留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

316L-2Cr13多层不锈钢复合板相对于全马氏体/奥氏体多层钢疲劳性能的提升

周鑫 马景平 蒋小霞 曹睿 闫英杰

周鑫, 马景平, 蒋小霞, 等. 316L-2Cr13多层不锈钢复合板相对于全马氏体/奥氏体多层钢疲劳性能的提升[J]. 复合材料学报, 2023, 40(11): 6363-6373. doi: 10.13801/j.cnki.fhclxb.20221208.002
引用本文: 周鑫, 马景平, 蒋小霞, 等. 316L-2Cr13多层不锈钢复合板相对于全马氏体/奥氏体多层钢疲劳性能的提升[J]. 复合材料学报, 2023, 40(11): 6363-6373. doi: 10.13801/j.cnki.fhclxb.20221208.002
ZHOU Xin, MA Jingping, JIANG Xiaoxia, et al. Improvement of fatigue properties of 316L-2Cr13 multilayer steel compared with all martensite/austenitic multilayer steel[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6363-6373. doi: 10.13801/j.cnki.fhclxb.20221208.002
Citation: ZHOU Xin, MA Jingping, JIANG Xiaoxia, et al. Improvement of fatigue properties of 316L-2Cr13 multilayer steel compared with all martensite/austenitic multilayer steel[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6363-6373. doi: 10.13801/j.cnki.fhclxb.20221208.002

316L-2Cr13多层不锈钢复合板相对于全马氏体/奥氏体多层钢疲劳性能的提升

doi: 10.13801/j.cnki.fhclxb.20221208.002
基金项目: 国家自然科学基金(52175325;51961024;52071170)
详细信息
    通讯作者:

    曹睿,博士,教授,博士生导师,研究方向为金属材料失效与断裂 E-mail: caorui@lut.edu.cn

  • 中图分类号: TG335.81;TB331

Improvement of fatigue properties of 316L-2Cr13 multilayer steel compared with all martensite/austenitic multilayer steel

Funds: National Natural Science Foundation of China (52175325; 51961024; 52071170)
  • 摘要: 采用升降法与成组法,对奥氏体不锈钢(316L)-马氏体不锈钢(2Cr13)多层不锈钢复合板、全316L及全2Cr13多层钢进行了应力比Rs=0.1的拉拉疲劳试验,获得了应力-寿命(S-N)曲线,且对断口进行了分析。结果表明:由于轧制态组织不均匀,多层钢的S-N曲线出现明显的水平段,有确定的疲劳极限,且316L-2Cr13多层不锈钢复合板的疲劳性能明显优于全316L或全2Cr13多层钢,在应力比为0.1时,疲劳强度可达286 MPa。316L-2Cr13多层不锈钢复合板综合组成材料的优点,2Cr13提供了较高的强度使试样裂纹扩展门槛值较高,从而防止试样快速起裂,316L提供了优异的塑性,阻碍裂纹的扩展。多层钢疲劳断口由起裂源区、裂纹扩展区、瞬断区组成,且裂纹都在应力集中处形核。在裂纹扩展区中,大量的疲劳辉纹存在于316L层,随后在疲劳辉纹中逐渐形成韧窝;而2Cr13层中观察到脆性穿晶断裂,在裂纹扩展后期主要由大块解理面构成。在316L-2Cr13多层不锈钢复合板的瞬断区中,2Cr13层呈现大量的解理面,316L则由大量韧窝构成,层与层之间由剪切韧窝连接。

     

  • 图  1  轧制前原材料力学性能与多层钢轧制过程:(a) 固溶态316L;(b) 退火态2Cr13;(c) 多层钢轧制过程

    Figure  1.  Mechanical properties of raw materials before rolling and rolling process of multilayer steel: (a) Solid solution 316L; (b) As-annealed 2Cr13; (c) Rolling process of multilayer steel

    图  2  3种多层钢的宏观组织形貌:(a) 316L-2Cr13多层钢;(b) 全316L多层钢;(c) 全2Cr13多层钢

    Figure  2.  Macro microstructure morphologies of three kinds of multilayer steels: (a) 316L-2Cr13 multilayer steel; (b) All 316L multilayer steel; (c) All 2Cr13 multilayer steel

    图  3  多层钢拉伸和疲劳试样尺寸

    R—Radius

    Figure  3.  Tensile and fatigue specimen dimensions of multilayer steel

    图  4  多层钢的组织形貌:(a) 316L-2Cr13多层钢;(b) 全316L多层钢;(c) 全2Cr13多层钢

    A—Austenite; M—Martensite; F—Ferrite

    Figure  4.  Microstructures of multilayer steel: (a) 316L-2Cr13 multilayer steel; (b) All 316L multilayer steel; (c) All 2Cr13 multilayer steel

