Volume 38 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
XU Huadong, WANG Yulin, LIU Lei, et al. A fiber fabric unit-cell model based on FEM-SPH coupling algorithm and application on analyses of hypervelocity impact[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3131-3140. doi: 10.13801/j.cnki.fhclxb.20201231.001
Citation: XU Huadong, WANG Yulin, LIU Lei, et al. A fiber fabric unit-cell model based on FEM-SPH coupling algorithm and application on analyses of hypervelocity impact[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3131-3140. doi: 10.13801/j.cnki.fhclxb.20201231.001

A fiber fabric unit-cell model based on FEM-SPH coupling algorithm and application on analyses of hypervelocity impact

doi: 10.13801/j.cnki.fhclxb.20201231.001
  • Received Date: 2020-10-12
  • Accepted Date: 2020-12-23
  • Available Online: 2020-12-31
  • Publish Date: 2021-09-01
  • The deformation, fracture, and fragmentation of fiber fabric happened in the process of hypervelocity impact have been widely researched. However, the analysis of the contact between yarns during the impact has not been reported. Considering the contact behavior between fabric fibers, a unit cell model for fiber fabric was established, based on the FEM-SPH coupling algorithm. The model can be used to analyze the damage behavior such as the perforation, fracture, fragmentation, and cloud propagation, as well as provide the mechanical information of the interaction process between yarns during the hypervelocity impact between fiber fabric and space debris. The analysis results obtained by the model are in good agreement with experimental measurements.

     

  • loading
  • [1]
    CHRISTIANSEN E L, CREWS J L, WILLIAMSEN J E, et al. Enhanced meteoroid and orbital debris shielding[J]. International Journal of Impact Engineering,1995,17(1):217-228.
    [2]
    KE F, HUANG J, WEN X, et al. Test study on the performance of shielding configuration with stuffed layer under hypervelocity impact[J]. Acta Astronautica,2016,127:553-560. doi: 10.1016/j.actaastro.2016.06.037
    [3]
    PUTZAR R, ZHENG S, AN J, et al. A stuffed Whipple shield for the Chinese space station[J]. International Journal of Impact Engineering,2019,132:103304. doi: 10.1016/j.ijimpeng.2019.05.018
    [4]
    CHRISTIANSEN E L, KERR J H, SCHNEIDER W C, et al. Flexible and deployable meteoroid/debris shielding for spacecraft[J]. International Journal of Impact Engineering,1999,23(1):125-136. doi: 10.1016/S0734-743X(99)00068-8
    [5]
    苗常青, 杜明俊, 黄磊, 等. 空间碎片柔性防护结构超高速撞击试验研究[J]. 载人航天, 2017, 23(2):173-176.

    MIAO Changqing, DU Mingjun, HUANG Lei, et al. Experimental research on hypervelocity impact characteristics of flexible anti-debris multi-shields structure[J]. Manned Spaceflight,2017,23(2):173-176(in Chinese).
    [6]
    SEEDHOUSE E. Bigelow aerospace colonizing space one module at a time[M]. New York: Springer, 2015.
    [7]
    BUSLOV E P, KOMAROV I S, SELIVANOV V V, et al. Protection of inflatable modules of orbital stations against impacts of particles of space debris[J]. Acta Astronautica,2019,163:54-61. doi: 10.1016/j.actaastro.2019.04.046
    [8]
    管公顺, 蒲东东, 哈跃, 等. 不同环境温度下铝球弹丸高速撞击编织物防护屏试验研究[J]. 机械工程学报, 2015, 51(3):66-72. doi: 10.3901/JME.2015.03.066

    GUAN Gongshun, PU Dongdong, HA Yue, et al. Experimental investigation of woven bumper shield impacted by a high-velocity aluminum sphere at different ambient temperature[J]. Journal of Mechanical Engineering,2015,51(3):66-72(in Chinese). doi: 10.3901/JME.2015.03.066
    [9]
    哈跃, 刘志勇, 管公顺, 等. 玄武岩纤维布超高速撞击损伤分析[J]. 高压物理学报, 2012, 26(5):557-563.

    HA Yue, LIU Zhiyong, GUAN Gongshun, et al. Damage investigation of hypervelocity impact on woven fabric of basalt fiber[J]. Chinese Journal of High Pressure Physics,2012,26(5):557-563(in Chinese).
    [10]
    RUDOLPH M, SCHAFER F, DESTEFANIS R, et al. Fragmentation of hypervelocity aluminum projectiles on fabrics[J]. Acta Astronautica,2012,76:42-50. doi: 10.1016/j.actaastro.2012.02.002
    [11]
    MOON J, YOON S H, KIM C. High velocity impact test of a hybrid sandwich composite shield with unrestrained boundary fabric[J]. Composite Structures,2016,153:60-68. doi: 10.1016/j.compstruct.2016.05.088
    [12]
    MOON J B, PARK Y, SON G, et al. Computational analysis of a sandwich shield with free boundary inserted fabric at high velocity impact[J]. Advanced Composite Materials,2017,26(3):197-218. doi: 10.1080/09243046.2016.1232010
    [13]
    BALUCH A H, KIM Y, CHOI C, et al. Carbon/Epoxy composite shielding system and effect of stuffing fabric on system performance[J]. Composite Structures,2016,136:182-190. doi: 10.1016/j.compstruct.2015.09.018
    [14]
    YE Z, ZHANG X, ZHENG G, et al. A material point method model and ballistic limit equation for hyper velocity impact of multi-layer fabric coated aluminum plate[J]. International Journal of Mechanics and Materials in Design,2018,14(4):511-526. doi: 10.1007/s10999-017-9387-0
    [15]
    祖振南. 纤维编织材料超高速撞击特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    ZU Zhennan. Study on hypervelocity impact properties of fiber braided material[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese).
    [16]
    FAHRENTHOLD E P. Computational design of metal–fabric orbital debris shielding[J]. Journal of Spacecraft and Rockets,2017,54(5):1060-1067. doi: 10.2514/1.A33736
    [17]
    ZHAO S, SONG Z, ESPINOSA H D. Modelling and analyses of fiber fabric and fabric-reinforced polymers under hypervelocity impact using smooth particle hydrodynamics[J]. International Journal of Impact Engineering,2020,144:103586. doi: 10.1016/j.ijimpeng.2020.103586
    [18]
    刘滨涛, 黄海, 贾光辉, 等. Nomex-Kevlar平纹织物超高速撞击本构模型开发[J]. 复合材料学报, 2011, 28(1):194-198.

