留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湿热酸雨环境对CFRP -混凝土界面剪切黏结性能影响

易富 杨纪 马泽宇 殷雨时

易富, 杨纪, 马泽宇, 等. 湿热酸雨环境对CFRP -混凝土界面剪切黏结性能影响[J]. 复合材料学报, 2023, 40(8): 4763-4773
引用本文: 易富, 杨纪, 马泽宇, 等. 湿热酸雨环境对CFRP -混凝土界面剪切黏结性能影响[J]. 复合材料学报, 2023, 40(8): 4763-4773
YI Fu, YANG Ji, MA Zeyu, YIN Yushi. Effect of hot and humid acid rain environment on shear bond properties of CFRP-concrete interface[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4763-4773.
Citation: YI Fu, YANG Ji, MA Zeyu, YIN Yushi. Effect of hot and humid acid rain environment on shear bond properties of CFRP-concrete interface[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4763-4773.

湿热酸雨环境对CFRP -混凝土界面剪切黏结性能影响

基金项目: 国家自然科学基金(51978501;51774163)
详细信息
    通讯作者:

    殷雨时,博士,副教授,研究方向为混凝土耐久性和FRP加固理论 E-mail:yinys@alumni.tongji.edu.cn

  • 中图分类号: TB332

Effect of hot and humid acid rain environment on shear bond properties of CFRP-concrete interface

Funds: National Natural Science Foundation of China(51978501; 51774163)
  • 摘要: 我国已成为世界第三大酸雨区,国土面积的三分之一遭受酸雨侵袭,而且有逐渐蔓延之势。我国常年发生高温高湿酸雨的地域主要包括华南、华东、武汉、四川盆地等,其“高温、高湿、高硫”环境条件对CFRP-混凝土结构带来显著影响已不容忽视,其对结构承载力和耐久性已产生巨大影响。文中从我国湿热酸雨地域气候特点出发,设计并制作了45个CFRP-混凝土单剪试件,采用机械高温干湿循环和人工配置pH为1.5的酸雨溶液来模拟湿热酸雨环境,通过开展CFRP-混凝土切向剪切试验,分析了混凝土强度和腐蚀次数对界面破坏模式、剥离承载力、极限位移、荷载-位移曲线和黏结区间应变分布的影响,提出了基于湿热酸雨影响系数的界面强度刚度模型,并提出了湿热酸雨环境腐蚀程度划分参考方法。研究结果表明:随着混凝土强度提高,界面黏结性能增强,界面剥离位置逐步向胶层处变化;随着腐蚀次数增长,界面黏结性能呈现先升高后降低的变化趋势,三种强度混凝土对应界面剥离荷载和极限位移分别比未受到腐蚀的试件提升3.04%、3.50%、5.78%和0.50%、0.49%、0.95%,酸雨中SO42-离子侵入混凝土表层生成膨胀性物质CaSO4•2H2O会导致腐蚀前期界面黏结性能暂时增强;切向剪切试验中荷载-位移曲线呈现上升、震荡、加强和下降4个阶段;黏结区间上应力传递方向为从加载端传递至自由端;文中提出的湿热酸雨影响系数的界面本构关系模型,与现有试验数据吻合度较好,且精度较高,偏于安全。相关研究成果可为高湿高热酸雨地区CFRP加固工程提供理论支撑和设计指导。不同腐蚀次数下试件荷载-位移曲线基于湿热酸雨环境场下劣化因子界面参数回归流程

     

  • 图  1  试件尺寸(单位:mm)

    Figure  1.  Size figure(Unit:mm)

    图  2  黏贴区域图示(单位:mm)

    Figure  2.  Bond area position graphic (Unit:mm)

    图  3  应变片布置图示(单位:mm)

    Figure  3.  Strain gauges position graphic (Unit:mm)

    图  4  升温曲线

    Figure  4.  Increasement temperature curve

    图  5  酸雨侵蚀模拟环境

    Figure  5.  Acid rain corrosion environment

    图  6  CFRP-混凝土切向剪切试验系统

    Figure  6.  Tangential shear test system of CFRP-concrete

    图  7  CFRP-混凝土试件破坏模式

    Figure  7.  Failure modes of CFRP -concrete specimen

    图  8  不同腐蚀循环次数下CFRP-混凝土试件界面破坏形态

    Figure  8.  Interfacial failure patterns under different corrosion times of CFRP-concrete specimens

