Volume 38 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
LU Pengcheng, LI Zhixin, QIU Yunpeng, et al. Effect of hygrothermal environment on properties of induction welding joint of carbon fiber reinforced polyphenylene sulfide laminate[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2814-2820. doi: 10.13801/j.cnki.fhclxb.20201030.007
Citation: LU Pengcheng, LI Zhixin, QIU Yunpeng, et al. Effect of hygrothermal environment on properties of induction welding joint of carbon fiber reinforced polyphenylene sulfide laminate[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2814-2820. doi: 10.13801/j.cnki.fhclxb.20201030.007

Effect of hygrothermal environment on properties of induction welding joint of carbon fiber reinforced polyphenylene sulfide laminate

doi: 10.13801/j.cnki.fhclxb.20201030.007
  • Received Date: 2020-09-21
  • Accepted Date: 2020-10-19
  • Rev Recd Date: 2020-10-16
  • Available Online: 2020-10-30
  • Publish Date: 2021-09-01
  • The carbon fiber reinforced polyphenylene sulfide (CF/PPS) composite laminate was taken as the research object, and the induction welding method was used to weld the CF/PPS laminate. It was focused on the effect of hygrothermal on the welded joint performance of the CF/PPS laminate. The experimental results show that the PPS resin does not undergo chemical changes before and after moisture absorption. At room temperature, the shear strengths of the welded joints gradually decrease with the increase of moisture absorption time, and compared with the dry welded joints, they are reduced by 15%, 18%, 23%, 32%, and 38%, respectively. The wet stress increases at the interface of the stainless steel mesh, resin matrix and carbon fiber, which weakens the bonding performance of the welded joint interface, and affects the failure mode of the welded joint. Under the environment of 120℃, the shear strength values of the welded joints with different moisture absorption times decrease by 12%, 15%, 22%, 37% and 44%, respectively. High temperature and high humidity make the thermal stress and wet stress at the interface of the stainless steel mesh, resin matrix and carbon fiber greater, which aggravates the damage of interface bonding performance. Interface debonding is the main failure form of the welded joints.

     

  • loading
  • [1]
    秦明. 热塑性聚芳醚酮类树脂基复合材料的制备及连接技术研究[D]. 杭州: 浙江大学, 2004.

    QIN M, Study on poly aryl ether ketone matrix thermo plastic composites: Processing and fusion bonding technologies[D]. Hangzhou: Zhejiang University, 2004(in Chinese).
    [2]
    肖德凯, 张晓云, 孙安垣. 热塑性复合材料研究进展[J]. 山东化工, 2007, 36(2):15-21. doi: 10.3969/j.issn.1008-021X.2007.02.005

    XIAO D K, ZHANG X Y, SUN A H. Research progress of thermoplastic composites[J]. Shandong Chemical Industry,2007,36(2):15-21(in Chinese). doi: 10.3969/j.issn.1008-021X.2007.02.005
    [3]
    MENG F, MCGRATH K P, HOVEYDA A H. Multifunctional organoboron compounds for scalable natural product synthesis[J]. Nature,2014,513(7518):367-374. doi: 10.1038/nature13735
    [4]
    PEI S, YAN Z, LUO Y, et al. Effect of temperature and cyclic hygrothermal aging on the interlaminar shear strength of carbon fiber/bismaleimide (BMI) composite[J]. Materials & Design,2011,32(8):4341-4347.
    [5]
    RAY B C, RATHORE D. Environmental damage and degradation of FRP composites: A review report[J]. Polymer Composites,2015,36(3):410-423. doi: 10.1002/pc.22967
    [6]
    ZHANG A, LU H, ZHANG D. Synergistic effect of cyclic mechanical loading and moisture absorption on the bending fatigue performance of carbon/epoxy composites[J]. Journal of Materials Science,2014,49(1):314-320. doi: 10.1007/s10853-013-7707-9
    [7]
    ZHONG Y, ZHOU J. Study of thermal and hygrothermal behaviors of glass/vinyl ester composites[J]. Journal of Reinforced Plastics and Composites,1999,18(17):1619-1629.
    [8]
    回丽, 张旭, 许梁, 等. 碳纤维/QY9611复合材料湿热性能研究[J]. 化工新型材料, 2015, 43(8):155-157.