    图  5  (a) 不同材料组成下多层钢应力-应变曲线;(b) 平均抗拉强度、屈服强度和延伸率对比;((c)~(e)) 每种试样的具体应力-应变曲线

    Figure  5.  (a) Stress-strain curves of multilayer steel under different material compositions; (b) Comparison of average tensile strength, yield strength and elongation; ((c)-(e)) Specific stress-strain curves of each sample

    图  6  疲劳试验载荷升降图:(a) 316L-2Cr13多层钢;(b) 全316L多层钢;(c) 全2Cr13多层钢

    Figure  6.  Fatigue test load up and down diagram: (a) 316L-2Cr13 multilayer steel; (b) All 316L multilayer steel; (c) All 2Cr13 multilayer steel

    图  7  不同材料组成下多层钢应力-寿命(S-N)曲线对比

    Figure  7.  Comparison of stress-life (S-N) curves of multilayer steel with different material compositions

    图  8  热处理前后316L-2Cr13多层不锈钢性能对比:(a) 应力-应变曲线;(b) S-N曲线

    Figure  8.  Performance comparison of 316L-2Cr13 multilayer steel before and after heat treatment: (a) Stress-strain curves; (b) S-N curves

    图  9  316L-2Cr13多层不锈钢复合板疲劳断口形貌

    Figure  9.  Fatigue fracture morphologies of 316L-2Cr13 multilayer steel

    图  10  全316L多层钢疲劳断口形貌

    Figure  10.  Fatigue fracture morphologies of all 316L multilayer steel

    图  11  全2Cr13多层钢疲劳断口形貌

    Figure  11.  Fatigue fracture morphologies of all 2Cr13 multilayer steel

    表  1  奥氏体不锈钢(316L)-马氏体不锈钢(2Cr13) (316L-2Cr13)组成材料的化学成分

    Table  1.   Chemical composition of Austenitic stainless steel (316L)-Martensitic stainless steel (2Cr13) (316L-2Cr13) composition materials wt%

    MaterialCSiMnCrNiCuMoN
    Solid solution 316L0.02290.47101.396016.590010.14000.26602.11000.0116
    As-annealed 2Cr130.18000.63000.380013.3600 0.1000
    下载: 导出CSV

    表  2  具体轧制工艺

    Table  2.   Specific rolling process

    Temperature/℃MaterialLayerRolling pass
    1130316L-2Cr13177
    1130316L177
    11302Cr13177
    下载: 导出CSV

    表  3  材料的基本力学性能和Basquin方程中的疲劳强度系数与指数

    Table  3.   Basic mechanical properties of materials and fatigue strength coefficient and index in Basquin equation

    MaterialTensile strength σt/MPaYield strength σy/MPaElongation
    rate δ/%
    Conditional fatigue
    limit σ0.1/MPa
    Fatigue strength
    index b
    Fatigue strength coefficient σf
    316L-2Cr131147 74323288−0.05476609.6576
    All 316L 685 53164247−0.03320391.2894
    All 2Cr131939113913245−0.08543884.2924
    下载: 导出CSV
  • [1] ANDERSON P M, BINGERT J F, MISRA A, et al. Rolling textures in nanoscale Cu/Nb multilayers[J]. Acta Materials,2003,51(20):6059-6075. doi: 10.1016/S1359-6454(03)00428-2
    [2] HAN B G, ZHENG Q F, SUN S W, et al. Enhancing mechanisms of multi-layer graphenes to cementitious composites[J]. Composites Part A: Applied Science and Manufacturing,2017,101:143-150. doi: 10.1016/j.compositesa.2017.06.016
    [3] HERVY M, BLAKER J J, BRAZ A L, et al. Mechanical response of multi-layer bacterial cellulose nanopaper reinforced polylactide laminated composites[J]. Composites Part A: Applied Science and Manufacturing,2018,107:155-163. doi: 10.1016/j.compositesa.2017.12.025
    [4] OYA T, TIESLER N, KAWANISHI S, et al. Experimental and numerical analysis of multilayered steel sheets upon bending[J]. Journal of Materials Processing Technology,2010,210(14):1926-1933. doi: 10.1016/j.jmatprotec.2010.07.003
    [5] CAO R, YU X, FENG Z, et al. Strain partition and rupture analysis of notched tensile multilayered steel specimens[J]. Materials Characterization,2018,145:634-643. doi: 10.1016/j.matchar.2018.09.027
    [6] CAO R, ZHAO X K, DING Y, et al. Effects of the rolling temperature on microstructure and mechanical properties of 2Cr13/316L laminated composites prepared by accumulative roll-bonding (ARB)[J]. Materials Characterization,2018,139:153-164. doi: 10.1016/j.matchar.2018.03.001
    [7] 余伟, 张蕾, 陈银莉, 等. 轧制温度对TA1/Q345复合板性能的影响[J]. 北京科技大学学报, 2013(1):97-103. doi: 10.13374/j.issn1001-053x.2013.01.014