    图  9  不同腐蚀次数下CFRP-混凝土试件荷载-位移曲线

    Figure  9.  Load-displacement curves of CFRP-concrete specimen under different corrosion times

    图  10  不同腐蚀次数下CFRP应变分布

    Figure  10.  Strain distribution of CFRP under different corrosion time

    图  11  基于湿热酸雨劣化因子界面参数回归

    Figure  11.  Regression of interfacial parameters based on humid and hot acid rain deterioration factor

    图  12  参量($ {\tau }_{\text{max}},{S}_{\text{f}} $)和($ \alpha ,{\beta _{\text{w}}},{\beta _{\text{L}}},{f_{\text{t}}} $)之间的关系

    Figure  12.  Relationships between parameters ($ {\tau _{{\text{max}}}} $$ {{\text{s}}_{\text{f}}} $) and ($ \alpha ,{\beta _{\text{w}}},{\beta _{\text{L}}},{f_{\text{t}}} $)

    表  1  混凝土配合比

    Table  1.   Mixture ratio of concrete kg/m3

    SpecimenCementFine sandCoarse aggregateWaterFly ashWater reducerW/C
    C302988241007167535.270.48
    C403357371018164539.500.42
    C503537251044144537.200.35
    下载: 导出CSV

    表  2  材料物理参数指标

    Table  2.   Material physical parameters

    Material$ {f_{\text{c}}} $/MPa$ {f_{\text{t}}} $/MPa$ {E_{\text{f}}} $/MPa$ {{\text{t}}_{\text{f}}} $/mm$ {{\text{m}}_{\text{f}}} $/(g·m−2)
    SpecimenC3035.05.3
    C4046.06.4
    C5057.57.4
    CFRP34002.3×1050.167300
    Epoxy resin382.4×103
    Notes:$ {f_{\text{c}}} $is the compressive strength of concrete cube, $ {f_{\text{t}}} $is the tensile strength of concrete, CFRP and epoxy resin, The tensile strength of concrete is not measured in the test, so it is converted by the formula$ {f_{\text{t}}} = \dfrac{{{{\left( {{f_{\text{c}}}} \right)}^{2/3}}}}{2} $, $ {E_{\text{f}}} $is the elastic modulus of fiber cloth and epoxy resin,$ {{\text{t}}_{\text{f}}} $is the single layer thickness of fiber cloth, $ {{\text{m}}_{\text{f}}} $is the mass per unit area of fiber cloth.
    下载: 导出CSV

    表  3  酸雨溶液配置

    Table  3.   Acid rain solution mixturement 40 L

    pH
    value
    98% sulfuric acid
    content/(g·L−1)
    65% nitric acid
    content/(g·L−1)
    Mole ratio/
    H2SO4:HNO3
    1.563.24 g7.12 g9:1
    下载: 导出CSV

    表  4  酸雨侵蚀试验工况

    Table  4.   Test conditions of acid rain corrosion

    NumberSpecimenCorrosion cycle timeCorrosive environment
    fi-03×30Non corrosive
    fi-103×310High temperature and humidity acid rain environment
    fi-203×320
    fi-303×330
    fi-403×340
    i=30,40,50Total:45-
    Notes: In the expression fi-a, i represents three concrete strength grades, C30, C40 and C50 respectively; a represents the number of corrosion cycles. For example, f30-10 represents the C30 CFRP-concrete specimen subjected to 10 corrosion cycles.
    下载: 导出CSV

    表  5  CFRP-混凝土切向剪切试验数值

    Table  5.   Interfacial shear test data between CFRP and concrete

    Strength gradePeel load/kNUltimate displacement /mm
    C306.892.02
    C407.152.05
    C507.782.10
    下载: 导出CSV

