Volume 38 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
WU Enqi, ZHANG Zeqi, SUN Haili, et al. Simulation study on thermal diffusion of woven carbon fiber/epoxy resin composite[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2934-2941. doi: 10.13801/j.cnki.fhclxb.20201201.002
Citation: WU Enqi, ZHANG Zeqi, SUN Haili, et al. Simulation study on thermal diffusion of woven carbon fiber/epoxy resin composite[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2934-2941. doi: 10.13801/j.cnki.fhclxb.20201201.002

Simulation study on thermal diffusion of woven carbon fiber/epoxy resin composite

doi: 10.13801/j.cnki.fhclxb.20201201.002
  • Received Date: 2020-09-17
  • Accepted Date: 2020-11-26
  • Available Online: 2020-12-01
  • Publish Date: 2021-09-01
  • The finite element method was used to simulate the three dimensional thermal diffusion properties of woven carbon fiber/epoxy resin (CF/EP) composite. TexGen was used to create a 3D simulation model of 20-layer woven CF/EP composite. The effective volumetric specific heat and thermal conductivity of the porous matrix in samples with different thicknesses were calculated to set the material properties. The amplitude curve was used to simulate periodic laser point light source for finite element simulation. Taking a sample with a porosity of 0% as an example, non-linear fitting was used to solve the thermal diffusivity, and the optimal modulation frequency range was selected as 0.1-2 Hz. On this basis, samples with different thicknesses were studied to analyze the influence of porosity on the thermal properties and the anisotropy of thermal diffusion. The results show that the in-plane thermal diffusivity of the woven CF/EP composites decreases with the increase of porosity. When the porosity is less than 1.55%, the thermal diffusivity decreases by 5.4% as the porosity increases by 1%. When the porosity is greater than 1.55%, the rate of decline slows down, just as 2.4%. In the plane, the thermal diffusion rate along the weft yarn and warp yarn is faster, but along the 45° direction of the warp (weft) yarn is slower. While in the vertical direction, the thermal diffusion along the normal is the fastest due to the penetration of the point light source, which reflects the anisotropy of the thermal diffusion.

     

  • loading
  • [1]
    包建文, 蒋诗才, 张代军. 航空碳纤维树脂基复合材料的发展现状和趋势[J]. 科技导报, 2018, 36(19):52-63.

    BAO J W, JIANG S C, ZHANG D J. Current status and trends of aeronautical resin matrix composites reinforced by carbon fiber[J]. Science & Technology Review,2018,36(19):52-63(in Chinese).
    [2]
    邢丽英, 蒋诗才, 周正刚. 先进树脂基复合材料制造技术进展[J]. 复合材料学报, 2013, 30(1):107-111.

    XING L Y, JIANG S C, ZHOU Z G. Progress of manufacturing technology development of advanced polymer matrix composites[J]. Acta Materiea Compositae Sinica,2013,30(1):107-111(in Chinese).
    [3]
    龙巍, 郑学林, 臧建彬. 基于碳纤维复合材料热性能的研究进展综述[J]. 应用化工, 2019, 48(9):2251-2255. doi: 10.3969/j.issn.1671-3206.2019.09.052

    LONG W, ZHENG X L, ZANG J B. Review of research of progress based on thermal properties of carbon fiber composites[J]. Applied Chemical Industry,2019,48(9):2251-2255(in Chinese). doi: 10.3969/j.issn.1671-3206.2019.09.052
    [4]
    LI H Z, LI S, WANG Y C. Prediction of effective thermal conductivities of woven fabric composites using unit cells at multiple length scales[J]. Journal of Materials Research, 2011, 26 (3): 384-394.
    [5]
    ZHANG L L, LI H J, LI K Z, et al. Double-layer TC4/Sr substituted hydroxyapatite bioactive coating for carbon composites[J]. Ceramics International, 2015, 41: 427-435.
    [6]
    姜黎黎, 吴日娜, 徐美玲, 等. 三维四向编织碳纤维/环氧树脂复合材料在热环境中的拉压力学性能实验[J]. 复合材料学报, 2020, 37(2):309-317.

