Volume 38 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
LI Xiaoyang, KANG Junming, ZHU Zizhao, et al. Numerical simulation on cure behavior and optimization on cure cycle for encapsulation structure of epoxy resin[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2914-2924. doi: 10.13801/j.cnki.fhclxb.20200922.001
Citation: LI Xiaoyang, KANG Junming, ZHU Zizhao, et al. Numerical simulation on cure behavior and optimization on cure cycle for encapsulation structure of epoxy resin[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2914-2924. doi: 10.13801/j.cnki.fhclxb.20200922.001

Numerical simulation on cure behavior and optimization on cure cycle for encapsulation structure of epoxy resin

doi: 10.13801/j.cnki.fhclxb.20200922.001
  • Received Date: 2020-07-20
  • Accepted Date: 2020-08-29
  • Rev Recd Date: 2020-08-24
  • Available Online: 2020-09-22
  • Publish Date: 2021-09-01
  • This paper aims at optimizing the cure cycle of specific encapsulation structures composed of E51 resin from room temperature cure cycle to medium-high “two-phase” cure cycle by means of combination of numerical simulation and experimental testing on the basis of experimentally obtained parameters of cure kinetics and mechanical properties for E51 epoxy resin. The numerical method was firstly adopted to simulate the effects of temperature magnitude and curing time in the first and second dwelling phase to internal temperature, degree of cure and strain of structure during curing to optimize the process parameter. Then the internal temperature and strain of the structure were real-time recorded using Fiber Bragg Grating (FBG) monitoring technique, and the corresponding results reveal the validity of numerical simulation, which demonstrates the reliability of the approach of optimizing the cure cycle using numerical simulation. Lastly, the properties of the casting body specimens of E51 resin manufactured with optimized and original cure cycle were compared, and the results show that the tensile strength, compressive yield strength, flexural strength and impact strength for the specimens manufactured with optimized cure cycle increase by 3.9%, 1.5%, 14.5% and 16.2% compared with the specimens manufactured with original cure cycle, respectively.

     

  • loading
  • [1]
    DING A, LI S, SUN J, et al. A comparison of process-induced residual stresses and distortions in composite structures with different constitutive laws[J]. Journal of Reinforced Plastics and Composites,2016,35(10):807-823. doi: 10.1177/0731684416629764
    [2]
    DING A, LI S, SUN J, et al. A thermo-viscoelastic model of process-induced residual stresses in composite structures with considering thermal dependence[J]. Composite Structures,2016,136(Supplement C):34-43.
    [3]
    ERSOY N, TUGUTLU M. Cure kinetics modeling and cure shrinkage behavior of a thermosetting composite[J]. Polymer Engineering & Science,2010,50(1):84-92.
    [4]
    LI X, WANG J, LI S, et al. Cure-induced temperature gradient in laminated composite plate: Numerical simulation and experimental measurement[J]. Composite Structures,2020:112822.
    [5]
    CHEN J, WANG J, LI X, et al. Monitoring of temperature and cure-induced strain gradient in laminated composite plate with FBG sensors[J]. Composite Structures,2020,242:112168. doi: 10.1016/j.compstruct.2020.112168
    [6]
    WISNOM M R, GIGLIOTTI M, ERSOY N, et al. Mechanisms generating residual stresses and distortion during manufacture of polymer–matrix composite structures[J]. Composites Part A: Applied Science and Manufacturing,2006,37(4):522-529. doi: 10.1016/j.compositesa.2005.05.019
    [7]
    DING A, LI S, WANG J, et al. A new analytical solution for spring-in of curved composite parts[J]. Composites Science and Technology,2017,142:30-40. doi: 10.1016/j.compscitech.2017.01.024
    [8]
    DING A, LI S, WANG J, et al. A new path-dependent constitutive model predicting cure-induced distortions in composite structures[J]. Composites Part A: Applied Science and Manufacturing,2017,95:183-196. doi: 10.1016/j.compositesa.2016.11.032
    [9]
    丁安心, 王继辉, 倪爱清, 等. 热固性树脂基复合材料固化变形解析预测研究进展[J]. 复合材料学报, 2018, 35(6):1361-1376.

    DING A X, WANG J H, NI A Q, et al. A review of analytical prediction of cure-induced distortions in thermoset composites[J]. Acta Materiae Compositae Sinica,2018,35(6):1361-1376(in Chinese).
    [10]
    丁安心, 李书欣, 倪爱清, 王继辉. 热固性树脂基复合材料固化变形和残余应力数值模拟研究综述[J]. 复合材料学报, 2017, 34(3):471-485.

    DING A X, LI S X, NI A Q, et al. A review of analytical prediction of cure-induced distortions and residual stress in thermoset composites[J]. Acta Materiae Compositae Sinica,2017,34(3):471-485(in Chinese).
    [11]
    元振毅, 王永军, 张跃, 等. 基于材料性能时变特性的复合材料固化过程多场耦合数值模拟[J]. 复合材料学报, 2015(01):167-175.

