Volume 38 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
MAO Yurong, ZHAO Jiankui, ZHOU Xiong, et al. Recent progress of heterojunction materials for tumor diagnosis and treatment[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1703-1723. doi: 10.13801/j.cnki.fhclxb.20210118.002
Citation: MAO Yurong, ZHAO Jiankui, ZHOU Xiong, et al. Recent progress of heterojunction materials for tumor diagnosis and treatment[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1703-1723. doi: 10.13801/j.cnki.fhclxb.20210118.002

Recent progress of heterojunction materials for tumor diagnosis and treatment

doi: 10.13801/j.cnki.fhclxb.20210118.002
  • Received Date: 2020-11-11
  • Accepted Date: 2021-01-08
  • Available Online: 2021-01-18
  • Publish Date: 2021-06-23
  • At present, cancer is one of the major fatal diseases worldwide, and traditional treatment methods have many drawbacks. New therapeutic methods such as photodynamic therapy (PDT) and photothermal therapy (PTT) have effectively made up for the deficiency of traditional therapeutic methods with the development of nanomaterials. Heterojunction which combines nanomaterials of different compositions into a nanostructure exhibits an excellent performance in photodynamic therapy and photothermal therapy. Heterojunction materials have great application potential in the fields of catalysis, detection, multi-modal imaging and collaborative treatment of tumors due to their inherent peculiarities, including magnetic properties, optical properties and structural design. This article systematically reviews the recent progress of heterojunction materials in single tumor therapy, cooperative therapy and the integration of diagnosis and treatment, and the future development direction of heterojunction materials is also prospected.

     

  • loading
  • [1]
    BRAY F, JEMAL A, GREY N, et al. Global cancer transitions according to the human development index (2008-2030): A population-based study[J]. Lancet Oncology,2012,13(8):790-801. doi: 10.1016/S1470-2045(12)70211-5
    [2]
    LUO L H, ZHU C Q, YIN H, et al. Laser immunotherapy in combination with perdurable PD-1 blocking for the treatment of metastatic tumors[J]. ACS Nano,2018,12(8):7647-7662. doi: 10.1021/acsnano.8b00204
    [3]
    LI T T, SHI S X, GOEL S, et al. Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer[J]. Acta Biomaterialia,2019,89:1-13. doi: 10.1016/j.actbio.2019.02.031
    [4]
    XUE J W, ZHAO Z K, ZHANG L, et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence[J]. Nature Nanotechnology,2017,12(7):692. doi: 10.1038/nnano.2017.54
    [5]
    BARNETT G C, WEST C M L, DUNNING A M, et al. Normal tissue reactions to radiotherapy: Towards tailoring treatment dose by genotype[J]. Nature Reviews Cancer,2009,9(2):134-142. doi: 10.1038/nrc2587
    [6]
    HUO D, LIU S, ZHANG C, et al. Hypoxia-targeting, tumor microenvironment responsive nanocluster bomb for radical enhanced radiotherapy[J]. ACS Nano,2017,11(10):10159-10174. doi: 10.1021/acsnano.7b04737
    [7]
    JIA Y H, YUAN M, YUAN H D, et al. Co-encapsulation of magnetic Fe3O4 nanoparticles and doxorubicin into biodegradable PLGA nanocarriers for intratumoral drug delivery[J]. International Journal of Nanomedicine,2012,7:1697-1708. doi: 10.2217/nnm.12.65
    [8]
    SHEN X, LI T T, CHEN Z Y, et al. Luminescent/magnetic PLGA-based hybrid nanocomposites: A smart nanocarrier system for targeted codelivery and dual-modality imaging in cancer theranostics[J]. International Journal of Nanomedicine,2017,12:4299-4322. doi: 10.2147/IJN.S136766
    [9]
    BARKER H E, PAGET J T E, KHAN A A, et al. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence[J]. Nature Reviews Cancer,2015,15(7):409-425. doi: 10.1038/nrc3958
    [10]
    YANG H, ZHANG C C, LI T T, et al. Rational design of multifunctional polymeric micelles with stimuli-responsive for imaging-guided combination cancer therapy[J]. Journal of Biomedical Nanotechnology,2017,13(10):1221-1234. doi: 10.1166/jbn.2017.2444
    [11]
    YANG H, SHEN X, YAN J, et al. Charge-reversal-functionalized PLGA nanobubbles as theranostic agents for ultrasonic-imaging-guided combination therapy[J]. Biomaterials Science,2018,6(9):2426-2439. doi: 10.1039/C8BM00419F
    [12]
    DANIEL M C, ASTRUC D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chemical Reviews,2004,104(1):293-346. doi: 10.1021/cr030698+
