Improvement of fatigue properties of 316L-2Cr13 multilayer steel compared with all martensite/austenitic multilayer steel
-
摘要:
目的 随着现代工业的发展和科学技术的进步,传统单一金属或合金已经很难满足现代工业化生产及某些特定工况环境对材料综合性能的要求。复合材料应运而生,多层钢作为一种典型的复合材料,由于其优异的性能已经广泛应用于石油化工、海洋船舶、医疗器械、五金刀具等全方位、多领域的实际工业生产与生活应用中。而疲劳性能作为材料设计生产与应用的一项重要指标,却鲜有研究。因此,关于多层钢疲劳性能的需求较为迫切。 方法 以固溶态奥氏体不锈钢316L与退火态马氏体不锈钢2Cr13作为原材料,通过累计叠轧的方法获得复合板。在应变速率为0.5mm/min进行拉伸试验。采用升降法与成组法,对316L-2Cr13多层不锈钢复合板、全316L及全2Cr13多层钢进行了应力比=0.1的拉-拉疲劳试验,频率为30HZ,获得了S-N曲线。S-N曲线拟合过程中,使用最小二乘法对所得数据进行线性关系的拟合。疲劳试验结束后,使用SEM对疲劳断口进行分析,分析断裂方式以及断裂机制。 结果 1.从多层钢的组织形貌来看,316L层主要由奥氏体构成,2Cr13层主要由马氏体、铁素体构成。2.从后续的拉伸试验结果总结:相比于由全奥氏体不锈钢316L或全马氏体不锈钢2Cr13组成的多层钢,由316L和2Cr13组成的多层不锈钢复合板的机械性能更加优越。即轧制后可以显著提高脆性材料的塑性。它可以结合两种材料的优势,不仅具有较高的强度,而且塑性(延伸率)也较好。3.进行了应力比为0.1的拉拉疲劳试验,实验结果表明:由于轧制态组织的不均匀性导致疲劳数据较为分散,且316L-2Cr13多层不锈钢复合板的疲劳性能明显优于全316L多层钢,全2Cr13多层钢。316L-2Cr13多层不锈钢复合板疲劳极限可达286MPa,而全奥氏体钢与全马氏体钢的疲劳极限虽相差不多,但在具体的不同应力水平中却有着较大差异(曲线斜率相差巨大)。4.疲劳试验结束后,对断口进行分析,316L-2Cr13多层钢的疲劳断口宏观形貌可以将断口分为三个区域:起裂源区、裂纹扩展区、瞬断区。奥氏体层发生显著的塑性变形,出现大量的疲劳辉纹,而马氏体层则以脆性穿晶断裂为主,裂纹扩展后期,奥氏体层逐渐出现韧窝,马氏体层出现大量解理面。且在316L-2Cr13多层不锈钢复合板中,两种层在瞬断区由剪切韧窝相连接。5.总结了316L-2Cr13多层不锈钢复合板疲劳断裂机制,相比于全马氏体或全奥氏体多层钢,由于马氏体层提供的较高强度使裂纹扩展的门槛值较高,材料不容易起裂,而当在较大应力下裂纹形核后,材料又由于316L提供的优异塑性减缓的裂纹扩展速率,反映在S-N曲线中,即为疲劳损伤率较小、疲劳裂纹扩展门槛值较高、疲劳强度最优。 结论 316L-2Cr13多层不锈钢复合板可以综合组成材料的优点,不仅拥有较高的强度,还拥有优异的塑性,平均抗拉强度和延伸率分别为1147MPa、23%。316L-2Cr13多层钢疲劳极限再应力比为0.1的条件下,优于全奥氏体,全马氏体多层钢,达到286MPa。在循环载荷加载过程中,由于2Cr13层提供的较高的强度使材料的裂纹扩展门槛值较高,防止快速起裂;316L层所提供的较好的塑性阻碍疲劳裂纹扩展,二者综合,316L-2Cr13多层不锈钢复合板疲劳性能相较于其他两种材料有了较大的提升。疲劳断口中,奥氏体层发生显著的塑性变形,出现大量的疲劳辉纹,而马氏体层则以脆性穿晶断裂为主,裂纹扩展后期,奥氏体层逐渐出现韧窝,马氏体层出现大量解理面。 Abstract: Tension-tension fatigue tests at stress ratio R=0.1 were carried out on 316L-2Cr13 multilayer steel, all 316L multilayer steel and all 2Cr13 multilayer steel samples using up-and-down method and group method. The S-N curve was obtained and the fracture surface was analyzed. The results show that the S-N curve of multilayer steel has obvious horizontal section and definite fatigue limit due to the non-uniform microstructure in rolling state. The fatigue property of 316L-2Cr13 multilayer stainless steel composite plate is obviously better than that of all 316L or all 2Cr13 multilayer steel. When the stress ratio is 0.1, its fatigue strength can reach 286MPa. The 316L-2Cr13 multlayer stainless steel composite plate combines the advantages of its constituent materials. 2Cr13 provides high strength to prevent rapid crack initiation of the sample, and 316L provides excellent plasticity to prevent crack propagation. The fatigue fracture surface of multilayer steel consists of fatigue source zone, crack propagation zone and final fracture zone, and the cracks nucleate at the stress concentration. In the crack propagation zone, a large number of fatigue striations exist in the 316L layer, and then dimples gradually form in the fatigue striations. At the same time, brittle transgranular fracture was observed in 2Cr13 layer, which was mainly composed of large cleavage surfaces in the later stage of crack growth. In the transient fracture zone of 316L-2Cr13 multilayer stainless steel composite plate, 2Cr13 layer presents a large number of cleavage surfaces, 316L is composed of a large number of dimples, and the layers are connected by shear dimples. -
