.13.019WANG Fuzhong, QIN Yan, HUANG Zhixiong, et al. Recent studies on the modification of resin-matrix ablative mater-ial by nano-material[J]. Materials Reports,2012,26(13):93-96(in Chinese). doi: 10.3969/j.issn.1005-023X.2012.13.019 [11] CHEN Y X, CHEN P, HONG C Q, et al. Improved ablation resistance of carbon-phenolic composites by introducing zirconium diboride particles[J]. Composites Part B: Engineering,2013,47:320-325. doi: 10.1016/j.compositesb.2012.11.007 [12] DING J, HUANG Z X, QIN Y, et al. Improved ablation resistance of carbon-phenolic composites by introducing zirconium suicide particles[J]. Composites Part B: Engineering,2015,82:100-107. doi: 10.1016/j.compositesb.2015.08.023 [13] DJUGUM R, SHARP K. The fabrication and performance of C/C composites impregnated with TaC filler[J]. Carbon,2017,115:105-115. doi: 10.1016/j.carbon.2016.12.019 [14] BAHRAMIAN A R, KOKABI M, FAMILI M H N, et al. High temperature ablation of kaolinite layered silicate/phenolic resin/asbestos cloth nanocomposite[J]. Journal of Hazardous Materials,2008,150(1):136-145. doi: 10.1016/j.jhazmat.2007.04.104 [15] BAHRAMIAN A R, KOKABI M. Ablation mechanism of polymer layered silicate nanocomposite heat shield[J]. Journal of Hazardous Materials,2009,166(1):445-454. doi: 10.1016/j.jhazmat.2008.11.061 [16] HE D P, SHI M X, YANG Y Q, et al. Effect of inorganic components on properties of ceramizable phenolic resin matrix composites[J]. IOP Conference Series: Materials Science and Engineering,2019,472:012044. [17] 马文婷, 赵敏, 孙均利. 绢云母填料对硼酚醛防火涂料的性能影响研究[J]. 消防科学与技术, 2020, 39(11):1577-1580. doi: 10.3969/j.issn.1009-0029.2020.11.027MA Wenting, ZHAO Min, SUN Junli. Study on the effect of sericite filler on the performance of boron phenolic fire retardant coating[J]. Fire Science and Technology,2020,39(11):1577-1580(in Chinese). doi: 10.3969/j.issn.1009-0029.2020.11.027 [18] 席毓春. 天然石榴石的用途及选矿方法简介[J]. 西北地质, 1992(4):25-27.XI Yuchun. Introduction to the use of natural garnet and the method of mineral processing[J]. Northwest Geology,1992(4):25-27(in Chinese). [19] 国防科学技术工业委员会. 烧蚀材料烧蚀试验方法: GJB 323A—1996[S]. 北京: 中国标准出版社, 1996.Commission of Scientific and Technical Industry on National Defence. Ablation test method for ablation materials: GJB 323A—1996[S]. Beijing: China Standard Press, 1996(in Chinese). [20] 中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005.Standardization Administration of the People’s Republic of China. Test method for bending properties of fiber reinforced plastics: GB/T 1449—2005[S]. Beijing: China Standard Press, 2005(in Chinese). [21] GUO J, HUANG H, XU X. Protective effect of pyrolysis gases combustion against surface ablation under different Mach numbers[J]. Acta Astronautica,2020,166:209-217. [22] DING J, SUN J M, HUANG Z X, et al. Improved high-temperature mechanical property of carbon-phenolic composites by introducing titanium diboride particles[J]. Composites Part B: Engineering,2019,157:289-294. doi: 10.1016/j.compositesb.2018.08.124 [23] 范珊珊, 石敏先, 孟盼, 等. 助熔剂对陶瓷化硼酚醛复合材料热行为及微观结构的影响[J]. 复合材料学报, 2017, 34(1):60-66.FAN Shanshan, SHI Minxian, MENG Pan, et al. Effects of fusing agent on the thermal behavior and microstructure of ceramifiable boron phenolic resin composites[J]. Acta Materiae Compositae Sinica,2017,34(1):60-66(in Chinese). [24] SHI M X, CHEN X, FAN S S, et al. Fluxing agents on ceramification of composites of MgO-Al2O3-SiO2/boron phenolic resin[J]. Journal of Wuhan University of Technology-Materials Science Edition,2018,33(2):381-388. doi: 10.1007/s11595-018-1833-8 [25] 杨威, 黄志雄, 王雁冰. 玻璃料对MoSi2改性硼酚醛树脂可瓷化复合材料烧蚀性能的影响[J]. 复合材料科学与工程, 2020, 10:30-38. doi: 10.3969/j.issn.1003-0999.2020.06.005YANG Wei, HUANG Zhixiong, WANG Yanbing. Effect of glass frits on the ablative performance of MoSi2 modified boron phenolic resin ceramicable composites[J]. Compo-sites Science and Engineering,2020,10:30-38(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.06.005