    LIU Bintao, HUANG Hai, JIA Guanghui, et al. Development of material constitutive model for the Nomex Kevlar plain woven fabric[J]. Acta Materiae Compositae Sinica,2011,28(1):194-198(in Chinese).
    [19]
    林健宇, 罗斌强, 徐名扬, 等. 铝弹丸超高速撞击防护结构的研究进展[J]. 高压物理学报, 2019, 33(3):164-196.

    LIN Jianyu, LUO Binqiang, XU Mingyang, et al. Progress of aluminum projectile impacting on plate with hypervelocity[J]. Chinese Journal of High Pressure Physics,2019,33(3):164-196(in Chinese).
    [20]
    NISHIDA M, HAYASHI K, NAKAGAWA J, et al. Influence of temperature on crater and ejecta size following hypervelocity impact of aluminum alloy spheres on thick aluminum alloy targets[J]. International Journal of Impact Engineering,2012,42:37-47. doi: 10.1016/j.ijimpeng.2011.11.006
    [21]
    CHRISTIANSEN E L, KERR J H. Ballistic limit equations for spacecraft shielding[J]. International Journal of Impact Engineering,2001,26(1):93-104.
    [22]
    YANG E C, LINFORTH S, NGO T, et al. Hybrid-mesh modelling & validation of woven fabric subjected to medium velocity impact[J]. International Journal of Mechanical Sciences,2018,144:427-437. doi: 10.1016/j.ijmecsci.2018.05.017
    [23]
    NILAKANTAN G, NUTT S. Effects of ply orientation and material on the ballistic impact behavior of multilayer plain-weave aramid fabric targets[J]. Defence Technology,2018,14(3):165-178. doi: 10.1016/j.dt.2018.01.002
    [24]
    JOHNSON G R, STRYK R A. Conversion of 3D distorted elements into meshless particles during dynamic deformation[J]. International Journal of Impact Engineering,2003,28(9):947-966. doi: 10.1016/S0734-743X(03)00012-5
    [25]
    HE Q, CHEN X, CHEN J. Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud[J]. Acta Astronautica,2020,175:99-117. doi: 10.1016/j.actaastro.2020.05.056
    [26]
    胡德安, 韩旭, 肖毅华, 等. 光滑粒子法及其与有限元耦合算法的研究进展[J]. 力学学报, 2013, 45(5):639-652.

    HU De’an, HAN Xu, XIAO Yihua, et al. Research developments of smoothed particle hydrodynamics method and its coupling with finite element method[J]. Chinese Journal of Theoretical and Applied Mechanics,2013,45(5):639-652(in Chinese).
    [27]
    GASSER A, BOISSE P, HANKLAR S. Mechanical behaviour of dry fabric reinforcements. 3D simulations versus biaxial tests[J]. Computational Materials Science,2000,17(1):7-20. doi: 10.1016/S0927-0256(99)00086-5
    [28]
    GOPINATH G, ZHENG J Q, BATRA R C. Effect of matrix on ballistic performance of soft body armor[J]. Composite Structures,2012,94(9):2690-2696. doi: 10.1016/j.compstruct.2012.03.038
    [29]
    BUYUK M, KURTARAN H, MARZOUGUI D, et al. Automated design of threats and shields under hypervelocity impacts by using successive optimization methodology[J]. International Journal of Impact Engineering,2008,35(12):1449-1458. doi: 10.1016/j.ijimpeng.2008.07.057
    [30]
    GIANNAROS E, KOTZAKOLIOS A, SOTIRIADIS G, et al. On fabric materials response subjected to ballistic impact using meso-scale modeling. Numerical simulation and experimental validation[J]. Composite Structures,2018,204:745-754. doi: 10.1016/j.compstruct.2018.07.090
    [31]
    PARK Y, KIM Y, BALUCH A H, et al. Empirical study of the high velocity impact energy absorption characteristics of shear thickening fluid (STF) impregnated Kevlar fabric[J]. International Journal of Impact Engineering,2014,72:67-74. doi: 10.1016/j.ijimpeng.2014.05.007
    [32]
    邸德宁, 陈小伟, 文肯, 等. 超高速碰撞产生的碎片云研究进展[J]. 兵工学报, 2018, 39(10):2016-2047.

    DI Dening, CHEN Xiaowei, WEN Ken, et al. A review on the study of debris cloud produced by normal hypervelocity impact upon a thin plate[J]. Acta Armamentarii,2018,39(10):2016-2047(in Chinese).
    [33]
    PIEKUTOWSKI A J. Characteristics of debris clouds produced by hypervelocity impact of aluminum spheres with thin aluminum plates[J]. International Journal of Impact Engineering,1993,14(1):573-586.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(3)

    Article Metrics

    Article views (1139) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return