    [13]
    HUANG X H, JAIN P K, EL-SAYED I H, et al. Plasmonic photothermal therapy (PPTT) using gold nanoparticles[J]. Lasers in Medical Science,2008,23(3):217-228. doi: 10.1007/s10103-007-0470-x
    [14]
    KIM H, CHUNG K, LEE S, et al. Near-infrared light-responsive nanomaterials for cancer theranostics[J]. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology,2016,8(1):23-45. doi: 10.1002/wnan.1347
    [15]
    SHI J, VOTRUBA A R, FAROKHZAD O C, et al. Nanotechnology in drug delivery and tissue engineering: From discovery to applications[J]. Nano Letters,2010,10(9):3223-3230. doi: 10.1021/nl102184c
    [16]
    GAO L, FEI J, ZHAO J, et al. Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro[J]. ACS Nano,2012,6(9):8030-8040. doi: 10.1021/nn302634m
    [17]
    YANG W, GUO W, LE W, et al. Albumin-bioinspired Gd: CuS nanotheranostic agent for in vivo photoacoustic/magnetic resonance imaging-guided tumor-targeted photothermal therapy[J]. ACS Nano,2016,10(11):10245-10257. doi: 10.1021/acsnano.6b05760
    [18]
    LIU K, XING R, ZOU Q, et al. Simple peptide-tuned self-assembly of photosensitizers towards anticancer photodynamic therapy[J]. Angewandte Chemie-International Edition,2016,55(9):3036-3039. doi: 10.1002/anie.201509810
    [19]
    SHEN Y, SHUHENDLER A J, YE D, et al. Two-photon excitation nanoparticles for photodynamic therapyt[J]. Chemical Society Reviews,2016,45(24):6725-6741. doi: 10.1039/C6CS00442C
    [20]
    CASTANO A P, MROZ P, HAMBLIN M R. Photodynamic therapy and anti-tumour immunity[J]. Nature Reviews Cancer,2006,6(7):535-545. doi: 10.1038/nrc1894
    [21]
    TIAN J, ZHOU J, SHEN Z, et al. A pH-activatable and aniline-substituted photosensitizer for near-infrared cancer theranostics[J]. Chemical Science,2015,6(10):5969-5977. doi: 10.1039/C5SC01721A
    [22]
    BRANNON-PEPPAS L, BLANCHETTE J O. Nanoparticle and targeted systems for cancer therapy[J]. Advanced Drug Delivery Reviews,2012,64:206-212. doi: 10.1016/j.addr.2012.09.033
    [23]
    VEISEH O, KIEVIT F M, ELLENBOGEN R G, et al. Cancer cell invasion: Treatment and monitoring opportunities in nanomedicine[J]. Advanced Drug Delivery Reviews,2011,63(8):582-596. doi: 10.1016/j.addr.2011.01.010
    [24]
    GU Z, ZHU S, YAN L, et al. Graphene-based smart platforms for combined cancer therapy[J]. Advanced Materials,2019,31(9):1800662. doi: 10.1002/adma.201800662
    [25]
    ZHANG X, LUO L, LI L, et al. Trimodal synergistic antitumor drug delivery system based on graphene oxide[J]. Nanomedicine-Nanotechnology Biology and Medicine,2019,15(1):142-152. doi: 10.1016/j.nano.2018.09.008
    [26]
    LIU J, DU P, LIU T, et al. A black phosphorus/manganese dioxide nanoplatform: Oxygen self-supply monitoring, photodynamic therapy enhancement and feedback[J]. Biomaterials,2019,192:179-188. doi: 10.1016/j.biomaterials.2018.10.018
    [27]
    HUANG H, HE L, ZHOU W, et al. Stable black phosphorus/Bi2O3 heterostructures for synergistic cancer radiotherapy[J]. Biomaterials,2018,171:12-22. doi: 10.1016/j.biomaterials.2018.04.022
    [28]
    MURUGAN C, MURUGAN N, SUNDRAMOORTHY A K, et al. Nanoceria decorated flower-like molybdenum sulphide nanoflakes: An efficient nanozyme for tumour selective ROS generation and photo thermal therapy[J]. Chemical Communications,2019,55(55):8017-8020. doi: 10.1039/C9CC03763B
    [29]
    ASHRAF W, FATIMA T, SRIVASTAVA K, et al. Superior photocatalytic activity of tungsten disulfide nanostructures: role of morphology and defects[J]. Applied Nanoscience,2019,9(7):1515-1529. doi: 10.1007/s13204-019-00951-4
    [30]
    WANG Q, DAI Y, XU J, et al. All-in-one phototheranostics: Single laser triggers nir-ii fluorescence/photoacoustic imaging guided photothermal/photodynamic/chemo combination therapy[J]. Advanced Functional Materials,2019,29(31):1901480. doi: 10.1002/adfm.201901480
    [31]
    DAI Y, SU J, WU K, et al. Multifunctional thermosensitive liposomes based on natural phase-change material: Near-infrared light-triggered drug release and multimodal imaging-guided cancer combination therapy[J]. ACS Applied Materials & Interfaces,2019,11(11):10540-10553.
    [32]
    MENG Z, ZHOU X, XU J, et al. Light-triggered in situ gelation to enable robust photodynamic-immunotherapy by repeated stimulations[J]. Advanced Materials,2019,31(24):1900927.