    YUAN Z Y, WANG Y J, ZHANG Y, et al. Multi-field coupled numerical simulation for curing process of composites with time-dependent properties of materials[J]. Acta Materiae Compositae Sinica,2015(01):167-175(in Chinese).
    [12]
    DING A, WANG J, LI S. Understanding process-induced spring-in of L-shaped composite parts using analytical solution[J]. Composite Structures,2020,250:112629. doi: 10.1016/j.compstruct.2020.112629
    [13]
    DING A, WANG J, NI A, et al. A new analytical solution for cure-induced spring-in of L-shaped composite parts[J]. Composites Science and Technology,2019,171:1-12. doi: 10.1016/j.compscitech.2018.12.004
    [14]
    JOHNSTON A A. An integrated model of the development of process-induced deformation in autoclave processing of composite structures [D]. The University of British Columbia, 1998.
    [15]
    WEILAND J S, HARTMANN M P, HINTERHÖLZL R M. Cure simulation with resistively in situ heated CFRP molds: Implementation and validation[J]. Composites Part A: Applied Science and Manufacturing,2016,80:171-181. doi: 10.1016/j.compositesa.2015.10.020
    [16]
    ZOCHER M A, GROVES S E, ALLEN D H. A three-dimensional finite element formulation for thermoviscoelastic orthotropic media[J]. International Journal for Numerical Methods in Engineering,1997,40(12):2267-2288. doi: 10.1002/(SICI)1097-0207(19970630)40:12<2267::AID-NME156>3.0.CO;2-P
    [17]
    DING A, LI S, SUN J, et al. A thermo-viscoelastic model of process-induced residual stresses in composite structures with considering thermal dependence[J]. Composite Structures,2016,136:34-43. doi: 10.1016/j.compstruct.2015.09.014
    [18]
    BOGETTI T A, GILLESPIE J W. Process-induced stress and deformation in thick-section thermoset composite laminates[J]. Journal of Composite Materials,1992,26(5):626-660. doi: 10.1177/002199839202600502
    [19]
    MAGNUS S J, ANDERS H J. Prediction of shape distortions Part I. FE-implementation of a path dependent constitutive model[J]. Composites Part A: Applied Science and Manufacturing,2004,35(6):711-721. doi: 10.1016/j.compositesa.2004.02.005
    [20]
    GARSTKA T, ERSOY N, POTTER K D, et al. In situ measurements of through-the-thickness strains during processing of AS4/8552 composite[J]. Composites Part A: Applied Science and Manufacturing,2007,38(12):2517-2526. doi: 10.1016/j.compositesa.2007.07.018
    [21]
    KRAVCHENKO O G, KRAVCHENKO S G, CASARES A, et al. Digital image correlation measurement of resin chemical and thermal shrinkage after gelation[J]. Journal Materials Science,2015,50(15):5244-5252. doi: 10.1007/s10853-015-9072-3
    [22]
    YUAN Z, ZHANG B, YANG G, et al. Multi-scale modeling of curing residual stresses in composite with random fiber distribution into consideration[J]. Applied Composite Materials,2019,26(3):983-999.
    [23]
    BENAVENTE M, MARCIN L, COURTOIS A, et al. Numerical analysis of viscoelastic process-induced residual distortions during manufacturing and post-curing[J]. Composites Part A: Applied Science and Manufacturing,2018,107:205-216.
    [24]
    KHOUN L, CENTEA T, HUBERT P. Characterization methodology of thermoset resins for the processing of composite materials—Case study: CYCOM 890RTM epoxy resin[J]. Journal of Composite Materials,2010,44(11):1397-1415. doi: 10.1177/0021998309353960
    [25]
    漆乐俊, 郭永进, 章翼, 等. 环氧浇注干式变压器绕组固化过程数值模拟与优化[J]. 变压器, 2014, 51(2):38-40.

    QI L J, GUO Y J, ZHANG Y, et al. Numerical simulation and optimization of epoxy resin curing process for dry-type transformer winding[J]. Transformer,2014,51(2):38-40(in Chinese).
    [26]
    TAO Q, PINTER G, ANTRETTER T, et al. Model free kinetics coupled with finite element method for curing simulation of thermosetting epoxy resins[J]. Journal of Applied Polymer Science,2018,135(27):46408. doi: 10.1002/app.46408
    [27]
    RABEARISON N, JOCHUM C, GRANDIDIER J C. A FEM coupling model for properties prediction during the curing of an epoxy matrix[J]. Computational Materials Science,2009,45(3):715-724. doi: 10.1016/j.commatsci.2008.11.007
    [28]
    康峻铭, 孙亮亮, 王继辉, 等. 电子封装用环氧树脂固化温度与应变的三维有限元模拟[J]. 复合材料学报, 2019, 36(10):2330-2340.

    KANG J M, SUN L L, WANG J H, et al. Three-dimensional finite element simulation of temperature and strain in epoxy resin used to electronic packaging during curing[J]. Acta Materiae Compositae Sinica,2019,36(10):2330-2340(in Chinese).
    [29]
    中国国家标准化管理委员会. 树脂浇注体性能试验方法: GB/T 2567—2008 [S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Test methods for properties of resin casting boby: GB/T 2567—2008 [S], Beijing: China Standards Press, 2008(in Chinese).
    [30]
    中国国家标准化管理委员会. 塑料悬臂梁冲击强度的测定: GB/T 1843—2008 [S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Plastics. Determination of izod impact strength: GB/T 1843—2008 [S], Beijing: China Standards Press, 2008(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (1079) PDF downloads(200) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return