Volume 39 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
TIAN Li, LI Zhen, WANG Huifeng, et al. Synthesis and characterization of polypyrrole@copper pyromellitic and CO2 adsorption ability of separated polypyrrole[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3863-3870. doi: 10.13801/j.cnki.fhclxb.20211028.003
Citation: TIAN Li, LI Zhen, WANG Huifeng, et al. Synthesis and characterization of polypyrrole@copper pyromellitic and CO2 adsorption ability of separated polypyrrole[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3863-3870. doi: 10.13801/j.cnki.fhclxb.20211028.003

Synthesis and characterization of polypyrrole@copper pyromellitic and CO2 adsorption ability of separated polypyrrole

doi: 10.13801/j.cnki.fhclxb.20211028.003
  • Received Date: 2021-08-09
  • Accepted Date: 2021-10-13
  • Rev Recd Date: 2021-09-14
  • Available Online: 2021-10-28
  • Publish Date: 2022-08-31
  • The molecular structure and performance of polypyrrole is very different due to the difference of its synthesis methods. Utilizing a metal-organic framework (MOF) named copper pyromellitic (Cu-BTC) with three-dimensipnal (3D) mesoporous channels as the host material, the radical polymerization of pyrrole (Py) was conducted in the pores by iodine oxidation method to obtain the composite material polypyrrole@Cu-BTC (PPy@Cu-BTC). XRD, SEM, FTIR, TG and N2 adsorption-desorption isotherm were used to characterize the prepared Cu-BTC, Py@Cu-BTC and PPy@Cu-BTC, showing the successful synthesis of polymerization in the pores. During the polymerization, the structure and morphology of Cu-BTC keep stable. Based on the charge transfer of host-guest complexation and π-π interaction, the PPy@Cu-BTC composite is a semiconductor material and has a conductivity of 10−4 S/cm which is at least four orders of magnitude higher than the conductivity of the template Cu-BTC and the as-prepared solid polypyrrole. N2 adsorption measurement indicated that the as-synthesized PPy separated from PPy@Cu-BTC composite is porous, which has excellent absorption ability of CO2 with a maximum absorption value of 16 cm3/g and twice as much as the absorption ability of the as-synthesized solid PPy.

     

  • loading
  • [1]
    DHARA B, NAGARKAR S S, KUMAR J, et al. Increase in electrical conductivity of MOF to billion-fold upon filling the nanochannels with conducting polymer[J]. Journal of Physical Chemistry Letters,2016,7(15):2945-2950. doi: 10.1021/acs.jpclett.6b01236
    [2]
    PENG Y, KRUNGLEVICIUTE V, ERYAXICI I, et al. Methane storage in metal-organic frameworks: Current records, surprise findings, and challenges[J]. Journal of the American Chemical Society,2013,135(32):11887-11894. doi: 10.1021/ja4045289
    [3]
    KITAO T, ZHANG Y, KITAGAWA S, et al. Hybridization of MOFs and polymers[J]. Chemical Society Review,2017,46(11):3108-3133. doi: 10.1039/C7CS00041C
    [4]
    KITAO T, BRACCO S, COMOTTI A, et al. Confinement of single polysilane chains in coordination nanospaces[J]. Journal of the American Chemical Society,2015,137(15):5231-5238. doi: 10.1021/jacs.5b02215
    [5]
    LU C, BEN T, XU S, et al. Electrochemical synthesis of a microporous conductive polymer based on a metal-organic framework thin film[J]. Angewandte Chemie International Edition,2014,53(25):6454-6458. doi: 10.1002/anie.201402950
    [6]
    何亚萍, 韩权, 李伟, 等. 石墨烯-导电聚合物复合材料制备[J]. 化工新型材料, 2016, 44(10):45-48.