    [33]
    BABAYEVSKA N, FLORCZAK P, WOZNIAK-BUDYCH M, et al. Functionalized multimodal ZnO@Gd2O3 nanosystems to use as perspective contrast agent for MRI[J]. Applied Surface Science,2017,404:129-137. doi: 10.1016/j.apsusc.2017.01.274
    [34]
    SANTANA C P, MANSUR A A P, CARVALHO S M, et al. Bi-functional quantum dot-polysaccharide-antibody immunoconjugates for bioimaging and killing brain cancer cells in vitro[J]. Materials Letters,2019,252:333-337. doi: 10.1016/j.matlet.2019.06.022
    [35]
    GONG C, SUN S, ZHANG Y, et al. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications[J]. Nanoscale,2019,11(10):4147-4182. doi: 10.1039/C9NR00218A
    [36]
    TAN C, ZHANG H. Two-dimensional transition metal dichalcogenide nanosheet-based composites[J]. Chemical Society Reviews,2015,44(9):2713-2731. doi: 10.1039/C4CS00182F
    [37]
    LU F, WANG J, YANG L, et al. A facile one-pot synthesis of colloidal stable, monodisperse, highly PEGylated CuS@mSiO(2) nanocomposites for the combination of photothermal therapy and chemotherapy[J]. Chemical Communications,2015,51(46):9447-9450. doi: 10.1039/C5CC01725D
    [38]
    YE X, SHI H, HE X, et al. Gold nanorod-seeded synthesis of Au@Ag/Au nanospheres with broad and intense near-infrared absorption for photothermal cancer therapy[J]. Journal of Materials Chemistry B,2014,2(23):3667-3673. doi: 10.1039/C4TB00202D
    [39]
    SONG G, WANG Q, WANG Y, et al. A low-toxic multifunctional nanoplatform based on Cu9S5@mSiO(2) core-shell nanocomposites: Combining photothermal- and chemotherapies with infrared thermal imaging for cancer treatment[J]. Advanced Functional Materials,2013,23(35):4281-4292. doi: 10.1002/adfm.201203317
    [40]
    ZHANG H, LIU Z, KANG X, et al. Asymmetric AgPd-AuNR heterostructure with enhanced photothermal performance and SERS activity[J]. Nanoscale,2016,8(4):2242-2248. doi: 10.1039/C5NR07333B
    [41]
    LIU X, ZHANG X, ZHU M, et al. PEGylated Au@Pt nanodendrites as novel theranostic agents for computed tomography imaging and photothermal/radiation synergistic therapy[J]. ACS Applied Materials & Interfaces,2017,9(1):279-285.
    [42]
    SUN Y. Interfaced heterogeneous nanodimers[J]. National Science Review,2015,2(3):329-348. doi: 10.1093/nsr/nwv037
    [43]
    JIANG Q, ZENG W, ZHANG C, et al. Broadband absorption and enhanced photothermal conversion property of octopod-like Ag@Ag2S core@shell structures with gradually varying shell thickness[J]. Scientific Reports,2017,7:17782. doi: 10.1038/s41598-017-18220-1
    [44]
    ZHU D, LIU M, LIU X, et al. Au-Cu2-xSe heterogeneous nanocrystals for efficient photothermal heating for cancer therapy[J]. Journal of Materials Chemistry B,2017,5(25):4934-4942. doi: 10.1039/C7TB01004D
    [45]
    ZHANG B, SHAN Y, CHEN K. A facile approach to fabricate of photothermal functional Fe3O4@CuS microspheres[J]. Materials Chemistry and Physics,2017,193:82-88. doi: 10.1016/j.matchemphys.2017.01.079
    [46]
    ZHANG J, LIU G, HE F, et al. Au@Cu7S4 yolk-shell nanoparticles as a 980 nm laser-driven photothermal agent with a heat conversion efficiency of 63%[J]. Rsc Advances,2015,5(107):87903-87907. doi: 10.1039/C5RA19055J
    [47]
    CHEN H, SHAO L, MING T, et al. Understanding the photothermal conversion efficiency of gold nanocrystals[J]. Small,2010,6(20):2272-2280. doi: 10.1002/smll.201001109
    [48]
    ZHU G, BAO C, LIU Y, et al. Self-regulated route to ternary hybrid nanocrystals of Ag-Ag2S-CdS with near-infrared photoluminescence and enhanced photothermal conversion[J]. Nanoscale,2014,6(19):11147-11156. doi: 10.1039/C4NR03001J
    [49]
    VINODGOPAL K, KAMAT P V. Enhanced rates of photocatalytic degradation of an azo-dye using SnO2/TiO2 coupled semiconductor thin-films[J]. Environmental Science & Technology,1995,29(3):841-845.
    [50]
    钱学旻, 刘辉彪, 李玉良. 自组装低维无机/有机异质结纳米材料[J]. 科学通报, 2014, 59(1):2686-2697.

