Volume 38 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
ZHANG Bing, YANG Sujie, YANG Yadong, et al. Preparation and pyrolysis kinetics of melamine phytates/rigid polyurethane foam composites[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2505-2516. doi: 10.13801/j.cnki.fhclxb.20201110.002
Citation: ZHANG Bing, YANG Sujie, YANG Yadong, et al. Preparation and pyrolysis kinetics of melamine phytates/rigid polyurethane foam composites[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2505-2516. doi: 10.13801/j.cnki.fhclxb.20201110.002

Preparation and pyrolysis kinetics of melamine phytates/rigid polyurethane foam composites

doi: 10.13801/j.cnki.fhclxb.20201110.002
  • Received Date: 2020-09-03
  • Accepted Date: 2020-10-27
  • Available Online: 2020-11-10
  • Publish Date: 2021-08-15
  • A series of melamine phytates/rigid polyurethane foam (MEL-PA/RPUF) composites were prepared by one-step water-blown method with MEL-PA as flame retardant. Thermogravimetric analysis (TG) and thermal analysis kinetics were used to study the thermal stability of the composites and reveal its degradation mechanism. The results show that the char residues of MEL-PA/RPUF gradually increases at 700℃ with the increase of MEL-PA loading. Based on TGA data, the reaction grade n, activation energy E and pre exponential factor A of the main degradation stage for the composites were calculated by the Coats-Redfern and Horowitz-Metzger integration methods. The results show that MEL-PA promotes the initial degradation of the composites in air atmosphere, while the MEL-PA/RPUF composites have higher thermal stability in the high temperature stage, and the two calculation methods have the same law. In N2 atmosphere, MEL-PA30/RPUF (mass fraction of MEL-PA is 10.3wt%) has higher n and E compared with RPUF. The results indicate that the reaction of MEL-PA30/RPUF is more complex and the thermal stability is higher. The mathematical model and experimental analysis by Criado method verify the feasibility of the Coats-Redfern method. The results of thermal degradation kinetics of MEL-PA/RPUF composites provide reference for the analysis of flame retardation performance of RPUF with different flame retardation systems.

     

  • loading
  • [1]
    AKDOGAN E, ERDEM M, UREYEN M E, et al. Rigid polyurethane foams with halogen-free flame retardants: Thermal insulation, mechanical, and flame retardant properties[J]. Journal of Applied Polymer Science,2020,137(1):47611.
    [2]
    XU W Z, WANG G S, XU J Y, et al. Modification of diatomite with melamine coated zeolitic imidazolate framework-8 as an effective flame retardant to enhance flame retardancy and smoke suppression of rigid polyurethane foam[J]. Journal of Hazardous Materials,2019,379:120819.
    [3]
    LIU X, HAO J W, GAAN S, et al. Recent studies on the decomposition and strategies of smoke and toxicity suppression for polyurethane based materials[J]. RSC Advances,2016,6(78):74742-74756. doi: 10.1039/C6RA14345H
    [4]
    韦兴文, 李明, 周筱雨, 等. 湿度对玻璃微珠增强硬质聚氨酯复合泡沫塑料黏弹力学性能影响[J]. 复合材料学报, 2013, 30(1):218-222.