    HE Yaping, HAN Quan, LI Wei, et al. Preparation of graphene-conductive polymer composite[J]. New Chemi-cal Materials,2016,44(10):45-48(in Chinese).
    [7]
    MADHAN K A, RAJENDRAN N. Electrochemical aspects and in vitro biocompatibility of polypyrrole/TiO2 ceramic nanocomposite coatings on 316L SS for orthopedic implants[J]. Ceramics International,2013,39(5):5639-5650. doi: 10.1016/j.ceramint.2012.12.080
    [8]
    BASAVARAJA C, KIM W J, THINH P X, et al. Electrical conductivity studies on water-soluble polypyrrole-graphene oxide composites[J]. Polymer Composites,2011,32(12):2076-2083. doi: 10.1002/pc.21237
    [9]
    KAZAZI M, VAEZI M R, KAZAMZEMZADEH A. Enhanced rate performance of polypyrrole-coated sulfur/MWCNT cathode material: A kinetic study by electrochemical impedance spectroscopy[J]. Ionics,2013,20(5):635-643.
    [10]
    ZHANG X, ZENG X, YANG M, et al. Investigation of a branchlike MoO3/polypyrrole hybrid with enhanced electrochemical performance used as an electrode in supercapacitors[J]. ACS Applied Materrials Interfaces,2014,6(2):1125-1130. doi: 10.1021/am404724u
    [11]
    陈启多, 韩凯, 程君, 等. 纳米硅/导电聚合物复合负极的制备与性能[J]. 电池, 2019, 49(1):3-7.

    CHEN Qidong, HAN Kai, CHENG Jun, et al. Synthesis and performance of nano-silicon/conducting polymer compo-site anode[J]. Battery Bimonthly,2019,49(1):3-7(in Chinese).
    [12]
    LV Q. Unstirred preparation of soluble electroconductive polypyrrole nanoparticles[J]. Microchimica Acta,2010,168(3/4):205-213. doi: 10.1007/s00604-009-0278-4
    [13]
    陈小军, 胡翠雯, 崔子怡, 等. 直写3D打印GNPs-MWCNT导电聚合物复合材料的制备及性能[J]. 机械工程材料, 2020, 44(11):83-88. doi: 10.11973/jxgccl202011015

    CHEN Xiaojun, HU Cuiwen, CUI Ziyi, et al. Preparation and performance of GNPs-MWCNT conductive polymer composite materials by direct writing 3D printing[J]. Materials for Mechanical Engineering,2020,44(11):83-88(in Chinese). doi: 10.11973/jxgccl202011015
    [14]
    田俐, 刘强, 王会锋, 等. 新型半导体聚乙烯基二氧噻吩@对苯二甲酸铟复合材料的制备、表征与导电性能[J]. 复合材料学报, 2022, 39(6): 2635- 2641.

    TIAN Li, LIU Qiang, WANG Huifeng, et al. Synthesis, cha-racterization and electric conductivity of novel poly (divinyldioxythiophene@indium p-phthalic semi-conduc-tor composites[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2635-2641(in Chinese).
    [15]
    NAYAK A, RAMA P S, KUMAR S, et al. Structural tuning of low band gap intermolecular push/pull side-chain polymers for organic photovoltaic applications[J]. Polymer Science,2017,35(9):1073-1085.
    [16]
    WANG X, YANG C, LIU P. Well-defined polypyrrole nanoflakes via chemical oxidative polymerization in the pre-sence of sodium alkane sulfonate[J]. Materials Letters,2011,65(10):1448-1450. doi: 10.1016/j.matlet.2011.02.031
    [17]
    FENG X, YAN Z, LI R, et al. The synthesis of shape-controlled polypyrrole/graphene and the study of its capaci-tance properties[J]. Polymer Bulletin,2013,70(8):2291-2304. doi: 10.1007/s00289-013-0952-x
    [18]
    UEMURA T, NAKANISHI R, MOCHIZUKI S, et al. Radical polymerization of 2, 3-dimethyl-1, 3-butadiene in coordi-nation nanochannels[J]. Chemical Communication,2015,51(48):9892-9895. doi: 10.1039/C5CC01933H
    [19]
    WANG Q X, ZHANG C Y. Oriented synthesis of one-dimensional polypyrrole molecule chains in a metal-organic framework[J]. Mmacromolecular Rapid Communications,2011,32(20):1610-1614. doi: 10.1002/marc.201100305
    [20]
    CHITTE H, BHAT N, GORE M, et al. Synthesis of polypyrrole using ammonium peroxy disulfate (APS) as oxidant together with some dopants for use in gas sensors[J]. Materials Sciences and Applications, 2011, 2(10): 1491-1498.
    [21]
    YANAI N, UEMURA T, OHBA M, et al. Fabrication of two-dimensional polymer arrays: Template synthesis of polypyrrole between redox-active coordination nanoslits[J]. Angewandte Chemie International Edition,2008,47(51):9883-9886. doi: 10.1002/anie.200803846
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (1047) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return