Volume 40 Issue 7
Apr.  2023
Turn off MathJax
Article Contents
DUAN Hongyu, WANG Hequan, ZHANG Jiaping, et al. Mechanical properties and damage of 2.5D braided SiCf/SiC ceramic matrix composites under different thermal shock conditions[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4184-4194. doi: 10.13801/j.cnki.fhclxb.20221011.002
Citation: DUAN Hongyu, WANG Hequan, ZHANG Jiaping, et al. Mechanical properties and damage of 2.5D braided SiCf/SiC ceramic matrix composites under different thermal shock conditions[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4184-4194. doi: 10.13801/j.cnki.fhclxb.20221011.002

Mechanical properties and damage of 2.5D braided SiCf/SiC ceramic matrix composites under different thermal shock conditions

doi: 10.13801/j.cnki.fhclxb.20221011.002
Funds:  Open Project of Liaoning Key Laboratory of Aero-engine Materials Tribology (LKLAMTF202204)
  • Received Date: 2022-08-15
  • Accepted Date: 2022-09-30
  • Rev Recd Date: 2022-09-14
  • Available Online: 2022-10-12
  • Publish Date: 2023-07-15
  • The effects of different thermal shock conditions (times) on the mechanical properties and damage of 2.5D braided SiCf/SiC (f represents fiber) ceramic matrix composites (CMCs) were analyzed by uniaxial tensile and three-point bending experiments, combined with SEM and EDS. The results show that the tensile stress-strain curves of 2.5D braided SiCf/SiC CMCs exhibit nonlinear changes at room temperature without thermal shock and under different thermal shock conditions at 1200℃. The tensile strength first decreases gradually, and then increases slightly. The tensile strength of the material decreases to 48.39% under 10 thermal shocks, and increases to 54.11% after 30 thermal shocks; The three-point bending displacement-load curves of the material without thermal shock at room temperature and under different thermal shock conditions at 1200℃ also show nonlinear changes, with the increase of the number of thermal shocks, the flexural strength decreases rapidly, the bending strength of the material rapidly drops to 26.06% under 10 thermal shocks, and decreases to 10.77% after 30 thermal shocks. From the macroscopic fracture analysis, it can be seen that the tensile and bending fractures of the material at room temperature without thermal shock show pseudo-brittle fracture characteristics, while the tensile and bending fractures show ductile fracture characteristics under thermal shock conditions. From the microscopic fracture, damage behaviors such as fiber pullout, fiber debonding, interface debonding, crack propagation and fiber fracture are observed, and with the increase of the number of thermal shocks, the interface bonding force is gradually weakened, and the above-mentioned damage behaviors increase significantly.

     

  • loading
  • [1]
    张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2):1-6. doi: 10.3321/j.issn:1000-3851.2007.02.001

    ZHANG Litong, CHENG Laifei. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica,2007,24(2):1-6(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.02.001
    [2]
    高铁, 洪智亮, 杨娟. 商用航空发动机陶瓷基复合材料部件的研发应用及展望[J]. 航空制造技术, 2014(6):14-21. doi: 10.3969/j.issn.1671-833X.2014.06.002

    GAO Tie, HONG Zhiliang, YANG Juan. Application and prospect of ceramic matrix composite components for commercial aircraft engines[J]. Aeronautical Manufacturing Technology,2014(6):14-21(in Chinese). doi: 10.3969/j.issn.1671-833X.2014.06.002
    [3]
    张曦挚, 崔红, 胡杨, 等. 低成本PIP工艺制备陶瓷基复合材料研究进展[J]. 航空制造技术, 2022, 65(13):110-116. doi: 10.16080/j.issn1671-833x.2022.13.110

    ZHANG Xizhi, CUI Hong, HU Yang, et al. Research development on low-cost ceramic-matrix composites by polymer infiltration pyrolysis[J]. Aeronautical Manufacturing Technology,2022,65(13):110-116(in Chinese). doi: 10.16080/j.issn1671-833x.2022.13.110
    [4]
    杨博, 余金山, 顾全超, 等. SiCf/SiC复合材料制备研究进展[J]. 材料导报, 2021, 35(3):3050-3056. doi: 10.11896/cldb.19120251

