Volume 38 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
ZHANG Jiarui, ZHAI Guangtao, LI Wenli. Fabrication and compression performance of continuous fiber Octet-truss lattice sandwich structure[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1767-1774. doi: 10.13801/j.cnki.fhclxb.20201209.001
Citation: ZHANG Jiarui, ZHAI Guangtao, LI Wenli. Fabrication and compression performance of continuous fiber Octet-truss lattice sandwich structure[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1767-1774. doi: 10.13801/j.cnki.fhclxb.20201209.001

Fabrication and compression performance of continuous fiber Octet-truss lattice sandwich structure

doi: 10.13801/j.cnki.fhclxb.20201209.001
  • Received Date: 2020-10-09
  • Accepted Date: 2020-11-25
  • Available Online: 2020-12-10
  • Publish Date: 2021-06-23
  • Octet-truss is a three-dimensional lattice structure with light configuration and multi-function characteristics. In order to analyze and verify its compression resistance, a method of preparing Octet-truss lattice sandwich panel with continuous fiber was proposed. A set of Octet-truss structure molding tools was designed by this method. Different types of glass fiber and Kevlar fiber specimens were prepared by spatial weaving method and resin curing process, and the axial compression test was carried out. The experimental results show that the mechanical properties of different materials and different sizes of sandwich panels prepared by this method are stable, and the reliability of the preparation process is verified, Combined with the experimental process and electron microscope images, the main failure mode of glass fiber samples is fracture of the struts near the nodes induced by fiber microbuckling, while the Kevlar fiber samples failed by the Euler buckling of the struts.

     

  • loading
  • [1]
    熊健, 杜昀桐, 杨雯. 轻质复合材料夹芯结构设计及力学性能最新进展[J]. 宇航学报, 2020, 41(6):749-760.

    XIONG Jian, DU Yuntong, YANG Wen, et al. Research progress on design and mechanical properties of lightweight composite sandwich structures[J]. Journal of Astronautics,2020,41(6):749-760(in Chinese).
    [2]
    韦兴宇, 熊健, 王杰, 等. 纤维增强复合材料蜂窝结构的研究进展[J]. 中国科学: 技术科学, 2020, 63(8):1348-1370. doi: 10.1007/s11431-020-1650-9

    WEI Xingyu, XIONG Jian, WANG Jie, et al. New advances in fiber-reinforced composite honeycomb materials[J]. Scientia Sinica (Technologica),2020,63(8):1348-1370(in Chinese). doi: 10.1007/s11431-020-1650-9
    [3]
    李华东, 周振龙, 陈国涛. 基于高阶剪切理论的复合材料格栅夹层板弯曲特性[J]. 复合材料学报, 2019, 36(12):2745-2755.

    LI Huadong, ZHOU Zhenlong, CHEN Guotao. Bending characteristic of composite grid of sandwich plate based on high-order shear theory[J]. Acta Materiae Compositae Sinaca,2019,36(12):2745-2755(in Chinese).
    [4]
    邓云飞, 曾宪智, 周翔, 等. 复合材料褶皱夹芯结构研究进展[J]. 复合材料学报, 2020, 37(12):2966-2983.

    DENG Yunfei, ZENG Xianzhi, ZHOU Xiang, et al. Research progress for the compositae sandwich structure with foldcore[J]. Acta Materiae Composite Sinica,2020,37(12):2966-2983(in Chinese).
    [5]
    GEORGE T, DESHPANDE V S, WADLEY H N G. Hybrid carbon fiber composite lattice truss structures[J]. Compo-sites Part A: Applied Science and Manufacturing,2014,65:135-147. doi: 10.1016/j.compositesa.2014.06.011
    [6]
    WANG B, WU Linzhi, MA Li, et al. Mechanical behavior of the sandwich structures with carbon fiber-reinforced pyramidal lattice truss core[J]. Materials & Design (1980-2015),2010,31(5):2659-2663.
    [7]
    DONG L, WADLEY H. Mechanical properties of carbon fiber composite octet-truss lattice structures[J]. Compo-sites Science and Technology,2015,119(23):26-33.
    [8]
    COMPTON B G, LEWIS J A. 3D-printing of lightweight cellular composites[J]. Advanced Materials,2015,26(34):5930-5935.
    [9]
    XU Z, HA C S, KADAM R, et al. Additive manufacturing of two-phase lightweight, stiff and high damping carbon fiber reinforced polymer microlattices[J]. Additive Manufacturing,2020,32:101106. doi: 10.1016/j.addma.2020.101106
    [10]
    JENETT B, GREGG C, CELLCCI D, et al. Design of multifunctional hierarchical space structures[C]// IEEE Aero-space Conference. IEEE, 2017.
    [11]
    GREGG C E, KIM J H, CHEUNG K C. Ultra-light and scalable composite lattice materials[J]. Advanced Engineering Materials,2018,20(9):1800213. doi: 10.1002/adem.201800213
    [12]
    李静雯, 张博明, 孙义亮, 等. 不同铺层方式下连续玻璃纤维/聚丙烯复合材料波纹夹芯板的力学性能[J]. 复合材料学报, 2019, 36(5):18-26.

    LI Jingwen, ZHANG Boming, SUN Yiliang, et al. Mechanical properties of continuous glass fiber/polypropylene corrugated sandwich boards under different laminates[J]. Acta Materiae Compositae Sinaca,2019,36(5):18-26(in Chinese).
    [13]
    袁文昊, 李凤莲, 吕梅. 不同边界条件下波纹夹芯板的自由振动特性[J]. 复合材料学报, 2020, 37(12):3149-3159.