    HUI L, ZHANG X, XU L, et al. Study on hygrothermal properties of carbon fiber/QY9611 composites[J]. New Chemical Materials,2015,43(8):155-157(in Chinese).
    [9]
    American Society for Testing Material. Standard test method for lap shear adhesion for fiber reinforced plastic (FRP) bonding: ASTM D—5868[S]. West Conshohocken USA: American Society for Testing Material, 2014.
    [10]
    韩志勇, 陈栋, 路鹏程. 碳纤维增强聚苯硫醚复合材料感应焊接研究[J]. 塑料工业, 2019, 47(11):134-140. doi: 10.3969/j.issn.1005-5770.2019.11.032

    HAN Z Y, CHEN D, LU P C. Induction welding of carbon fiber reinforced polyphenylene sulfide composites[J]. China Plastics Industry,2019,47(11):134-140(in Chinese). doi: 10.3969/j.issn.1005-5770.2019.11.032
    [11]
    中国航空工业公司. 树脂基复合材料层板湿热环境吸湿试验方法: HB 7401—96[S]. 中国: 航空工业公司, 2005.

    China’s Aviation Industry Corporation. Standard Test Method for Moisture Absorption of Resin-based Composite Laminates in hygrothermal environment: HB 7401—96[S]. China: Aviation Industry Corporation, 2005 (in Chinese).
    [12]
    MAGGANA C, PISSIS P. Water sorption and diffusion studies in an epoxy resin system[J]. Journal of Polymer Science Part B: Polymer Physics,1999,37(11):1165-1182. doi: 10.1002/(SICI)1099-0488(19990601)37:11<1165::AID-POLB11>3.0.CO;2-E
    [13]
    冯振宇, 解江, 迟琪琳. 湿热环境对复合材料单向板拉伸性能的影响[J]. 高分子材料科学与工程, 2018, 34(11):41-47.

    FENG Z Y, XIE J, CHI Q L. Effect of hygrothermal environment on tensile properties of unidirectional composite plates[J]. Polymeric Materials Science and Engineering,2018,34(11):41-47(in Chinese).
    [14]
    郑路, 常新龙, 赵峰. 湿热环境中复合材料吸湿性研究[J]. 湖北航天科技, 2008(1):46-49.

    ZHEN L, CHANG X L, ZHAO F. Study on hygroscopicity of composites in hot and humid environment[J]. Hubei Aerospace Science and Technology,2008(1):46-49(in Chinese).
    [15]
    李文刚, 路海冰, 黄标. 热处理聚苯硫醚的红外光谱分析[J]. 合成纤维工业, 2012, 35(2):71-73. doi: 10.3969/j.issn.1001-0041.2012.02.019

    LI W G, LU H B, HUANG B. Infrared spectrum analysis of heat treated polyphenylene sulfide[J]. China Synthetic Fiber Industry,2012,35(2):71-73(in Chinese). doi: 10.3969/j.issn.1001-0041.2012.02.019
    [16]
    冯青, 李敏, 顾轶卓. 不同湿热条件下碳纤维/环氧复合材料湿热性能实验研究[J]. 复合材料学报, 2010, 27(6):16-20.

    FENG Q, LI M, GU Y Z. Experimental study on hygrothermal properties of carbon fiber/epoxy composites under different hygrothermal conditions[J]. Acta Materiae Compositae Sinica,2010,27(6):16-20(in Chinese).
    [17]
    BOTELHO E C, PARDINI L C, REZENDE M C. Hygrothermal effects on the shear properties of carbon fiber/epoxy composites[J]. Journal of Materials Science,2006,41(21):7111-7118. doi: 10.1007/s10853-006-0933-7
    [18]
    高坤, 史汉桥, 孙宝岗. 湿热老化对玻璃纤维/环氧树脂复合材料性能的影响[J]. 复合材料学报, 2016, 33(6):1147-1152.

    GAO K, SHI H Q, SUN B G. Effect of hygrothermal aging on properties of glass fiber/epoxy resin composites[J]. Acta Materiae Compositae Sinica,2016,33(6):1147-1152(in Chinese).
    [19]
    管清宇, 李卫平. 湿热环境对7781/CYCOM 7701玻璃纤维/环氧复合材料典型力学性能的影响[J]. 复合材料学报, 2018, 35(12):60-69.

    GUAN Q Y, LI W P. Effect of hygrothermal environment on typical mechanical properties of 7781/CYCOM 7701 glass fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2018,35(12):60-69(in Chinese).
    [20]
    刘淑峰, 程小全, 包建文. 湿热环境对树脂基复合材料性能影响的分析[J]. 高分子材料科学与工程, 2014, 30(9):183-190.

    LIU S F, CHENG X Q, BAO J W. Analysis of the influence of hygrothermal environment on the properties of resin matrix composites[J]. Polymeric Materials Science and Engineering,2014,30(9):183-190(in Chinese).
    [21]
    巩天琛. 湿热环境对CFRP层板性能影响及机理研究[D]. 天津: 中国民航大学, 2017.

    GONG T C. Effect of hot and humid environment on properties of CFRP laminates and its mechanism[D]. Civil Aviation University of China, 2017(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (957) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return