    YANG Bo, YU Jinshan, GU Quanchao, et al. Research progress on preparation of SiCf/SiC composite[J]. Materials Reports,2021,35(3):3050-3056(in Chinese). doi: 10.11896/cldb.19120251
    [5]
    YAO J J, PANG S Y, HU C L, et al. Mechanical, oxidation and ablation properties of C/(C-SiC)CVI-(ZrC-SiC)PIP composites[J]. Corrosion Science,2020,162:108200. doi: 10.1016/j.corsci.2019.108200
    [6]
    孟志新, 罗磊, 陈婧旖, 等. 纤维丝束大小对Mini-C/SiC拉伸性能与强度分布的影响[J]. 当代化工, 2021, 50(8):1810-1813, 1871. doi: 10.3969/j.issn.1671-0460.2021.08.011

    MENG Zhixin, LUO Lei, CHEN Jingyi, et al. Influence of fiber bundle size on tensile properties and strength distribution of Mini-C/SiC[J]. Contemporary Chemical Industry,2021,50(8):1810-1813, 1871(in Chinese). doi: 10.3969/j.issn.1671-0460.2021.08.011
    [7]
    姜卓钰, 束小文, 吕晓旭, 等. SiC晶须增强SiCf/SiC复合材料的力学性能[J]. 材料工程, 2021, 49(8):89-96. doi: 10.11868/j.issn.1001-4381.2020.000806

    JIANG Zhuoyu, SHU Xiaowen, LYU Xiaoxu, et al. Mechanical properties of SiC whisker reinforced SiCf/SiC composites[J]. Journal of Materials Engineering,2021,49(8):89-96(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000806
    [8]
    杜永龙, 张毅, 王龙, 等. 基于深度学习的平纹Cf/SiC复合材料原位拉伸损伤演化与断裂分析[J]. 硅酸盐通报, 2022, 41(1): 249-257.

    DU Yonglong, ZHANG Yi, WANG Long, et al. In-situ tensile damage evolution and fracture analysis of plain weave Cf/SiC based on deep learning[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(1): 249-257(in Chinese).
    [9]
    陈曦, 张立同, 梅辉, 等. 2D C/SiC复合材料氧化损伤的红外热波成像检测[J]. 复合材料学报, 2011, 28(5):112-118.

    CHEN Xi, ZHANG Litong, MEI Hui, et al. Testing and evaluation of oxidation damages in 2D C/SiC by thermography[J]. Acta Materiae Compositae Sinica,2011,28(5):112-118(in Chinese).
    [10]
    PRESBY M J, MANSOUR R, MANIGANDAN K, et al. Characterization and simulation of foreign object damage in curved and flat SiC/SiC ceramic matrix composites[J]. Ceramics International,2018,45(2):2635-2643. doi: 10.1016/j.ceramint.2018.10.207
    [11]
    SAUCEDO-MORA L, LOWE T, ZHAO S, et al. In situ observation of mechanical damage within a SiC-SiC ceramic matrix composite[J]. Journal of Nuclear Materials,2016,481:13-23. doi: 10.1016/j.jnucmat.2016.09.007
    [12]
    CHATEAU C, GÉLÉBART L, BORNERT M, et al. Modeling of damage in unidirectional ceramic matrix composites and multi-scale experimental validation on third generation SiC/SiC minicomposites[J]. Journal of the Mechanics and Physics of Solids,2014,63:298-319. doi: 10.1016/j.jmps.2013.09.001
    [13]
    昝卓良. SiC/C-SiC复合材料热震特性与铣削性能研究[D]. 济南: 山东大学, 2021.

    ZHAN Zhuoliang. Thermal shock characteristics and milling performance of SiC/C-SiC composites[D]. Ji'nan: Shandong University, 2021(in Chinese).
    [14]
    吴守军. 3D SiC/SiC复合材料热化学环境行为[D]. 西安: 西北工业大学, 2006.

    WU Shoujun. Thermochemical environmental behavior of 3D SiC/SiC composites[D]. Xi'an: Northwestern Polytechnical University, 2006(in Chinese).
    [15]
    LIU R J, WANG F, ZHANG J P, et al. Effects of CVI SiC amount and deposition rates on properties of SiCf/SiC composites fabricated by hybrid chemical vapor infiltration (CVI) and precursor infiltration and pyrolysis (PIP) routes[J]. Ceramics International,2021,47(19):26971-26977. doi: 10.1016/j.ceramint.2021.06.110
    [16]
    国防科工委科技与质量司. 连续纤维增强陶瓷基复合材料常温拉伸性能试验方法: GJB 8736—2015[S]. 北京: 总装备部军标出版发行部, 2016.