    WEI X W, LI M, ZHOU X Y, et al. Influence of humidity on viscoelastic behavior of glass microsphere reinforced rigid polyurethane syntactic foams[J]. Acta Materiae Compositae Sinica,2013,30(1):218-222(in Chinese).
    [5]
    YUAN Y, WANG W, SHI Y Q, et al. The influence of highly dispersed Cu2O-anchored MoS2 hybrids on reducing smoke toxicity and fire hazards for rigid polyurethane foam[J]. Journal of Hazardous Materials,2020,382:121028.
    [6]
    CHEN Y H, WANG Q. Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batches in situ prepared in twin-screw extruder[J]. Polymer Degradation and Stability,2007,92(2):280-291. doi: 10.1016/j.polymdegradstab.2006.11.004
    [7]
    NIE S B, ZHOU C, PENG C, et al. Thermal oxidative degradation kinetics of novel intumescent flame-retardant polypropylene composites[J]. Journal of Thermal Analysis and Calorimetry,2015,120(2):1183-1191. doi: 10.1007/s10973-015-4393-7
    [8]
    MENG X Y, YE L, ZHANG X G, et al. Effects of expandable graphite and ammonium polyphosphate on the flame-retardant and mechanical properties of rigid polyurethane foams[J]. Journal of Applied Polymer Science,2009,114(2):853-863. doi: 10.1002/app.30485
    [9]
    GAO L P, ZHENG G Y, ZHONG Y H, et al. Synergistic effect of expandable graphite, melamine polyphosphate and layered double hydroxide on improving the fire behavior of rosin-based rigid polyurethane foam[J]. Industrial Crops and Products,2013,50:638-647. doi: 10.1016/j.indcrop.2013.07.050
    [10]
    DENG H W, ZHAO P H, LIU Y Q, et al. Halogen Free flame retardant rigid polyurethane foam with a novel phosphorus-nitrogen intumescent flame retardant[J]. Journal of Applied Polymer Science,2014,131(11):39581.
    [11]
    ZHANG M, ZHANG J W, CHEN S G, et al. Synthesis and fire properties of rigid polyurethane foams made from a polyol derived from melamine and cardanol[J]. Polymer Degradation and Stability,2014,110:27-34.
    [12]
    YANG H Y, WANG X, SONG L, et al. Aluminum hypophosphite in combination with expandable graphite as a novel flame retardant system for rigid polyurethane foams[J]. Polymers for Advanced Technologies,2014,25(9):1034-1043. doi: 10.1002/pat.3348
    [13]
    WU D H, ZHAO P H, ZHANG M, et al. Preparation and properties of flame retardant rigid polyurethane foam with phosphorus–nitrogen intumescent flame retardant[J]. High Performance Polymers,2013,25(7):868-875. doi: 10.1177/0954008313489997
    [14]
    THIRUMAL M, KHASTGIR D, NANDO G B, et al. Halogen-free flame retardant PUF: Effect of melamine compounds on mechanical, thermal and flame retardant properties[J]. Polymer Degradation and Stability,2010,95(6):1138-1145. doi: 10.1016/j.polymdegradstab.2010.01.035
    [15]
    WANG C, WU Y C, LI Y C, et al. Flame-retardant rigid polyurethane foam with a phosphorus-nitrogen single intumescent flame retardant[J]. Polymers for Advanced Technologies,2018,29(1):668-676. doi: 10.1002/pat.4105
    [16]
    TANG G, ZHOU L, ZHANG P, et al. Effect of aluminum diethylphosphinate on flame retardant and thermal properties of rigid polyurethane foam composites[J]. Journal of Thermal Analysis and Calorimetry,2020,140(2):625-636. doi: 10.1007/s10973-019-08897-z
    [17]
    XU F F, WANG B, YANG D, et al. Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR: Pyrolysis behaviors and kinetic analysis[J]. Energy Conversion and Management,2018,171:1106-1115. doi: 10.1016/j.enconman.2018.06.047
    [18]
    MISHRA R K, MOHANTY K. Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential[J]. Bioresource Technology,2020,311:123480.
    [19]
    WANG J, CAI X F. Kinetics study of thermal oxidative degradation of ABS containing flame retardant components[J]. Journal of Thermal Analysis and Calorimetry,2012,107(2):725-732. doi: 10.1007/s10973-011-1704-5
    [20]
    LIN H J, HAN L J, DONG, L S. Thermal degradation behavior and gas phase flame-retardant mechanism of polylactide/PCPP blends[J]. Journal of Applied Polymer Science,2014,131(13):378-387.
    [21]
    SHANG S, YUAN B H, SUN Y R, et al. Facile preparation of layered melamine-phytate flame retardant via supramolecular self-assembly technology[J]. Journal of Colloid and Interface Science,2019,553:364-371. doi: 10.1016/j.jcis.2019.06.015
    [22]
    CHEN G Q, YUAN B H, WANG Y, et al. Inhibited combustion of graphene paper by in situ phosphorus doping and its application for fire early-warning sensor[J]. Sensors and Actuators A: Physical,2020,312:112111.
    [23]
    XU, Z M, DUAN L Q, HOU Y B, et al. The influence of carbon-encapsulated transition metal oxide microparticles on reducing toxic gases release and smoke suppression of rigid polyurethane foam composites[J]. Composites Part A: Applied Science and Manufacturing,2020,131:105815.
    [24]
    WANG S H, WANG X G, WANG X, et al. Surface coated rigid polyurethane foam with durable flame retardancy and improved mechanical property[J]. Chemical Engineering Journal,2020:385: 123755.
    [25]
    JIANG Z L, WANG C S, FANG S Y, et al. Durable flame-retardant and antidroplet finishing of polyester fabrics with flexible polysiloxane and phytic acid through layer-by-layer assembly and sol-gel process[J]. Journal of Applied Polymer Science,2018,135(27):46414.
    [26]
    袁尧. 反应型磷氮化合物及其阻燃硬质聚氨酯泡沫设计与抑烟减毒的研究[D]. 合肥: 中国科学技术大学, 2019.

    YUAN Y. Design of reactive-type phosphorus and nitrogen-containing compounds and study on the smoke toxicity suppression of rigid polyurethane foam[D]. Hefei: University of Science and Technology of China, 2019(in Chinese).
    [27]
    LI W X, LI S X, CHENG Z, et al. The effect of flame retardant-modified sepiolite nanofibers on thermal degradation and fire retardancy of low-density polyethylene[J]. Journal of Thermal Analysis and Calorimetry,2019,138(2):1011-1019. doi: 10.1007/s10973-019-08162-3
    [28]
    李紫璇, 丁克, 郝留成, 等. 特高压气体绝缘金属封闭开关设备用Al2O3/环氧树脂复合材料的非等温固化动力学及蠕变性能[J]. 复合材料学报, 2020, 37(3):562-572.

    LI Z X, DING K, HAO L C, et al. Non-isothermal curing kinetics and creep behavior of Al2O3/epoxy composites for extra-high vlotage gvlotage gas insulated switchgear[J]. Acta Materiae Compositae Sinica,2020,37(3):562-572(in Chinese).
    [29]
    HOROWITZ H H, METEGER G. A new analysis of thermogravimetric traces[J]. Analytical Chemistry,1963,35(10):1464-1468. doi: 10.1021/ac60203a013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(7)

    Article Metrics

    Article views (1062) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return