    表  6  CFRP-混凝土试件剥离荷载与极限位移

    Table  6.   Peel load and ultimate displacement of CFRP-concrete specimen

    Strength gradeCorrosion
    time
    Pu /kNSf/mm
    123Average123Average
    C3006.896.866.926.891.881.922.262.02
    106.546.997.777.101.951.992.152.03
    206.196.356.456.331.451.621.371.48
    304.033.884.154.021.431.411.451.43
    404.033.894.053.991.251.301.351.30
    C4006.957.077.437.151.912.072.172.05
    106.566.728.937.402.431.622.142.06
    206.656.985.666.430.812.241.751.60
    303.095.494.291.281.701.49
    404.244.394.324.321.371.351.36
    C5007.057.778.527.782.102.241.972.10
    108.208.458.048.232.102.331.932.12
    206.997.136.556.891.951.801.891.88
    304.994.774.554.771.711.751.881.78
    404.104.704.854.751.601.701.801.70
    Notes: "-" in the table indicates that no valid data is collected due to test error, human operation and other reasons. Pu is the peel load and Sf is the ultimate displacement.
    下载: 导出CSV

    表  7  腐蚀环境对应混凝土表面腐蚀程度

    Table  7.   Corrosion degree of concrete surface corresponding to corrosion environment

    Ⅰ categoryⅡ categoryⅢ categoryⅣ category
    Severe corrosionHarsh corrosionModerate corrosionSlight corrosion
    下载: 导出CSV

    表  8  本文模型与现有模型精确度比对

    Table  8.   Accuracy comparison between new and existed models

    Data
    source
    Proposed modelLu[10]Neubauer &Rostasy[33]Monti[34]
    test/predicttest/predicttest/predicttest/predict
    Wu[28]4.296.9813.1412.27
    Takeo[29]2.233.505.555.68
    Tan[30]1.822.914.564.52
    Ren[31]1.662.683.763.78
    Ueda[32]2.674.126.486.47
    下载: 导出CSV
  • [1] Hadigheh, FEI H K, Sima Kashi. 3 D acid diffusion model for FRP-strengthened reinforced concrete structures: Long-term durability prediction[J]. Construction and Building Materials,2020,261:120548. doi: 10.1016/j.conbuildmat.2020.120548
    [2] 江胜华, 姚国文, 刘超越. 湿热环境作用下CFRP加固钢筋混凝土梁的抗弯性能[J]. 西南交通大学学报, 2020, 55(1):175-183. doi: 10.3969/j.issn.0258-2724.20170893

    JIANG Shenghua, YAO Guowen, LIU Chaoyue. Flexural behavior of reinforced concrete beams strengthened with CFRP under humid and hot environment[J]. Journal of Southwest Jiaotong University,2020,55(1):175-183(in Chinese). doi: 10.3969/j.issn.0258-2724.20170893
    [3] 李登华, 林浩, 崔东霞等. 碳纤维复合材料单向板耐候性及湿热老化性能[J]. 材料科学与工程学报, 2018, 36,(4):535-540. doi: 10.14136/j.cnki.issn1673-2812.2018.04.004

    LI Denghua, LIN Hao, CUI Dongxia, et al. Weathering resistance and damp heat aging performance of carbon fiber composite one-way board[J]. Journal of Materials Science and Engineering,2018,36,(4):535-540(in Chinese). doi: 10.14136/j.cnki.issn1673-2812.2018.04.004
    [4] 李杉. 环境与荷载共同作用下FRP加固混凝土耐久性[D]. 大连: 大连理工大学, 2009.

    LI Shan. Durability of concrete strengthened with FRP under environmental and loading conditions[D]. Dalian: Dalian University of Technology, 2009.
    [5] LUAN H Y, FAN Y F, CHEN A, et al. Exploratory experimental study on flexural behavior of CFRP-reinforced concrete beams subjected to acidic loading effect[J]. Advances in Structural Engineering,2018,21(14):2184-2197. doi: 10.1177/1369433218770533
    [6] 王苗, 吕桅桅, 王凯等. 武汉市酸雨变化特征及影响因子分析[J]. 气象, 2019, 45(2):282-289. doi: 10.7519/j.issn.1000-0526.2019.02.013

    WANG Miao, LV Weiwei, WANG Kai, et al. Analysis on change characteristics and influencing factors of acid rain in Wuhan[J]. Meteorology,2019,45(2):282-289(in Chinese). doi: 10.7519/j.issn.1000-0526.2019.02.013
    [7] 廖洁. 武汉市酸雨地区分布规律的研究[D]. 武汉: 武汉理工大学, 2004.

    LIAO Jie. Study on the distribution law of acid rain in Wuhan[D]. Wuhan: Wuhan University of Technology, 2004(in Chinese).
    [8] 张新民, 柴发合, 王淑兰等. 中国酸雨现状[J]. 环境科学研究, 2010, 23(5):527-532.

