Volume 39 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
ZENG Xiongfeng, WANG Menghuan, WANG Jiansheng, et al. Preparation and photocatalytic properties TiO2/graphene nanocomposites with sandwich structure[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 656-663. doi: 10.13801/j.cnki.fhclxb.20210518.009
Citation: ZENG Xiongfeng, WANG Menghuan, WANG Jiansheng, et al. Preparation and photocatalytic properties TiO2/graphene nanocomposites with sandwich structure[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 656-663. doi: 10.13801/j.cnki.fhclxb.20210518.009

Preparation and photocatalytic properties TiO2/graphene nanocomposites with sandwich structure

doi: 10.13801/j.cnki.fhclxb.20210518.009
  • Received Date: 2021-03-08
  • Accepted Date: 2021-05-13
  • Rev Recd Date: 2021-05-12
  • Available Online: 2021-05-18
  • Publish Date: 2022-02-01
  • TiO2/graphene nanocomposites were synthesized from graphene oxide (GO), C12H28N2 and TiO2 sol by three-step method as follows: Dodecanediamine pre-intercalating, ion exchange, and interlayer in-situ formation of TiO2 by calcined. The properties and structures of TiO2/graphene nanocomposites with sandwich structure were characterized by XRD, Raman, FTIR, TEM, TG, UV-Vis and PL. The photocatalytic degradation performance of TiO2/graphene composites prepared with different amounts of TiO2 were investigated. The crystallization of TiO2 and the reduction of GO were significantly increased simultaneously during calcination. According to XRD and FTIR results, TiO2 nanoparticles have formed in situ between the interlayer of graphene and anchored on graphene with chemically-bonded. Therefore, it can be concluded that the TiO2/graphene nanocomposites with sandwich structure are prepared successfully. TiO2/graphene composites show the best photocatalytic degradation of ciprofloxacin (CIP) when the mass fraction of TiO2 is 65.5wt%, and the degradation rate reaches 90% after 150 min under visible light irradiation, which is higher than pure TiO2 nanoparticles (28%, 150 min). It can be mainly attributed to the special sandwich structure with enhanced photoinduced electron-hole separation. The photocatalyst stability test shows that TiO2/graphene nanocomposites possess high photostability and structure stability for potential practical applications in environmental purification.

     

  • loading
  • [1]
    张延, 严晓菊, 孙越, 等. 中国抗生素滥用现状及其在环境中的分布情况[J]. 当代化工, 2019, 48(11):2660-2662, 2666. doi: 10.3969/j.issn.1671-0460.2019.11.054

    ZHANG Yan, YAN Xiaoju, SUN Yue, et al. Current situation of antibiotic abuse in China and itsresidues distribution in the environment[J]. Contemporary Chemical Industry,2019,48(11):2660-2662, 2666(in Chinese). doi: 10.3969/j.issn.1671-0460.2019.11.054
    [2]
    孙玉伟, 赵爽, 刘锐涵, 等. 可磁分离ZnFe2O4-TiO2/还原氧化石墨烯复合材料的制备及光催化性能[J]. 复合材料学报, 2020, 37(4):758-766.

    SUN Yuwei, ZHAO Shuang, LIU Ruihan, et al. Preparation and photocatalytic properties of magnetically separatable ZnFe2O4-TiO2/reduced graphene oxide composites[J]. Acta Materiae Compositae Sinica,2020,37(4):758-766(in Chinese).
    [3]
    张雅星, 庞少华, 于丽平, 等. 改性TiO2光催化降解苯酚研究进展[J]. 环境与发展, 2020, 32(12):112-113.

    ZHANG Yaxing, PANG Shaohua, YU Liping, et al. Research progress of photocatalytic degradation of phenol by modified TiO2[J]. Environment and Development,2020,32(12):112-113(in Chinese).
    [4]
    芦琼, 翟莉慧, 肖寒, 等. TiO2掺杂改性提高光催化剂有机物降解能力技术研究进展[J]. 广东化工, 2021, 48(1):37-39, 59. doi: 10.3969/j.issn.1007-1865.2021.01.017