    QIAN Xuemin, LIU Huibiao, LI Yuliang. Self-assembly low dimensional inorganic/organic heterojunction nanomaterials[J]. Chinese Science Bulletin,2014,59(1):2686-2697(in Chinese).
    [51]
    LOW J, YU J, JARONIEC M, et al. Heterojunction photocatalysts[J]. Advanced Materials,2017,29(20):1601694. doi: 10.1002/adma.201601694
    [52]
    WANG H, ZHANG L, CHEN Z, et al. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances[J]. Chemical Society Reviews, 2014, 43(15): 5234-5244.
    [53]
    谢小银, 刘冠辰, 李祥, 等. 有机异质结太阳能电池研究进展[J]. 吉林化工学院学报, 2013, 30(5):1-4. doi: 10.3969/j.issn.1007-2853.2013.05.001

    XIE Xiaoyin, LIU Guanchen, LI Xiang, et al. Research progress on organic bulk heterojunction photovoltaic[J]. Journal of Jilin Institute of Chemical Technology,2013,30(5):1-4(in Chinese). doi: 10.3969/j.issn.1007-2853.2013.05.001
    [54]
    ZHOU H, QU Y, ZEID T, et al. Towards highly efficient photocatalysts using semiconductor nanoarchitectures[J]. Energy & Environmental Science,2012,5(5):6732-6743.
    [55]
    HYUN J K, ZHANG S, LAUHON L J. Nanowire heterostructures[J]. Annual Review of Materials Research, 2013, 43: 451-479.
    [56]
    LI K, GAO S, WANG Q, et al. In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation[J]. ACS Applied Materials & Interfaces,2015,7(17):9023-9030.
    [57]
    HONG S J, LEE S, JANG J S, et al. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation[J]. Energy & Environmental Science,2011,4(5):1781-1787.
    [58]
    PAN C, XU J, WANG Y, et al. Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly[J]. Advanced Functional Materials,2012,22(7):1518-1524. doi: 10.1002/adfm.201102306
    [59]
    CHEN W, LIU T Y, HUANG T, et al. A novel yet simple strategy to fabricate visible light responsive C, N-TiO2/g-C3N4 heterostructures with significantly enhanced photocatalytic hydrogen generation[J]. RSC Advances,2015,5(122):101214-101220. doi: 10.1039/C5RA18302B
    [60]
    ONG W J, PUTRI L K, TAN L L, et al. Heterostructured AgX/g-C3N4 (X = Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach: Emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide[J]. Applied Catalysis B-Environmental,2016,180:530-543. doi: 10.1016/j.apcatb.2015.06.053
    [61]
    YUAN Y-P, RUAN L-W, BARBER J, et al. Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion[J]. Energy & Environmental Science,2014,7(12):3934-3951.
    [62]
    CHEN S, ZHANG S, LIU W, et al. Preparation and activity evaluation of p-n junction photocatalyst NiO/TiO2[J]. Journal of Hazardous Materials,2008,155(1-2):320-326. doi: 10.1016/j.jhazmat.2007.11.063
    [63]
    YU J, WANG W, CHENG B. Synthesis and enhanced photocatalytic activity of a hierarchical porous flowerlike p-n junction NiO/TiO2 photocatalyst[J]. Chemistry-An Asian Journal,2010,5(12):2499-2506. doi: 10.1002/asia.201000550
    [64]
    ZHANG J, QIAO S Z, QI L, et al. Fabrication of NiS modified CdS nanorod p-n junction photocatalysts with enhanced visible-light photocatalytic H-2-production activity[J]. Physical Chemistry Chemical Physics,2013,15(29):12088-12094. doi: 10.1039/c3cp50734c
    [65]
    ZHANG J, ZHU Z, FENG X. Construction of two-dimensional MoS2/CdS p-n nanohybrids for highly efficient photocatalytic hydrogen evolution[J]. Chemistry-A European Journal,2014,20(34):10632-10635. doi: 10.1002/chem.201402522
    [66]
    YU J, LOW J, XIAO W, et al. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets[J]. Journal of the American Chemical Society,2014,136(25):8839-8842. doi: 10.1021/ja5044787
    [67]
    ONG W J, TAN L L, CHAI S P, et al. Highly reactive {001} facets of TiO2-based composites: Synthesis, formation mechanism and characterization[J]. Nanoscale,2014,6(4):1946-2008. doi: 10.1039/c3nr04655a
    [68]