表 1 组成材料的化学成分(wt%)
Table 1. Chemical composition of composition materials(wt%)
Material C Si Mn Cr Ni Cu Mo N Solid solution 316L 0.0229 0.471 1.396 16.59 10.14 0.266 2.11 0.0116 As-annealed 2Cr13 0.18 0.63 0.38 13.36 0.1 - - - 表 2 具体轧制工艺
Table 2. Specific rolling process
Temperature/℃ Material Layers Rolling passes 1130 2Cr13-316L 17 7 1130 316L 17 7 1130 2Cr13 17 7 表 3 材料的基本力学性能和Basquin 方程中的疲劳强度系数与指数
Table 3. Basic mechanical properties of materials and fatigue strength coefficient and index in Basquin equation
Material Tensile strength σt/MPa Yield strength σy/MPa Elongation rate δ/% Conditional
fatigue limit σ0.1/MPaFatigue strength index b Fatigue strength coefficient σf 316 L-2 Cr13 1147 743 23 288 −0.05476 609.6576 All 316 L 685 531 64 247 −0.0332 391.2894 All 2 Cr13 1939 1139 13 245 −0.08543 884.2924 -
[1] ANDERSON P M, BINGERT J F, MISRA A, et al. Rolling textures in nanoscale Cu/Nb multilayers[J]. Acta Materials,2003,51(20):6059-6075. doi: 10.1016/S1359-6454(03)00428-2 [2] HAN B G, ZHENG Q F, SUN S W, et al. Enhancing mechanisms of multi-layer graphenes to cementitious composites[J]. Composites Part A:Applied Science and Manufacturing,2017,101:143-150. doi: 10.1016/j.compositesa.2017.06.016 [3] HERVY M, BLAKER J J, BRAZ A L, et al. Mechanical response of multi-layer bacterial cellulose nanopaper reinforced polylactide laminated composites[J]. Composites Part A:Applied Science and Manufacturing,2018,107:155-163. doi: 10.1016/j.compositesa.2017.12.025 [4] OYA T, TIESLER N, KAWANISHI S, et al. Experimental and numerical analysis of multilayered steel sheets upon bending[J]. J. mater. process. technol,2010,210(14):1926-1933. doi: 10.1016/j.jmatprotec.2010.07.003 [5] CAO R, YU X, FENG Z, et al. Strain partition and rupture analysis of notched tensile multilayered steel specimens[J]. Materials Characterization,2018,145:634-643. doi: 10.1016/j.matchar.2018.09.027 [6] CAO R, ZHAO X K, DING Y, et al. Effects of the rolling temperature on microstructure and mechanical properties of 2Cr13/316L laminated composites prepared by accumulative roll-bonding (ARB)[J]. Materials Characterization,2018,139:153-164. doi: 10.1016/j.matchar.2018.03.001 [7] 余伟, 张蕾, 陈银莉, 等. 轧制温度对TA1/Q345复合板性能的影响[J]. 