Volume 38 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
DU Xi, YIN Leilei, ZHANG Wenjun, et al. Design and application of MOFs and derived composite materials inlithium-sulfur batteries[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3192-3207. doi: 10.13801/j.cnki.fhclxb.20210427.001
Citation: DU Xi, YIN Leilei, ZHANG Wenjun, et al. Design and application of MOFs and derived composite materials inlithium-sulfur batteries[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3192-3207. doi: 10.13801/j.cnki.fhclxb.20210427.001

Design and application of MOFs and derived composite materials inlithium-sulfur batteries

doi: 10.13801/j.cnki.fhclxb.20210427.001
  • Received Date: 2021-03-15
  • Accepted Date: 2021-04-22
  • Available Online: 2021-04-28
  • Publish Date: 2021-10-01
  • Against the background of increasingly prominent energy crisis and environmental problems, electrochemical energy storage technology has been developed rapidly. Among the competitors in the field of “beyond lithium” energy storage, lithium-sulfur batteries (Li-S) have become the most promising new energy storage technology owing to the advantages of high theoretical specific capacity, high mass energy density, environmental friendliness and low cost. However, there are still some bottleneck problems to be solved in the development of lithium-sulfur batteries, such as poor conductivity of cathode materials, polysulfide shuttle effect and electrode volume changes during charge and discharge. As the key components of lithium-sulfur batteries, the design and preparation of electrode and separator materials play the important roles in solving these problems and improving the overall performance of the batteries. Metal-organic frameworks (MOFs) and their derived composite materials exhibit the advantages of light weight, good electron and ion conductivity, abundant channels and uniform distribution of active sites to be used as electrode or separator modification materials for lithium-sulfur battery. In addition, this kind of composite material also possesses the characteristics of controllable morphology and composition, abundant source and adjustable pore size, which are convenient for mechanism research. Herein, we comprehensively introduce the composition, working mechanism and application of lithium-sulfur batteries. Importantly, we also review the research progress of MOFs and derivatives as cathode materials and separator materials in lithium-sulfur batteries in recent years. The prospects of the materials in improving the performance of lithium-sulfur batteries are also prospected.

     

  • loading
  • [1]
    KONG L, ZHONG M, SHUANG W, et al. Electrochemically active sites inside crystalline porous materials for energy storage and conversion[J]. Chemical Society Reviews,2020,49(8):2378-2407. doi: 10.1039/C9CS00880B
    [2]
    LI X, LIANG J, YANG X, et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries[J]. Energy & Environmental Science,2020,13(5):1429-1461. doi: 10.1039/C9EE03828K
    [3]
    CHEN Y, JI S, ZHAO S, et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell[J]. Nature Communications,2018,9(1):5422-5433. doi: 10.1038/s41467-018-07850-2
    [4]
    黄雅盼, 孙晓刚, 王杰, 等. 羟基化多壁碳纳米管掺杂抑制锂硫电池的穿梭效应[J]. 复合材料学报, 2019, 36(5):1335-1341.

    HUANG Yapan, SUN Xiaogang, WANG Jie, et al. Inhibiting shuttle effect of lithium sulfur batteries by introducing hydroxylated multi-walled carbon nanotube[J]. Acta Materiae Compositae Sinica,2019,36(5):1335-1341(in Chinese).
    [5]
    YANG X, LUO J, SUN X. Towards high-performance solid-state Li-S batteries: From fundamental understanding to engineering design[J]. Chemical Society Reviews,2020,49(7):2140-2195. doi: 10.1039/C9CS00635D
    [6]
    HE J, MANTHIRAM A. A review on the status and challenges of electrocatalysts in lithium-sulfur batteries[J]. Energy Storage Materials,2019,20:55-70. doi: 10.1016/j.ensm.2019.04.038
    [7]
    杨果, 马壮, 杨绍斌, 等. 锂硫电池硫基碳正极材料的研究进展[J]. 化工进展, 2017, 36:311-318.

    YANG Guo, MA Zhuang, YANG Shaobin, et al. Research progress of sulfur-based carbon cathode materials in lithium-sulfur batteries[J]. Chemical Industry and Engineering Progress,2017,36:311-318(in Chinese).