    ZHOU K, LI Y. Catalysis based on nanocrystals with well-defined facets[J]. Angewandte Chemie-International Edition,2012,51(3):602-613. doi: 10.1002/anie.201102619
    [69]
    LIU C, HAN X, XIE S, et al. Enhancing the photocatalytic activity of anatase TiO2 by improving the specific facet-induced spontaneous separation of photogenerated electrons and holes[J]. Chemistry-An Asian Journal,2013,8(1):282-289. doi: 10.1002/asia.201200886
    [70]
    GAO S, WANG W, NI Y, et al. Facet-dependent photocatalytic mechanisms of anatase TiO2: A new sight on the self-adjusted surface heterojunction[J]. Journal of Alloys and Compounds,2015,647:981-988. doi: 10.1016/j.jallcom.2015.06.204
    [71]
    LI R, ZHANG F, WANG D, et al. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4[J]. Nature Communications,2013,4:1432. doi: 10.1038/ncomms2401
    [72]
    ZHOU P, YU J, JARONIEC M. All-solid-state z-scheme photocatalytic systems[J]. Advanced Materials,2014,26(29):4920-4935. doi: 10.1002/adma.201400288
    [73]
    BARD A J. Photoelectrochemistry and heterogeneous photocatalysis at semiconductors[J]. Journal of Photochemistry,1979,10(1):59-75. doi: 10.1016/0047-2670(79)80037-4
    [74]
    WEI Y, JIAO J, ZHAO Z, et al. Fabrication of inverse opal TiO2-supported Au@CdS core-shell nanoparticles for efficient photocatalytic CO2 conversion[J]. Applied Catalysis B-Environmental,2015,179:422-432. doi: 10.1016/j.apcatb.2015.05.041
    [75]
    YU J, WANG S, LOW J, et al. Enhanced photocatalytic performance of direct z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air[J]. Physical Chemistry Chemical Physics,2013,15(39):16883-16890. doi: 10.1039/c3cp53131g
    [76]
    CHEN X, HUANG X, YI Z. Enhanced ethylene photodegradation performance of g-C3N4-Ag3PO4 composites with direct z-scheme configuration[J]. Chemistry A European Journal,2014,20(52):17590-17596. doi: 10.1002/chem.201404284
    [77]
    ZHANG J, HU Y, JIANG X, et al. Design of a direct z-scheme photocatalyst: Preparation and characterization of Bi2O3/g-C3N4 with high visible light activity[J]. Journal of Hazardous Materials,2014,280:713-722. doi: 10.1016/j.jhazmat.2014.08.055
    [78]
    KUDO A, KATO H, TSUJI I. Strategies for the development of visible-light-driven photocatalysts for water splitting[J]. Chemistry Letters,2004,33(12):1534-1539. doi: 10.1246/cl.2004.1534
    [79]
    KATSUMATA H, TACHI Y, SUZUKI T, et al. Z-scheme photocatalytic hydrogen production over WO3/g-C3N4 composite photocatalysts[J]. RSC Advances,2014,4(41):21405-21409. doi: 10.1039/C4RA02511C
    [80]
    XIA D, LI Y, HUANG G, et al. Visible-light-driven inactivation of escherichia coli K-12 over thermal treated natural pyrrhotite[J]. Applied Catalysis B-Environmental,2015,176:749-756.
    [81]
    REN Y, ZENG D, ONG W J. Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review[J]. Chinese Journal of Catalysis,2019,40(3):289-319. doi: 10.1016/S1872-2067(19)63293-6
    [82]
    SHEN R C, XIE J, GUO P Y, et al. Bridging the g-C3N4 nanosheets and robust CuS cocatalysts by metallic acetylene black interface mediators for active and durable photocatalytic H-2 production[J]. ACS Applied Energy Materials,2018,1(5):2232-2241. doi: 10.1021/acsaem.8b00311
    [83]
    LU L L, XU X X, AN K L, et al. Coordination polymer derived NiS@g-C3N4 composite photocatalyst for sulfur vacancy and photothermal effect synergistic enhanced H-2 production[J]. ACS Sustainable Chemistry & Engineering,2018,6(9):11869-11876.
    [84]
    WANG X, KAJIYAMA S, IINUMA H, et al. Pseudocapacitance of mxene nanosheets for high-power sodium-ion hybrid capacitors[J]. Nature Communications,2015,6:6544. doi: 10.1038/ncomms7544
    [85]
    KWATRA D, VENUGOPAL A, ANANT S. Nanoparticles in radiation therapy: A summary of various approaches to enhance radiosensitization in cancer[J]. Translational Cancer Research,2013,2(4):330-342.