    ZHANG Xinmin, CHAI Fahe, WANG Shulan, et al. Current situation of acid rain in China[J]. Environmental Science Research,2010,23(5):527-532(in Chinese).
    [9] Mahdikhani M, Bamshad O, Fallah, et al. Mechanical properties and durability of concrete specimens containing nano silica in sulfuric acid rain condition[J]. Construction and Building Materials,2018,167:929-935. doi: 10.1016/j.conbuildmat.2018.01.137
    [10] 陆新征. FRP-混凝土界面行为研究[D]. 北京: 清华大学, 2004.

    LU Xinzheng. Study on FRP concrete interface behavior[D]. Beijing: Tsinghua University, 2004(in Chinese).
    [11] 邹今航, 叶斌, 陈永贵. 湿热环境下碳纤维增强复合材料加固钢筋混凝土梁的耐久性试验[J]. 科学技术与工程, 2020, 20(33):13839-13846. doi: 10.3969/j.issn.1671-1815.2020.33.046

    ZOU Jinhang, YE Bin, CHEN Yonggui. Durability test of RC beams strengthened with carbon fiber reinforced composites in hot and humid environments[J]. Science Technology and Engineering,2020,20(33):13839-13846(in Chinese). doi: 10.3969/j.issn.1671-1815.2020.33.046
    [12] 余建伟, 杨勇新, 贾彬等. 湿热环境下碳纤维增强复合材料的耐久性试验研究[J]. 工业建筑, 2017, 48(8):174-180. doi: 10.13204/j.gyjz201708032

    YU Jianwei, YANG Yongxin, JIA Bin, et al. Experimental study on durability of carbon fiber reinforced composites in humid and hot environments[J]. Industrial Building,2017,48(8):174-180(in Chinese). doi: 10.13204/j.gyjz201708032
    [13] 薛维培, 刘晓媛, 姚直书等. 不同损伤源对玄武岩纤维增强混凝土孔隙结构变化特征的影响[J]. 复合材料学报, 2020, 37(9):2285-2293. doi: 10.13801/j.cnki.fhclxb.20200219.001

    XUE Weipei, LIU Xiaoyuan, YAO Zhishu, et al. The influence of different damage sources on the pore structure change characteristics of basalt fiber reinforced concrete[J]. Acta Materiae Compositae Sinica,2020,37(9):2285-2293(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200219.001
    [14] XUE W P, LIU X Y, JING W, et al. Experimental study and mechanism analysis of permeability sensitivity of mechanically damaged concrete to confining pressure[J]. Cement and Concrete Research,2020,134:106073. doi: 10.1016/j.cemconres.2020.106073
    [15] 罗毅, 张翔, 郭馨艳. 湿热环境下预应力CFRP加固RC梁疲劳性能数值分析[J]. 华南理工大学学报(自然科学版), 2021, 49(10):70-77.

    LUO Yi, ZHANG Xiang, GUO Xinyan. Numerical analysis of fatigue performance of RC beams strengthened with prestressed CFRP under humid and hot environment[J]. Journal of South China University of Technology (Natural Science Edition),2021,49(10):70-77(in Chinese).
    [16] 万先虎. 高温干湿交替环境下FRP-混凝土界面黏结性能的耐久性研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    WAN Xianhu. Study on durability of FRP concrete interface bonding performance under high-temperature dry wet alternate environment[D]. Harbin: Harbin University of Technology, 2013(in Chinese).
    [17] Du J, QU M, ZHANG Y, et al. Simulated sulfuric and nitric acid rain inhibits leaf breakdown in streams: a microcosm study with artificial reconstituted fresh water[J]. Ecotoxicology and Environmental Safety,2020,196:110535. doi: 10.1016/j.ecoenv.2020.110535
    [18] LU C F, WANG W, ZHOU Q S, et al. Mechanical behavior degradation of recycled aggregate concrete after simulated acid rain spraying[J]. Journal of Cleaner Production,2020,262:121237. doi: 10.1016/j.jclepro.2020.121237
    [19] 周昌林, 朱哲明, 朱爱军. 酸雨腐蚀对混凝土材料断裂特性的影响[J]. 工程科学与技术, 2019, 51(1):144-151.