    [8]
    LIU J, CHEN H, CHEN W, et al. New insight into the “Shuttle Mechanism” of rechargeable lithium-sulfur batteries[J]. ChemElectroChem,2019,6(10):2782-2787. doi: 10.1002/celc.201900420
    [9]
    HUANG Q, CHEN M, SU Z, et al. Rational cooperativity of nanospace confinement and rapid catalysis via hollow carbon nanospheres@Nb-based inorganics for high-rate Li-S batteries[J]. Chemical Engineering Journal,2021,411:128504-128512. doi: 10.1016/j.cej.2021.128504
    [10]
    WANG K, JU S, GAO Q, et al. Porous sulfurized poly(acrylonitrile) nanofiber as a long-life and high-capacity cathode for lithium-sulfur batteries[J]. Journal of Alloys and Compounds,2021,860:158445-158452. doi: 10.1016/j.jallcom.2020.158445
    [11]
    SONG Y, SUN Z, FAN Z, et al. Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry[J]. Nano Energy,2020,70:104555-104564. doi: 10.1016/j.nanoen.2020.104555
    [12]
    LI N, XIE Y, PENG S, et al. Ultra-lightweight Ti3C2T MXene modified separator for Li-S batteries: Thickness regulation enabled polysulfide inhibition and lithium ion transportation[J]. Journal of Energy Chemistry,2020,42:116-125. doi: 10.1016/j.jechem.2019.06.014
    [13]
    CHEN Y, ZHANG W, ZHOU D, et al. Co-Fe mixed metal phosphide nanocubes with highly interconnected-pore architecture as an efficient polysulfide mediator for lithium-sulfur batteries[J]. ACS Nano,2019,13(4):4731-4741. doi: 10.1021/acsnano.9b01079
    [14]
    LI Y, CAI Y, CAI Z, et al. Sulfur-infiltrated yeast-derived nitrogen-rich porous carbon microspheres@reduced graphene cathode for high-performance lithium-sulfur batteries[J]. Electrochimica Acta,2018,285:317-325. doi: 10.1016/j.electacta.2018.07.222
    [15]
    HSIEH Y Y, ZHANG L, DEARMOND D, et al. Integrated graphene-sulfur cathode and separator with plasma enhancement for Li-S batteries[J]. Carbon,2018,139:1093-1103. doi: 10.1016/j.carbon.2018.08.025
    [16]
    HYUN J, LEE P C, JUNG M J, et al. A simple preparation of polyaniline-coated sulfur composites for use as cathodes in Li-S batteries[J]. Electrochemistry,2016,84(11):836-841. doi: 10.5796/electrochemistry.84.836
    [17]
    PUTHIRATH A B, BABURAJ A, KATO K, et al. High sulfur content multifunctional conducting polymer composite electrodes for stable Li-S battery[J]. Electrochimica Acta,2019,306:489-497. doi: 10.1016/j.electacta.2019.03.136
    [18]
    MA G, HUANG F, WEN Z, et al. Enhanced performance of lithium sulfur batteries with conductive polymer modified separators[J]. Journal of Materials Chemistry A,2016,4(43):16968-16974. doi: 10.1039/C6TA07198H
    [19]
    SHI Q X, YANG C Y, PEI H J, et al. Layer-by-layer self-assembled covalent triazine framework/electrical conductive polymer functional separator for Li-S battery[J]. Chemical Engineering Journal,2021,404:127044-127055. doi: 10.1016/j.cej.2020.127044
    [20]
    LI B, SU Q, YU L, et al. Tuning the band structure of MoS2 via Co9S8@MoS2 core-shell structure to boost catalytic activity for lithium-sulfur batteries[J]. ACS Nano,2020,14(12):17285-17294. doi: 10.1021/acsnano.0c07332
    [21]
    KIM P J H, SEO J, FU K, et al. Synergistic protective effect of a BN-carbon separator for highly stable lithium sulfur batteries[J]. NPG Asia Materials,2017,9:375-383. doi: 10.1038/am.2017.51
    [22]
    YANG X, QIAN X, JIN L, et al. Separator modified with Ketjenblack-In2O3 nanoparticles for long cycle-life lithium-sulfur batteries[J]. Journal of Solid State Electrochemistry,2019,23:645-656. doi: 10.1007/s10008-018-4141-6
    [23]
    YANG X, YU Y, YAN N, et al. 1-D oriented cross-linking hierarchical porous carbon fibers as a sulfur immobilizer for high performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A Materials for Energy,2016,4(16):5965-5972. doi: 10.1039/C6TA01060A
    [24]
    LI Y, WANG L, GAO B, et al. Hierarchical porous carbon materials derived from self-template bamboo leaves for lithium-sulfur batteries[J]. Electrochimica Acta,2017,229:352-360. doi: 10.1016/j.electacta.2017.01.166
    [25]
    LI Z, HAN Y, WEI J, et al. Suppressing shuttle effect using janus cation exchange membrane for high-performance lithium-sulfur battery separator[J]. ACS Applied Materials & Interfaces,2017,9(51):44776-44781. doi: 10.1021/acsami.7b13047
    [26]
    QIU W, LI J, ZHANG Y, et al. Carbon nanotubes assembled on porous TiO2 matrix doped with Co3O4 as sulfur host for lithium-sulfur batteries[J]. Nanotechnology,2021,32(7):75403-75410. doi: 10.1088/1361-6528/abc451
    [27]
    AGOSTINI M, MATIC A. Designing highly conductive functional groups improving guest-host interactions in Li/S batteries[J]. Small,2020,16(2):1905585-1905593. doi: 10.1002/smll.201905585
    [28]
    LIU M, ZHOU D, JIANG H R, et al. A highly-safe lithium-ion sulfur polymer battery with SnO2 anode and acrylate-based gel polymer electrolyte[J]. Nano Energy,2016,28:97-105. doi: 10.1016/j.nanoen.2016.08.033
    [29]
    樊潮江, 燕映霖, 陈利萍, 等. 过渡金属硫化物改性锂硫电池正极材料[J]. 化学进展, 2019, 31(8):1166-1176.