    [86]
    SADEGHI M, ENFERADI M, SHIRAZI A. External and internal radiation therapy: Past and future directions[J]. Journal of Cancer Research and Therapeutics,2010,6(3):239-248. doi: 10.4103/0973-1482.73324
    [87]
    JOHNSTONE C D, LAFONTAINE R, POIRIER Y, et al. Modeling a superficial radiotherapy x-ray source for relative dose calculations[J]. Journal of Applied Clinical Medical Physics,2015,16(3):118-130. doi: 10.1120/jacmp.v16i3.5162
    [88]
    PHILLIPS W T, BAO A, BRENNER A J, et al. Image-guided interventional therapy for cancer with radiotherapeutic nanoparticles[J]. Advanced Drug Delivery Reviews,2014,76:39-59. doi: 10.1016/j.addr.2014.07.001
    [89]
    LORD C J, ASHWORTH A. The DNA damage response and cancer therapy[J]. Nature,2012,481(7381):287-294. doi: 10.1038/nature10760
    [90]
    JIANG W, LI Q, XIAO L, et al. Hierarchical multiplexing nanodroplets for imaging-guided cancer radiotherapy via DNA damage enhancement and concomitant DNA repair prevention[J]. ACS Nano,2018,12(6):5684-5698. doi: 10.1021/acsnano.8b01508
    [91]
    WANG X, ZHANG C, DU J, et al. Enhanced generation of non-oxygen dependent free radicals by schottky-type heterostructures of Au-Bi2S3 nanoparticles via x-ray-induced catalytic reaction for radiosensitization[J]. ACS Nano,2019,13(5):5947-5958. doi: 10.1021/acsnano.9b01818
    [92]
    DOUGHERTY T J, KAUFMAN J E, GOLDFARB A, et al. Photoradiation therapy for treatment of malignant-tumors[J]. Cancer Research,1978,38(8):2628-2635.
    [93]
    路君. 用于光动力学治疗的纳米金属有机框架材料的制备与应用研究[D]. 济南: 山东师范大学, 2018.

    LU Jun. Preparation and application of nano-metal organic frame materials for photodynamic therapy[D]. Ji'nan: Shandong Normal University, 2018(in Chinese).
    [94]
    ZHEN W, LIU Y, JIA X, et al. Reductive surfactant-assisted one-step fabrication of a BiOI/BiOIO3 heterojunction biophotocatalyst for enhanced photodynamic theranostics overcoming tumor hypoxia[J]. Nanoscale Horizons,2019,4(3):720-726. doi: 10.1039/C8NH00440D
    [95]
    DAI J, SONG J, QIU Y, et al. Gold nanoparticle-decorated g-C3N4 nanosheets for controlled generation of reactive oxygen species upon 670 nm laser illumination[J]. ACS Applied Materials & Interfaces,2019,11(11):10589-10596.
    [96]
    CHENG Y, KONG X, CHANG Y, et al. Spatiotemporally synchronous oxygen self-supply and reactive oxygen species production on z-scheme heterostructures for hypoxic tumor therapy[J]. Advanced Materials,2020,32(11):1908109. doi: 10.1002/adma.201908109
    [97]
    ABADEER N S, MURPHY C J. Recent progress in cancer thermal therapy using gold nanoparticles[J]. Journal of Physical Chemistry C,2016,120(9):4691-4716. doi: 10.1021/acs.jpcc.5b11232
    [98]
    GAI S, YANG G, YANG P, et al. Recent advances in functional nanomaterials for light-triggered cancer therapy[J]. Nano Today,2018,19:146-187. doi: 10.1016/j.nantod.2018.02.010
    [99]
    CHEN S, XING C, HUANG D, et al. Eradication of tumor growth by delivering novel photothermal selenium-coated tellurium nanoheterojunctions[J]. Science Advances,2020,6(15):6825. doi: 10.1126/sciadv.aay6825
    [100]
    GENG B, QIN H, SHEN W, et al. Carbon dot/WS2 heterojunctions for NIR-II enhanced photothermal therapy of osteosarcoma and bone regeneration[J]. Chemical Engineering Journal,2020,383:123102. doi: 10.1016/j.cej.2019.123102
    [101]
    PAN C, OU M, CHENG Q, et al. Z-scheme heterojunction functionalized pyrite nanosheets for modulating tumor microenvironment and strengthening photo/chemodynamic therapeutic effects[J]. Advanced Functional Materials,2020,30(3):1906466. doi: 10.1002/adfm.201906466
    [102]
    WONG E, GIANDOMENICO C M. Current status of platinum-based antitumor drugs[J]. Chemical Reviews,1999,99(9):2451-2466. doi: 10.1021/cr980420v
    [103]
    CHOUDHURY H, PANDEY M, YIN T H, et al. Rising horizon in circumventing multidrug resistance in chemotherapy with nanotechnology[J]. Materials Science & Engineering C-Materials for Biological Applications,2019,101:596-613.
    [104]
    KIBRIA G, HATAKEYAMA H, HARASHIMA H. Cancer multidrug resistance: mechanisms involved and strategies for circumvention using a drug delivery system[J]. Archives of Pharmacal Research,2014,37(1):4-15. doi: 10.1007/s12272-013-0276-2
    [105]
    SHEWACH D S, KUCHTA R D. Introduction to cancer chemotherapeutics[J]. Chemical Reviews,2009,109(7):2859-2861. doi: 10.1021/cr900208x
    [106]
    MANSOORI B, MOHAMMADI A, DAVUDIAN S, et al. The different mechanisms of cancer drug resistance: A brief review[J]. Advanced Pharmaceutical Bulletin,2017,7(3):339-348. doi: 10.15171/apb.2017.041
    [107]
    JANA A, KIM TRUC N, LI X, et al. Perylene-derived single-component organic nanoparticles with tunable emission: Efficient anticancer drug carriers with real-time monitoring of drug release[J]. ACS Nano,2014,8(6):5939-5952. doi: 10.1021/nn501073x
    [108]
    MA X, TAO H, YANG K, et al. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging[J]. Nano Research,2012,5(3):199-212. doi: 10.1007/s12274-012-0200-y
    [109]
    JU E, LI Z, LIU Z, et al. Near-infrared light-triggered drug-delivery vehicle for mitochondria-targeted chemo-photothermal therapy[J]. ACS Applied Materials & Interfaces,2014,6(6):4364-4370.