    Department of Science and Quality, Commission of STIND for National Defense. Test method for tensile properties of continuous fiber reinforced ceramic matrix composites at room temperature: GJB 8736—2015[S]. Beijing: Military Standard Publishing and Distribution Department of General Armaments Department, 2016(in Chinese).
    [17]
    中国建筑材料工业协会. 精细陶瓷弯曲强度试验方法: GB/T 6569—2006[S]. 北京: 中国标准出版社, 2006.

    China Building Materials Industry Association. Fine ceramic flexural strength test method: GB/T 6569—2006[S]. Beijing: Standards Press of China, 2006(in Chinese).
    [18]
    于海蛟. 多层界面制备、表征及其对SiCf/SiC复合材料性能的影响[D]. 长沙: 国防科学技术大学, 2011.

    YU Haijiao. Preparation and characterization of multilayer interface and its effect on the properties of SiCf/SiC composites[D]. Changsha: National University of Defense Technology, 2011(in Chinese).
    [19]
    DUAN Y D, QIU H P, YANG T T, et al. Flexural failure mechanism of 2.5D woven SiCf/SiC composites: Combination of acoustic emission, digital image correlation and X-ray tomography[J]. Composites Communications,2021,28:100921. doi: 10.1016/j.coco.2021.100921
    [20]
    胡晓安, 张宇, 阳海棠, 等. 三维编织SiC/SiC复合材料拉伸和弯曲损伤机制[J]. 复合材料学报, 2019, 36(8):1879-1885. doi: 10.13801/j.cnki.fhclxb.20181018.001

    HU Xiao'an, ZHANG Yu, YANG Haitang, et al. Tensile and bending damage mechanism of 3D braided SiC/SiC composites[J]. Acta Materiae Compositae Sinica,2019,36(8):1879-1885(in Chinese). doi: 10.13801/j.cnki.fhclxb.20181018.001
    [21]
    王锟, 陈刘定, 郑翔. 平纹编织C/SiC复合材料在室温和高温环境下的拉伸行为[J]. 航空材料学报, 2010, 30(1):78-84. doi: 10.3969/j.issn.1005-5053.2010.1.015

    WANG Kun, CHEN Liuding, ZHENG Xiang. Comparison of tensile behavior of plain-woven carbon/silicon carbide composites at room temperature and high temperature[J]. Journal of Aeronautical Materials,2010,30(1):78-84(in Chinese). doi: 10.3969/j.issn.1005-5053.2010.1.015
    [22]
    刘倩, 陈思安, 潘勇. SiC/CVD SiC复合涂层的抗氧化及抗热震性能研究[J]. 宇航总体技术, 2021, 5(2):39-48.

    LIU Qian, CHEN Si'an, PAN Yong. Study on oxidation resistance and thermal shock resistance of SiC/CVD SiC composite coating[J]. Aerospace General Technology,2021,5(2):39-48(in Chinese).
    [23]
    涂建勇, 栾新刚, 成来飞, 等. 薄界面3D C/SiC复合材料的热震损伤机制[J]. 固体火箭技术, 2009, 32(4):461-464. doi: 10.3969/j.issn.1006-2793.2009.04.025

    TU Jianyong, LUAN Xingang, CHENG Laifei, et al. Damaging mechanism of 3D C/SiC composite with thin interlayer during thermal shock process[J]. Solid Rocket Technology,2009,32(4):461-464(in Chinese). doi: 10.3969/j.issn.1006-2793.2009.04.025
    [24]
    管国阳, 矫桂琼, 张增光. 2D-C/SiC复合材料的宏观拉压特性和失效模式[J]. 复合材料学报, 2005, 22(4):81-85. doi: 10.3321/j.issn:1000-3851.2005.04.014

    GUAN Guoyang, JIAO Guiqiong, ZHANG Zengguang. Uniaxial macro-mechanical property and failure mode of a 2D-woven C/SiC composite[J]. Acta Materiae Compositae Sinica,2005,22(4):81-85(in Chinese). doi: 10.3321/j.issn:1000-3851.2005.04.014
    [25]
    李明远. SiCf/SiC复合材料的性能研究及仿真计算[D]. 长沙: 国防科技大学, 2019.

    LI Mingyuan. Performance research and simulation calculation of SiCf/SiC composites[D]. Changsha: National University of Defense Technology, 2019(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (648) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return