    FAN Chaojiang, YAN Yinglin, CHEN Liping, et al. Transition-metal sulfides modified cathode of Li-S batteries[J]. Progress in Chemistry,2019,31(8):1166-1176(in Chinese).
    [30]
    LI N, HE X, CHEN K, et al. Confine sulfur in urchin-like nitrogen doped carbon particles for lithium-sulfur batteries[J]. Materials Letters,2018,228:195-198. doi: 10.1016/j.matlet.2018.06.017
    [31]
    FAN W, YUAN S, WANG W, et al. Optimizing multivariate metal-organic frameworks for efficient C2H2/CO2 separation[J]. Journal of the American Chemical Society,2020,142(19):8728-8737. doi: 10.1021/jacs.0c00805
    [32]
    PANDEY A, DHAS N, DESHMUKH P, et al. Heterogeneous surface architectured metal-organic frameworks for cancer therapy, imaging, and biosensing: A state-of-the-art review[J]. Coordination Chemistry Reviews,2020,409:213212-213263. doi: 10.1016/j.ccr.2020.213212
    [33]
    WANG D, WU H, LIM W Q, et al. A mesoporous nanoenzyme derived from metal-organic frameworks with endogenous oxygen generation to alleviate tumor hypoxia for significantly enhanced photodynamic therapy[J]. Advanced Materials,2019,31(27):1901893-1901901. doi: 10.1002/adma.201901893
    [34]
    LI S, LIU X, CHAI H, et al. Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes[J]. TrAC Trends in Analytical Chemistry,2018,105:391-403. doi: 10.1016/j.trac.2018.06.001
    [35]
    ZHOU S, CHEN K, HUANG J, et al. Preparation of heterometallic CoNi-MOFs-modified BiVO4: A steady photoanode for improved performance in photoelectrochemical water splitting[J]. Applied Catalysis B: Environmental,2020,266:118513-118522. doi: 10.1016/j.apcatb.2019.118513
    [36]
    DHAKSHINAMOORTHY A, ASIRI A M, GARCIA H. 2D metal-organic frameworks as multifunctional materials in heterogeneous catalysis and electro/photocatalysis[J]. Advanced Materials,2019,31(41):1900617-1900656. doi: 10.1002/adma.201900617
    [37]
    LIAO Y T, MATSAGAR B M, WU K C W. Metal-organic framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass[J]. ACS Sustainable Chemistry & Engineering,2018,6(11):13628-13643. doi: 10.1021/acssuschemeng.8b03683
    [38]
    RICE A M, MARTIN C R, GALITSKIY V A, et al. Photophysics modulation in photoswitchable metal-organic frameworks[J]. Chemical Reviews,2020,120(16):8790-8813. doi: 10.1021/acs.chemrev.9b00350
    [39]
    LIU P, GAO S, WANG Y, et al. Core-shell CoNi@graphitic carbon decorated on B, N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation[J]. ACS Applied Materials & Interface,2019,11(28):25624-25635. doi: 10.1021/acsami.9b08525
    [40]
    ZHANG Q, WANG J, KIRILLOV A M, et al. Multifunctional Ln-MOF luminescent probe for efficient sensing of Fe3+, Ce3+, and acetone[J]. ACS Applied Materials & Interface,2018,10(28):23976-23986. doi: 10.1021/acsami.8b06103
    [41]
    WANG H F, CHEN L, PANG H, et al. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions[J]. Chemical Society Reviews,2020,49(5):1414-1448. doi: 10.1039/C9CS00906J
    [42]
    ZHENG Y, ZHENG S, XUE H, et al. Metal-organic frameworks for lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2019,7(8):3469-3491. doi: 10.1039/C8TA11075A
    [43]
    DU M, LI Q, ZHAO Y, et al. A review of electrochemical energy storage behaviors based on pristine metal-organic frameworks and their composites[J]. Coordination Chemistry Reviews,2020,416:213341-213367. doi: 10.1016/j.ccr.2020.213341
    [44]
    ZHONG Y, XU X, LIU Y, et al. Recent progress in metal-organic frameworks for lithium-sulfur batteries[J]. Polyhedron,2018,155:464-484. doi: 10.1016/j.poly.2018.08.067
    [45]