    [110]
    WANG X, XU J, YANG D, et al. Fe3O4@MIL-100(Fe)-UCNPs heterojunction photosensitizer: Rational design and application in near infrared light mediated hypoxic tumor therapy[J]. Chemical Engineering Journal,2018,354:1141-1152. doi: 10.1016/j.cej.2018.08.070
    [111]
    SHAO Y, LIU B, DI Z, et al. Engineering of upconverted metal-organic frameworks for near-infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors[J]. Journal of the American Chemical Society,2020,142(8):3939-3946. doi: 10.1021/jacs.9b12788
    [112]
    BEHNAMSANI A, MESHKINI A. synthesis and engineering of mesoporous ZnO@HAP heterostructure as a pH-sensitive nano-photosensitizer for chemo-photodynamic therapy of malignant tumor cells[J]. Journal of Drug Delivery Science and Technology,2019,53:101200. doi: 10.1016/j.jddst.2019.101200
    [113]
    HU X, MANDIKA C, HE L, et al. Construction of urokinase-type plasminogen activator receptor-targeted heterostructures for efficient photothermal chemotherapy against cervical cancer to achieve simultaneous anticancer and antiangiogenesis[J]. ACS Applied Materials & Interfaces,2019,11(43):39688-39705.
    [114]
    UMEMURA S I, YUMITA N, NISHIGAKI R, et al. Sonochemical activation of hematoporphyrin: A potential modality for cancer treatment[J]. IEEE 1989 Ultrasonics Symposium Proceedings,1989,2:955-960.
    [115]
    LIANG S, DENG X, XU G, et al. A novel Pt-TiO2 Heterostructure with oxygen-deficient layer as bilaterally enhanced sonosensitizer for synergistic chemo-sonodynamic cancer therapy[J]. Advanced Functional Materials,2020,30(13):1908598. doi: 10.1002/adfm.201908598
    [116]
    GUO Z, ZHU S, YONG Y, et al. Synthesis of BSA-coated BiOI@Bi2S3 semiconductor heterojunction nanoparticles and their applications for radio/photodynamic/photothermal synergistic therapy of tumor[J]. Advanced Materials,2017,29(44):1704136. doi: 10.1002/adma.201704136
    [117]
    WANG K, ZHANG Z, LIN L, et al. Covalent organic nanosheets integrated heterojunction with two strategies to overcome hypoxic-tumor photodynamic therapy[J]. Chemistry of Materials,2019,31(9):3313-3323. doi: 10.1021/acs.chemmater.9b00265
    [118]
    朱婧. 纳米材料在医学影像上的应用[D]. 苏州: 苏州大学, 2016.

    ZHU Jing. Application of nanomaterials in medical imaging[D]. Suzhou: Soochow University, 2016(in Chinese).
    [119]
    龚萍, 杨月婷, 石碧华, 等. 纳米探针在分子影像领域的研究进展[J]. 科学通报, 2013, 58(9):762-776. doi: 10.1360/972012-1727

    GONG Ping, YANG Yueting, SHI Bihua, et al. Progress of the nano probes for molecular imaging[J]. Chinese Science Bulletin,2013,58(9):762-776(in Chinese). doi: 10.1360/972012-1727
    [120]
    孟洁, 许海燕. 纳米材料在分子影像学研究中的应用进展[J]. 中国生物医学工程学报, 2011, 30(1):1-5. doi: 10.3969/j.issn.0258-8021.2011.01.01

    MENG Jie, XU Haiyan. Current progress of contrast agents based on nanoparticles technology for molecular imaging[J]. Chinese Journal of Biomedical Engineering,2011,30(1):1-5(in Chinese). doi: 10.3969/j.issn.0258-8021.2011.01.01
    [121]
    CHENG Y, CHANG Y, FENG Y, et al. Deep-level defect enhanced photothermal performance of bismuth sulfide-gold heterojunction nanorods for photothermal therapy of cancer guided by computed tomography imaging[J]. Angewandte Chemie-International Edition,2018,57(1):246-251. doi: 10.1002/anie.201710399
    [122]
    ZHANG L, ZHANG M, ZHOU L, et al. Dual drug delivery and sequential release by amphiphilic janus nanoparticles for liver cancer theranostics[J]. Biomaterials,2018,181:113-125. doi: 10.1016/j.biomaterials.2018.07.060
    [123]
    ZHANG H, HAO C, QU A, et al. Heterostructures of MOFs and nanorods for multimodal imaging[J]. Advanced Functional Materials,2018,28(48):1805320. doi: 10.1002/adfm.201805320
    [124]
    DONG L, ZHANG P, LIU X, et al. Renal clearable Bi-Bi2S3 heterostructure nanoparticles for targeting cancer theranostics[J]. ACS Applied Materials & Interfaces,2019,11(8):7774-7781.