    YU Wei, ZHANG Lei, CHEN Yinli, et al. Effect of rolling temperature on the properties of TA1/Q345 composite plates[J]. Journal of University of Science and Technology Beijing,2013(1):97-103(in Chinese). doi: 10.13374/j.issn1001-053x.2013.01.014
    [8] CAO R, DING Y, ZHAO X K, et al. Effect of rolling reductions on microstructure and properties of 2 Cr13/316 L multi-layered steel composite plate by accumulative roll-bonding[J]. Journal of Materials Research,2018,33(24):4317-4328. doi: 10.1557/jmr.2018.373
    [9] 陈靖, 佟建国, 任学平. 25 Cr5 MoA/Q235钢复合板的结合性能[J]. 北京科技大学学报, 2007(10):985-988.

    CHEN Jing, TONG Jianguo, REN Xueping. Bonding behavior of 25 Cr5 MoA/Q235 hot rolled clad plates[J]. Journal of University of Science and Technology Beijing,2007(10):985-988(in Chinese).
    [10] CAO R, DING Y, YAN Y J, et al. Effect of heat treatment on interface behavior of martensite/austenite multilayered composites by accumulative hot roll bonding[J]. Composite Interfaces,2019,26(12):1-17.
    [11] 李龙, 张心金, 祝志超, 等. 真空热轧不锈钢复合板界面结合行为的研究[J]. 材料与冶金学报, 2014, 13(1):46-50. doi: 10.14186/j.cnki.1671-6620.2014.01.006

    LI Long, ZHANG Xinjin, ZHU Zhichao, et al. Investigation on bonding of stainless steel clad plate by vacuum hot rolling[J]. Journal of Materials and Metallurgy,2014,13(1):46-50(in Chinese). doi: 10.14186/j.cnki.1671-6620.2014.01.006
    [12] 王强. 不锈钢/铝/不锈钢复合板的性能研究与轧制工艺优化[D]. 太原: 太原理工大学, 2011.

    WANG Qiang. Studies on properties and process optimization of stainless steel/aluminum/stainless steel laminated sheet[D]. Taiyuan: Taiyuan University of Technology, 2011(in Chinese).
    [13] ZHANG M X, PANG J C, LI S X, et al. The effect of tailored deformation on fatigue strength of austenitic 316 L stainless steel[J]. Advanced Engineering Materials, 2018, 20(11): 180054.
    [14] PRIMEE S Y, JUIJERM P. Modified mechanical surface treatment for optimized fatigue performance of martensitic stainless steel AISI 420[J]. Metals and Materials International,2021,27(5):946-952. doi: 10.1007/s12540-019-00517-7
    [15] KIMURA K, USHIODA K, ISHIMARU E, et al. Role of hard martensite phase prior to cold-rolling on microstructure evolution after annealing in ferritic stainless steel[J]. Materials Science & Engineering A,2016,663:86-97.
    [16] 国家市场监督管理总局. 金属材料疲劳试验轴向力控制方法: GB/T 3075—2021[S]. 北京: 中国标准出版社, 2021.

    State Administration for Market Regulation of China. Metallic materials fatigue testing axial force controlled method: GB/T 3075—2021[S]. Beijing: China Standards Publishing House, 2021(in Chinese).
    [17] 中华人民共和国国家质量监督检验检疫总局. 金属材料疲劳试验数据统计方案与分析方法: GB/T 24176—2009[S]. 北京: 中国标准出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Metallic materials fatigue testing statistical planning and analysis of data: GB/T 24176—2009[S]. Beijing: China Standards Publishing House, 2009(in Chinese).
    [18] GAO C, YANG M Q, PANG J C, et al. Abnormal relation between tensile and fatigue strengths for a high-strength low-alloy steel[J]. Materials Science & Engineering A,2022,832:142418.
    [19] KUMAR P, MSOLLI S, JHON M H, et al. Fatigue in multilayered steels[J]. Scripta Materialia,2020,15(184):34-40.
    [20] PANG J C, LI S X, WANG Z G, et al. General relation between tensile strength and fatigue strength of metallic materials[J]. Materials Science & Engineering A: Structural Materials: Properties, Misrostructure and Processing,2013,564:331-341.
    [21] 唐国鑫. 晶粒尺寸对304不锈钢力学性能与疲劳行为影响的定量研究[D]. 兰州: 兰州理工大学, 2021.

    TANG Guoxin. Quantitative research on the effect of grain size on mechanical properties and fatigue behaviors of 304 stainless steel[D]. Lanzhou: Lanzhou University of Technology, 2011(in Chinese).
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  648
  • HTML全文浏览量:  335
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 修回日期:  2022-11-28
  • 录用日期:  2022-11-30
  • 网络出版日期:  2022-12-09
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回