    JIANG L L, WU R N, XU M L, et al. Experimental investigation on the tensile and compressive properties of 3D 4-directional braided carbon fiber/epoxy resin composites in thermal environment[J]. Acta Materiea Compositae Sinica,2020,37(2):309-317(in Chinese).
    [7]
    周雅斌, 曾捷, 张倩昀, 等. 基于光纤传感水热平衡法测量碳纤维圆筒结构的热扩散系数[J]. 中国激光, 2013, 11:200-205.

    ZHOU Y B, ZENG J, ZHANG Q Y, et al. Measurement of the thermal diffusivity of carbon composite by water-heat balance method[J]. Chinese Journal of Lasers,2013,11:200-205(in Chinese).
    [8]
    WOJCIECH P. A, SEBASTIAN P, ZIEMOWIT O. Determination of thermal conductivity of CFRP composite materials using unconventional laser flash technique[J]. Measurement,2018,124:147-155. doi: 10.1016/j.measurement.2018.04.022
    [9]
    RYOHEI F, HOSEI N. Novel fiber orientation evaluation method for CFRP/CFRTP based on measurement of anisotropic in-plane thermal diffusivity distribution[J]. Composites Science and Technology,2017,140:116-122. doi: 10.1016/j.compscitech.2016.12.006
    [10]
    刘玲, 张博明, 王殿富. 碳/环氧复合材料孔隙问题研究进展[J]. 宇航材料工艺, 2004(6):6-10. doi: 10.3969/j.issn.1007-2330.2004.06.002

    LIU L, ZHANG B M, WANG D F. Development of void problem for carbon/epoxy composite materials[J]. Aerospace Materials & Technology,2004(6):6-10(in Chinese). doi: 10.3969/j.issn.1007-2330.2004.06.002
    [11]
    益小苏, 杜善义, 张立同. 复合材料手册[M]. 北京: 化学工业出版社, 2009: 7-12.

    YI X S, DU S Y, ZHANG L T. Composites materrials handbook[M]. Beijing: Chemical industry press, 2009: 7-12 (in Chinese).
    [12]
    DONG C S. Effects of process-induced voids on the properties of fiber reinforced composites[J]. Journal of Materials Science & Technology,2016,32:596-604.
    [13]
    吴恩启, 徐紫红, 郭新欣, 等. 孔隙率对碳纤维增强复合材料光热辐射信号的影响[J]. 中国激光, 2015, 42 (7):185-189.

    WU E Q, XU Z H, GUO X X et al. Influence of porosity on photothermal radiometry of carbon fiber reinforced polymers[J]. Chinese Journal of Lasers,2015,42 (7):185-189(in Chinese).
    [14]
    WU E Q, GAO Q, LI M H, et al. Study on in-plane thermal conduction of woven carbon fiber reinforced polymer by infrared thermography[J]. NDT & E International,2018,94:56-61.
    [15]
    WROBEL G, RDZAWSKI Z, MUZIA G, et al. Determination of thermal diffusivity of carbon/epoxy composites with different fiber content using transient thermography[J]. Journal of Achievements in Materials & Manufacturing Engineering,2009,37 (2):518-525.
    [16]
    GOU J J, DAI Y J, LI S G, et al. Numerical study of effective thermal conductivities of plain woven composites by unit cells of different sizes[J]. International Journal of Heat and Mass Transfer,2015,91:829-840. doi: 10.1016/j.ijheatmasstransfer.2015.07.074
    [17]
    赵玉芬, 宋磊磊, 李嘉禄, 等. 三维机织碳纤维/环氧树脂复合材料在两种测量方法下的热响应机制对比[J]. 复合材料学报, 2018, 35 (1):103-109.