    [125]
    WANG Y, ZHAO J, CHEN Z, et al. Construct of MoSe2/Bi2Se3 nanoheterostructure: multimodal CT/PT imaging-guided PTT/PDT/chemotherapy for cancer treating[J]. Biomaterials,2019,217:119282. doi: 10.1016/j.biomaterials.2019.119282
    [126]
    CHANG M, WANG M, CHEN Y, et al. Self-assembled CeVO4/Ag nanohybrid as photoconversion agents with enhanced solar-driven photocatalysis and NIR-responsive photothermal/photodynamic synergistic therapy performance[J]. Nanoscale,2019,11(20):10129-10136. doi: 10.1039/C9NR02412C
    [127]
    HUANG Q, ZHANG S, ZHANG H, et al. Boosting the radiosensitizing and photothermal performance of Cu2-xSe nanocrystals for synergetic radiophotothermal therapy of orthotopic breast cancer[J]. ACS Nano,2019,13(2):1342-1353.
    [128]
    LIU D, LAI J, WANG R, et al. Reverse microemulsion synthesis of Fe3O4-Ag2S heteronanocrystals for dual-modal imaging-guided photothermal tumor ablation[J]. ACS Biomaterials Science & Engineering,2019,5(11):6196-6206.
    [129]
    CHANG M, WANG M, SHU M, et al. Enhanced photoconversion performance of NdVO4/Au nanocrystals for photothermal/photoacoustic imaging guided and near infrared light-triggered anticancer phototherapy[J]. Acta Biomaterialia,2019,99:295-306. doi: 10.1016/j.actbio.2019.08.026
    [130]
    ZHAO H, ZHAO L, WANG Z, et al. Heterogeneous growth of palladium nanocrystals on upconversion nanoparticles for multimodal imaging and photothermal therapy[J]. Journal of Materials Chemistry B,2019,7(23):3652-3660. doi: 10.1039/C9TB00317G
    [131]
    WANG J, HU Y, CHEN J, et al. Self-assembled CeVO4/Au heterojunction nanocrystals for photothermal/photoacoustic bimodal imaging-guided phototherapy[J]. RSC Advances,2020,10(5):2581-2588. doi: 10.1039/C9RA09860G
    [132]
    LV K, LIN H, QU F. Biodegradable hollow Co3S4@N-doped carbon as enhanced PTT/PDT agent for multimodal MR/thermal imaging and synergistic antitumor therapy[J]. Chemical Engineering Journal,2020,392:124555. doi: 10.1016/j.cej.2020.124555
    [133]
    OU M, PAN C, YU Y, et al. Two-dimensional highly oxidized ilmenite nanosheets equipped with z-scheme heterojunction for regulating tumor microenvironment and enhancing reactive oxygen species generation[J]. Chemical Engineering Journal,2020,390:124524. doi: 10.1016/j.cej.2020.124524
    [134]
    LIU H, LIN W, HE L, et al. Radiosensitive core/satellite ternary heteronanostructure for multimodal imaging-guided synergistic cancer radiotherapy[J]. Biomaterials,2020,226:119845.
    [135]
    张建辉, 陈宁波, 王柏权, 等. 光声显微成像技术的研究进展[J]. 数据采集与处理, 2019, 34(5):771-788.

    ZHANG Jianhui, CHEN Ningbo, WANG Boquan, et al. Advances in photoacoustic microscopy technique[J]. Journal of Data Acquisition and Processing,2019,34(5):771-788(in Chinese).
    [136]
    瞿润连, 李婷, 邓鹏翅. 生物体内含磷化合物的核磁共振研究进展[J]. 化学研究与应用, 2018, 30(12):1929-1937. doi: 10.3969/j.issn.1004-1656.2018.12.001

    QU Runlian, LI Ting, DENG Pengchi. NMR study progress in 31P-compounds in biological samples[J]. Chemical Research and Application,2018,30(12):1929-1937(in Chinese). doi: 10.3969/j.issn.1004-1656.2018.12.001
    [137]
    吕子祎, 董建荣, 何培忠. 液氙探测技术在医学成像上的研究进展[J]. 生物医学工程研究, 2019, 38(4):488-491.

    LV Ziyi, DONG Jianrong, HE Peizhong. The development and applications of liquid xenon detection technology in medical imaging[J]. Journal of Biomedical Engineering Research,2019,38(4):488-491(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (1211) PDF downloads(118) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return