    YUAN Wenhao, LI Fenglian, LV Mei. Free vibration characteristics of corrugated sandwich plates under different boundary conditions[J]. Acta Materiae Compositae Sinaca,2020,37(12):3149-3159(in Chinese).
    [14]
    郑权, 冀宾, 李昊, 等. 基于增材制造的多层金字塔点阵夹芯板抗压缩性能[J]. 航空材料学报, 2018, 38(3):77-82.

    ZHENG Quan, JI Bin, LI Hao, et al. Compressive behavior of sandwich panels with multilayer pyramidal truss cores by additive manufacturing[J]. Journal of Aeronautical Materials,2018,38(3):77-82(in Chinese).
    [15]
    张成利, 樊峻江, 许兰兰, 等. 新型混合芯材复合材料夹芯板受弯性能试验研究[J]. 新型建筑材料, 2019, 46(3):93-97.

    ZHANG Chengli, FAN Junjiang, XU Lanlan, etal. Experimental study on bending performance of a new hybrid core composite sandwich panel[J]. New Building Materials,2019,46(3):93-97(in Chinese).
    [16]
    LIU Gang, KANG Kiju, et al. A weaving machine for three-dimensional Kagome reinforcements[J]. Textile Research Journal,2018,88(3):322-332.
    [17]
    LIANG Dong, VIKRAM Deshpande, HAYDN Wadley. Mechanical response of Ti–6Al–4V octet-truss lattice structures[J]. International Journal of Solids and Structures, 2015, 60-61: 107-124.
    [18]
    DESHPANDE V S, FLECK N A, ASHBY M F. Effective properties of the octet-truss lattice material[J]. Journal of the Mechanics & Physics of Solids,2001,49(8):1747-1769.
    [19]
    赖长亮, 刘闯, 王俊彪. IsoTruss超轻复合材料结构制造及力学性能测试[J]. 复合材料学报, 2014, 31(2):365-382.

    LAI Changliang, LIU Chuang, WANG Junbiao. Fabrication and mechanical property test of IsoTruss ultra-lightweight composite structures[J]. Acta Materiae Compositae Sinaca,2014,31(2):365-382(in Chinese).
    [20]
    黄发荣, 周燕. 先进树脂基复合材料[M]. 北京: 化学工业出版社, 2008: 294-299.

    HUANG Farong, ZHOU Yan. Advanced polymer compo-site[M]. Beijing: Chemical Industry Press, 2008: 294-299(in Chinese).
    [21]
    ASTM. Standard test method for flatwise compressive properties of sandwich cores: ASTM C 365M—2005[S]. Philadelphia: ASTM, 2005.
    [22]
    吴林志, 熊健, 马力. 复合材料点阵结构力学性能表征[M]. 北京: 科学出版社, 2015: 20-35.

    WU Linzhi, XIONG Jian, MA Li. Characterization of the mechanical properties of composite lattice structures[M]. Beijing: Science Press, 2015: 20-35(in Chinese).
    [23]
    黄英杰. 三维Al基点阵材料设计, 制备及力学性能研究[D]. 合肥: 中国科学技术大学, 2017.

    HUANG Yingjie. Study on the design, preparation and mechanical properties of Al based lattice materials[D]. Hefei: University of Science and Technology of China, 2017(in Chinese).
    [24]
    熊健. 轻质复合材料新型点阵结构设计及其力学行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.

    XIONG Jian. Design and mechanical behavior of lightweight composite innovative lattice truss structures[D]. Harbin: Harbin Institute of Technology, 2012(in Chinese).
    [25]
    熊健, 马力, 杨金水, 等. 碳纤维复合材料金字塔点阵结构制备工艺及力学性能研究[J]. 固体力学学报, 2011(S1):8-13.

    XIONG Jian, MA Li, YANG Jinshui, etal. Fabrication and mechanical response of carbon fiber sandwich panels wich pyramidal truss cores[J]. Chinese Journal of Solid Mechanics,2011(S1):8-13(in Chinese).
    [26]
    王兵, 吴林志, 杜善义, 等. 碳纤维增强金字塔点阵夹芯结构的抗压缩性能[J]. 复合材料学报, 2010, 27(1):133-138.

    WANG Bing, WU Linzhi, DU Shanyi, et al. Compressive behavior of sandwich structures with carbon fiber reinforced pyramidal lattice truss cores[J]. Acta Materiae Compositae Sinaca,2010,27(1):133-138(in Chinese).
    [27]
    冀宾, 韩涵, 宋林郁, 等. 面内压缩超轻质点阵夹芯板的优化, 试验与仿真[J]. 复合材料学报, 2019, 36(4):281-287.

    JI Bin, HAN Han, SONG Linyu, et al. Optimization, experiment and simulation of lightweight lattice sandwich plates under in-plane compression load[J]. Acta Materiae Compositae Sinaca,2019,36(4):281-287(in Chinese).
    [28]
    钟翔屿, 包建文, 张代军, 等. 国产芳纶纤维增强环氧复合材料的压缩性能[J]. 固体火箭技术, 2017, 40(2):244-249.

    ZHONG Xiangyu, BAO Jianwen, ZHANG Daijun, etal. Compression performance of epoxy matrix composite reinforced by domestic aramid fiber[J]. Journal of Solid Rocket Technology,2017,40(2):244-249(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (2321) PDF downloads(204) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return