    ZHAO Y F, SONG L L, LI J L, et al. Comparison of thermal response mechanisms for three dimensional woven carbon fiber/epoxy resin composites under two measurement methods[J]. Acta Materiea Compositae Sinica,2018,35 (1):103-109(in Chinese).
    [18]
    DONG K, LIU K, PAN L J, et al. Experimental and numerical investigation on the thermal conduction properties of 2.5D angle-interlock woven composites[J]. Composite Structures,2016,154:319-333. doi: 10.1016/j.compstruct.2016.07.071
    [19]
    RÜDIGER S, VADIM A. Modelling the heating process of CFRP by cw-laser radiation with special focus on the heat transfer by thermal radiation between the carbon fibers[J]. Procedia CIRP, 2018, 74: 562-567.
    [20]
    TAKUYA I, HOSEI N. Measurement of three-dimensional anisotropic thermal diffusivities for carbon fiber-reinforced plastics using lock-in thermography[J]. International Journal of Thermophysics,2015,36:2577-2589. doi: 10.1007/s10765-014-1755-5
    [21]
    TAKUYA I, HOSEI N. Measurement of 3D thermal diffusivity distribution with lock-in thermography and application for high thermal conductivity CFRPs[J]. Infrared Physics & Technology,2019,99:248-256.
    [22]
    MAYR G, PLANK B, SEKELJA J, et al. Active thermography as a quantitative method for non-destructive evaluation of porous carbon fiber reinforced polymers[J]. NDT & E International,2011,44:537-543.
    [23]
    ZALAMEDA J. Measured through-the-thickness thermal diffusivity of carbon fiber reinforced composite materials[J]. Journal of Composites Technology and Research, 1999; 21 (2): 98–102.
    [24]
    KULKARNI M, BRADY R. A model of global thermal conductivity in laminated carbon/carbon composites[J]. Composites Science and Technology, 1997; 57 (3): 277–85.
    [25]
    朱洪艳, 李地红, 张东兴, 等. 孔隙率对碳纤维/环氧树脂复合材料层合板湿热性能的影响[J]. 复合材料学报, 2010, 27(2):24-30.

    ZHU H Y, LI D H, ZHANG D X, et al. Effect of porosity on the hygrothermal behaviour of carbon fiber reinforced epoxy composite laminates[J]. Acta Material Composite Silica,2010,27(2):24-30(in Chinese).
    [26]
    李波, 赵美英, 万小朋. 孔隙微观特征对碳纤维/环氧树脂复合材料横向拉伸强度的影响[J]. 复合材料学报, 2018, 35(7):1864-1868.

    LI B, ZHAO M Y, WAN X P. Influence of void micro-characteristics on transverse tensile strength of unidirectional carbon fiber/epoxy resin composites[J]. Acta Materiae Compositae Sinica,2018,35(7):1864-1868(in Chinese).
    [27]
    朱元林, 崔海涛, 温卫东, 等. 含纤维束截面形状变化的三维编织复合材料细观模型及刚度预报[J]. 复合材料学报, 2012, 29(6):187-196.

    ZHU Y L, CUI H T, WEN W D, et al. Microstructure model and stiffness prediction of 3D braided composites considering yarn′cross-section variation[J]. Acta Materiae Compositae Sinica,2012,29(6):187-196(in Chinese).
    [28]
    卢子兴, 杨振宇, 刘振国. 三维四向编织复合材料结构模型的几何特性[J]. 北京航空航天大学学报, 2006(1):92-96. doi: 10.3969/j.issn.1001-5965.2006.01.022

    LU Z X, YANG Z Y, LIU Z G. Geometrical characteristics of structural model for 3D braided composites[J]. Journal of Beijing University of Aeronautics and Astronautics,2006(1):92-96(in Chinese). doi: 10.3969/j.issn.1001-5965.2006.01.022
    [29]
    MASAYA K, HOSEI N. Anisotropic thermal diffusivity measurements in high-thermal-conductive carbon fiber reinforced plastic composites[J]. Journal of Electronics Cooling and Thermal Control,2015,5 (1):15-25. doi: 10.4236/jectc.2015.51002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (884) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return