    LU Qiong, ZHAI Lihui, XIAO Han, et al. Research progress of doping modification of TiO2 to improve photocatalyst organic degradation[J]. Guangdong Chemical Industry,2021,48(1):37-39, 59(in Chinese). doi: 10.3969/j.issn.1007-1865.2021.01.017
    [5]
    WANG F, YU X, GE M, et al. One-step synthesis of TiO2/γ-Fe2O3/GO nanocomposites for visible light-driven degradation of ciprofloxacin[J]. Chemical Engineering Journal,2020,384:123381. doi: 10.1016/j.cej.2019.123381
    [6]
    KOMARAIAH D, RADHA E, SIVAKUMAR J, et al. Photoluminescence and photocatalytic activity of spin coated Ag+ doped anatase TiO2 thin films[J]. Optical Materials,2020,108:110401. doi: 10.1016/j.optmat.2020.110401
    [7]
    KANAN S, MOYET M A, ARTHUR R B, et al. Recent advances on TiO2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies[J]. Catalysis Reviews,2020,62(1):1-65. doi: 10.1080/01614940.2019.1613323
    [8]
    KHAN S A, ARSHAD Z, SHAHID S, et al. Synthesis of TiO2/Graphene oxide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin[J]. Composites Part B: Engineering,2019,175:107120. doi: 10.1016/j.compositesb.2019.107120
    [9]
    HUMAYUN M, RAZIQ F, KHAN A, et al. Modification strategies of TiO2 for potential applications in photocatalysis: a critical review[J]. Green Chemistry Letters and Reviews,2018,11(2):86-102. doi: 10.1080/17518253.2018.1440324
    [10]
    刘乃亮, 连欣巧, 姚秉华, 等. TiO2/RGO纳米复合光催化剂的制备及性能研究[J]. 化工新型材料, 2019, 47(12):261-265.

    LIU Nailiang, LIAN Xinqiao, YAO Binghua, et al. Preparation and characterization of TiO2 / RGO nanocomposite photocatalyst[J]. New Chemical Materials,2019,47(12):261-265(in Chinese).
    [11]
    LIU H, ZHU D, SHI H, et al. Fabrication of a contamination-free interface between graphene and TiO2 single crystals[J]. ACS Omega,2016,1(2):168-176. doi: 10.1021/acsomega.6b00074
    [12]
    ASHRAF M A, LIU Z, PENG W X, et al. Combination of sonochemical and freeze-drying methods for synthesis of graphene/Ag-doped TiO2 nanocomposite: A strategy to boost the photocatalytic performance via well distribution of nanoparticles between graphene sheets[J]. Ceramics International,2020,46(6):7446-7452. doi: 10.1016/j.ceramint.2019.11.241
    [13]
    PIAN X, LIN B, CHEN Y, et al. Pillared nanocomposite TiO2/Bi-doped hexaniobate with visible-light photocatalytic activity[J]. The Journal of Physical Chemistry C,2011,115(14):6531-6539. doi: 10.1021/jp1097553
    [14]
    ZENG X, WANG J, ZHAO Y, et al. Construction of TiO2-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation[J]. International Journal of Minerals, Metallurgy and Materials,2021,28(3):503-510. doi: 10.1007/s12613-020-2193-y
    [15]
    HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society,1958,80(6):1334-1339. doi: 10.1021/ja01539a017
    [16]
    CHEN R, WANG J, WANG H, et al. Photocatalytic degradation of methyl orange in aqueous solution over titania-pillared α-zirconium phosphate[J]. Solid State Sciences,2011,13(3):630-635. doi: 10.1016/j.solidstatesciences.2010.12.037
    [17]
    HUANG Z, ZHOU A, WU J, et al. Bottom-up preparation of ultrathin 2D aluminum oxide nanosheets by duplicating graphene oxide[J]. Advanced Materials,2016,28(8):1703-1708. doi: 10.1002/adma.201504484
    [18]
    YAO W, LI Y, YAN D, et al. Fabrication and photocatalysis of TiO2-graphene sandwich nanosheets with smooth surface and controlled thickness[J]. Chemical Engineering Journal,2013,229:569-576. doi: 10.1016/j.cej.2013.06.027
    [19]
    AZARANG M, SHUHAIMI A, YOUSEFI R, et al. Effects of graphene oxide concentration on optical properties of ZnO/RGO nanocomposites and their application to photocurrent generation[J]. Journal of Applied Physics,2014,116(8):084307. doi: 10.1063/1.4894141
    [20]
    XU X, SHI W, LI P, et al. Facile fabrication of three-dimensional graphene and metal-organic framework composites and their derivatives for flexible all-solid-state supercapacitors[J]. Chemistry of Materials,2017,29(14):6058-6065. doi: 10.1021/acs.chemmater.7b01947
    [21]
    WANG P, WANG J, WANG X, et al. One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity[J]. Applied Catalysis B: Environmental,2013,132:452-459.
    [22]
    NGUYENPHAN T, PHAM V H, SHIN E W, et al. The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide compo-sites[J]. Chemical Engineering Journal,2011,170(1):226-232. doi: 10.1016/j.cej.2011.03.060
    [23]
    HAMANDI M, BERHAULT G, GUILLARD C, et al. Reduced graphene oxide/TiO2 nanotube composites for formic acid photodegradation[J]. Applied Catalysis B: Environmental,2017,209:203-213. doi: 10.1016/j.apcatb.2017.02.062
    [24]
    ZHAO G, LI C, WU X, et al. Reduced graphene oxide modified NiFe-calcinated layered double hydroxides for enhanced photocatalytic removal of methylene blue[J]. Applied Surface Science,2018,434:251-259. doi: 10.1016/j.apsusc.2017.10.181
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (1638) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return