    PANG Q, LIANG X, KWOK C Y, et al. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes[J]. Nature Energy,2016,1(9):16132-16142. doi: 10.1038/nenergy.2016.132
    [46]
    SHRIVASTAV V, SUNDRIYAL S, GOEL P, et al. Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: Novel means for alternative energy storage[J]. Coordination Chemistry Reviews,2019,393:48-78. doi: 10.1016/j.ccr.2019.05.006
    [47]
    WU Q, ZHOU X, XU J, et al. Carbon-based derivatives from metal-organic frameworks as cathode hosts for Li-S batteries[J]. Journal of Energy Chemistry,2019,38:94-113. doi: 10.1016/j.jechem.2019.01.005
    [48]
    MAO Y, LI G, GUO Y, et al. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries[J]. Nature Communications,2017,8:14628-14635. doi: 10.1038/ncomms14628
    [49]
    DEMIR-CAKAN R, MORCRETTE M, FARID N, et al. Cathode composites for Li-S batteries via the use of oxygenated porous architectures[J]. Journal of the American Chemical Society,2011,133:16154-16160. doi: 10.1021/ja2062659
    [50]
    ZHOU J, LI R, FAN X, et al. Rational design of a metal-organic framework host for sulfur storage in fast, long-cycle Li-S batteries[J]. Energy & Environmental Science,2014,7(8):2715-2724. doi: 10.1039/C4EE01382D
    [51]
    ZHENG J, TIAN J, WU D, et al. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries[J]. Nano Letters,2014,14(5):2345-2352. doi: 10.1021/nl404721h
    [52]
    LIU B, THOI V S. Improving charge transfer in metal-organic frameworks through open site functionalization and porosity selection for Li-S batteries[J]. Chemistry of Materials,2020,32(19):8450-8459. doi: 10.1021/acs.chemmater.0c02438
    [53]
    LI W, QIAN J, ZHAO T, et al. Boosting high-rate Li-S batteries by an MOF-derived catalytic electrode with a layer-by-layer structure[J]. Advanced Science,2019,6(16):1802362-1802370. doi: 10.1002/advs.201802362
    [54]
    RAZZAQ A A, YUAN X, CHEN Y, et al. Anchoring MOF-derived CoS2 on sulfurized polyacrylonitrile nanofibers for high areal capacity lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2020,8(3):1298-1306. doi: 10.1039/C9TA11390H
    [55]
    XU G, DING B, SHEN L, et al. Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium-sulfur battery[J]. Journal of Materials Chemistry A,2013,1(14):4490-4496. doi: 10.1039/c3ta00004d
    [56]
    LI Y, FAN J, ZHANG J, et al. A honeycomb-like Co@N-C composite for ultrahigh sulfur loading Li-S batteries[J]. ACS nano,2017,11(11):11417-11424. doi: 10.1021/acsnano.7b06061
    [57]
    WALLE M D, ZHANG M, ZENG K, et al. MOFs-derived nitrogen-doped carbon interwoven with carbon nanotubes for high sulfur content lithium-sulfur batteries[J]. Applied Surface Science,2019,497:143773-143781. doi: 10.1016/j.apsusc.2019.143773
    [58]
    CHEN K, SUN Z, FANG R, et al. Metal-organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium-sulfur batteries[J]. Advanced Functional Materials,2018,28(38):1707592-1707599. doi: 10.1002/adfm.201707592
    [59]
    XU J, ZHANG W, CHEN Y, et al. MOF-derived porous N-Co3O4@N-C nanododecahedra wrapped with reduced graphene oxide as a high capacity cathode for lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2018,6(6):2797-2807. doi: 10.1039/C7TA10272K
    [60]
    CHEN G, LI Y, ZHONG W, et al. MOFs-derived porous Mo2C-C nano-octahedrons enable high-performance lithium-sulfur batteries[J]. Energy Storage Materials,2020,25:547-554. doi: 10.1016/j.ensm.2019.09.028
    [61]
    LIU G, FENG K, CUI H, et al. MOF derived in-situ carbon-encapsulated Fe3O4@C to mediate polysulfides redox for ultrastable Lithium-sulfur batteries[J]. Chemical Engineering Journal,2020,381:122652-122660. doi: 10.1016/j.cej.2019.122652
    [62]