    ZHOU Changlin, ZHU Zheming, ZHU Aijun. Effect of acid rain corrosion on fracture properties of concrete materials[J]. Engineering Science and Technology,2019,51(1):144-151(in Chinese).
    [20] Sui L L, Luo M S, Yu K Q, et al. Effect of engineered cementitious composite on the bond behavior between fiber reinforced polymer and concrete[J]. Composite Structures,2018,184:775-788. doi: 10.1016/j.compstruct.2017.10.050
    [21] Wu Z, Kim Y J, Diab H. Recent developments in long-term performance of FRP composites and FRP-concrete interface[J]. Advances Structure Engineering,2010,13(2):891-903.
    [22] 曹琛, 郑山锁, 胡卫兵. 酸雨环境下混凝土结构性能研究综述[J]. 材料导报, 2019, 33(6):1869-1874. doi: 10.11896/cldb.17110051

    CAO Chen, ZHENG Shansuo, HU Weibing. Summary of research on concrete structure performance under acid rain environment[J]. Materials Reports,2019,33(6):1869-1874(in Chinese). doi: 10.11896/cldb.17110051
    [23] PAN Z Y, WANG S, LIU Y C, et al. The hydration pore structure and strength of cement-based material prepared with waste soaking solution from acetic acid treatment of regenerated aggregates[J]. Journal of Cleaner Production,2019,235:866-874. doi: 10.1016/j.jclepro.2019.06.335
    [24] Ragoug R, Metalssi O, Barberon F, et al. Durability of cement pastes exposed to external sulfate attack and leaching: physical and chemical aspects[J]. Cement and Concrete Research,2019,116:134-145. doi: 10.1016/j.cemconres.2018.11.006
    [25] 朵润民. 冻融循环和湿热环境下CFRP-高强混凝土粘贴界面耐久性研究[D]. 大连: 大连理工大学, 2015.

    DUO Runmin. Study on durability of CFRP high-strength concrete bonding interface under freeze-thaw cycles and humid and hot environments[D]. Dalian: Dalian University of Technology, 2015(in Chinese).
    [26] 陈梦成, 罗晶, 许开成. 江西省酸雨特征分析及预测模型[J]. 环境科学与技术, 2014, 37(10):167-170.

    CHEN Mengcheng, LUO Jing, XU Kaicheng. Characteristic analysis and prediction model of acid rain in Jiangxi Province[J]. Environmental Science and Technology,2014,37(10):167-170(in Chinese).
    [27] 方五军, 李伟文, 曹文昭. 深圳地区混凝土结构耐久性评定及影响因素分析[J]. 工业建筑, 2020, 50(6):117-123. doi: 10.13204/j.gyjz202006019

    FANG Wujun, LI Weiwen, CAO Wenzhao. Durability assessment and influence factor analysis of concrete structures in Shenzhen[J]. Industrial Building,2020,50(6):117-123(in Chinese). doi: 10.13204/j.gyjz202006019
    [28] Wu, Z S; Islam, S M; Said, H. A three-parameter bond strength model for FRP-Concrete interface[C]. Reinforcement Plastic Composite. 2009, 28, 2309-2323.
    [29] Takeo K, Matsushita H, Makizumi T, Nagashima G. Bond characteristics of CFRP sheets in the CFRP bonding technique[C]. Japan Concrete Institution 1997, 1(1): 1599–1604.
    [30] Tan Z. Experimental research for RC beam strengthened with GFRP[D]. Master thesis. China: Tsinghua University, 2002.
    [31] Ren H T. Study on basic theories and long time behavior of concrete structures strengthened by fiber reinforced polymers[D]. Ph. D. thesis. China: Dalian University of Technology, 2003.
    [32] Ueda T, Sato Y, Asano Y. Experimental study on bond strength of continuous carbon fiber sheet[J]. ACI 1999, 407-416.
    [33] Neubauer U, Rostasy F S. Design aspects of concrete structures strengthened with externally bonded CFRP plates[J]. ECS Public,1999,2(1):109-18.
    [34] Monti M, Renzelli M, Luciani P. FRP adhesion in uncracked and cracked concrete zones[J]. International symposium on FRP reinforcement for concrete structures,2003,6(1):183-192.
  • 加载中
图(12) / 表(8)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  102
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-20
  • 修回日期:  2022-10-14
  • 录用日期:  2022-10-30
  • 网络出版日期:  2022-11-11
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回