    BENITEZ A, MARANGON V, HERNANDEZ-RENTERO C, et al. Porous Cr2O3@C composite derived from metal organic framework in efficient semi-liquid lithium-sulfur battery[J]. Materials Chemistry and Physics,2020,255:123484-123493. doi: 10.1016/j.matchemphys.2020.123484
    [63]
    GAO G K, WANG Y R, ZHU H J, et al. Rapid production of metal-organic frameworks based separators in industrial-level efficiency[J]. Advanced Science,2020,7(24):2002190-2002200. doi: 10.1002/advs.202002190
    [64]
    LI M, WAN Y, HUANG J K, et al. Metal-organic framework-based separators for enhancing Li-S battery stability: Mechanism of mitigating polysulfide diffusion[J]. ACS Energy Letters,2017,2(10):2362-2367. doi: 10.1021/acsenergylett.7b00692
    [65]
    FAN Y, NIU Z, ZHANG F, et al. Suppressing the shuttle effect in lithium-sulfur batteries by a UiO-66-modified polypropylene separator[J]. ACS Omega,2019,4(6):10328-10335. doi: 10.1021/acsomega.9b00884
    [66]
    LEE D H, AHN J H, PARK M S, et al. Metal-organic framework/carbon nanotube-coated polyethylene separator for improving the cycling performance of lithium-sulfur cells[J]. Electrochimica Acta,2018,283:1291-1299. doi: 10.1016/j.electacta.2018.07.031
    [67]
    HE Y, CHANG Z, WU S, et al. Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li-S batteries[J]. Advanced Energy Materials,2018,8(34):1802130-1802138. doi: 10.1002/aenm.201802130
    [68]
    BAI S, LIU X, ZHU K, et al. Metal-organic framework-based separator for lithium-sulfur batteries[J]. Nature Energy,2016,1(7):16094-16099. doi: 10.1038/nenergy.2016.94
    [69]
    SURIYAKUMAR S, STEPHAN A M, ANGULAKSHMI N, et al. Metal-organic framework@SiO2 as permselective separator for lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2018,6(30):14623-14632. doi: 10.1039/C8TA02259C
    [70]
    HONG X J, SONG C L, YANG Y, et al. Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium-sulfur batteries[J]. ACS Nano,2019,13(2):1923-1931.
    [71]
    QI C, XU L, WANG J, et al. Titanium-containing metal-organic framework modified separator for advanced lithium-sulfur batteries[J]. ACS Sustainable Chemistry and Engineering,2020,8(34):12968-12975. doi: 10.1021/acssuschemeng.0c03536
    [72]
    FENG Y, WANG G, KANG W, et al. Taming polysulfides and facilitating lithium-ion migration: Novel electrospinning MOFs@PVDF-based composite separator with spiderweb-like structure for Li-S batteries[J]. Electrochimica Acta,2021,365:137344-137351. doi: 10.1016/j.electacta.2020.137344
    [73]
    LI B, PAN Y, LUO B, et al. MOF-derived NiCo2S4@C as a separator modification material for high-performance lithium-sulfur batteries[J]. Electrochimica Acta,2020,344:135811-135820. doi: 10.1016/j.electacta.2020.135811
    [74]
    阮艳莉, 查煜澄, 张萌. 有机金属框架衍生物的制备及其在锂硫电池隔膜改性中的应用[J]. 天津工业大学学报, 2020, 39(5):56-60. doi: 10.3969/j.issn.1671-024x.2020.05.009

    RUAN Yanli, ZHA Yucheng, ZHANG Meng. Preparation of organometallic framework derivatives and its application in separator modification of lithium-sulfur batteries[J]. Journal of Tiangong University,2020,39(5):56-60(in Chinese). doi: 10.3969/j.issn.1671-024x.2020.05.009
    [75]
    HE J, CHEN Y, MANTHIRAM A. Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li-S batteries[J]. Energy & Environmental Science,2018,11(9):2560-2568. doi: 10.1039/C8EE00893K
    [76]
    FANG D, WANG Y, LIU X, et al. Spider-Web-inspired nanocomposite-modified separator: structural and chemical cooperativity inhibiting the shuttle effect in Li-S batteries[J]. ACS Nano,2019,13(2):1563-1573.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (1621) PDF downloads(141) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return