北京科技大学学报, 2013(1):97-103. doi: 10.13374/j.issn1001-053x.2013.01.014YU W, ZHANG L, CHEN Y L, et al. Effect of Rolling Temperature on the Properties of TA1/Q345 Composite Plates[J]. Journal of University of Science and Technology Beijing,2013(1):97-103(in Chinese). doi: 10.13374/j.issn1001-053x.2013.01.014 [8] CAO R, DING Y, ZHAO X K, et al. Effect of rolling reductions on microstructure and properties of 2 Cr13/316 L multi-layered steel composite plate by accumulative roll-bonding[J]. Journal of Materials Research,2018,33(24):4317-4328. doi: 10.1557/jmr.2018.373 [9] 陈靖, 佟建国, 任学平. 25 Cr5 MoA/Q235钢复合板的结合性能[J]. 北京科技大学学报, 2007(10):985-988.CHEN J, TONG J G, REN X P. Bonding behavior of 25 Cr5 MoA/Q235 hot rolled clad plates[J]. Journal of University of Science and Technology Beijing,2007(10):985-988(in Chinese). [10] CAO R, DING Y, YAN Y J, et al. Effect of heat treatment on interface behavior of martensite/austenite multilayered composites by accumulative hot roll bonding[J]. Composite Interfaces,2019:1-17. [11] 李龙, 张心金, 祝志超, 等. 真空热轧不锈钢复合板界面结合行为的研究[J]. 材料与冶金学报, 2014, 13(1):46-50. doi: 10.14186/j.cnki.1671-6620.2014.01.006LI L, ZHANG X J, ZHU Z C, et al. Investigation on bonding of stainless steel clad plate by vacuum hot rolling[J]. Journal of Materials and Metallurgy,2014,13(1):46-50(in Chinese). doi: 10.14186/j.cnki.1671-6620.2014.01.006 [12] 王强. 不锈钢/铝/不锈钢复合板的性能研究与轧制工艺优化[D]. 太原理工大学, 2011.WANG Q. Studies on properties and process optimization of stainless steel/aluminum/stainless steel laminated sheet[D]. Taiyuan University of Technology, 2011(in Chinese). [13] ZHANG M X, PANG J C, LI S X, et al. The Effect of Tailored Deformation on Fatigue Strength of Austenitic 316 L Stainless Steel[J]. Advanced Engineering Materials, 2018, 20(11). [14] PRIMEE S Y, JUIJERM P. Modified Mechanical Surface Treatment for Optimized Fatigue Performance of Martensitic Stainless Steel AISI 420[J]. Metals and Materials International,2021,27(5):946-952. doi: 10.1007/s12540-019-00517-7 [15] KIMURA K, USHIODA K, ISHIMARU E, et al. Role of hard martensite phase prior to cold-rolling on microstructure evolution after annealing in ferritic stainless steel[J]. Materials Science & Engineering A,2016,663(Apr.29):86-97. [16] GB/T 3075-2021, 金属材料疲劳试验轴向力控制方法[S].GB/T 3075-2021, Metallic materials fatigue testing axial force controlled method[S] (in Chinese). [17] GB/T24176-2009, 金属材料疲劳试验数据统计方案与分析方法[S].GB/T24176-2009, Metallic materials fatigue testing statistical planning and analysis of data[S] (in Chinese). [18] GAO C, YANG M Q, PANG J C, et al. Abnormal relation between tensile and fatigue strengths for a high-strength low-alloy steel[J]. Materials Science & Engineering, A,2022:832. [19] KUMAR P, MSOLLI S, JHON M H, et al. Fatigue in multilayered steels[J]. Scripta Materialia,2020,15(184):34-40. [20] PANG J C, LI S X, WANG Z G, et al. General relation between tensile strength and fatigue strength of metallic materials[J]. Materials Science & Engineering, A. Structural Materials:Properties, Misrostructure and Processing,2013:564331-341. [21] 唐国鑫. 晶粒尺寸对304不锈钢力学性能与疲劳行为影响的定量研究[D]. 兰州理工大学, 2021.TANG G X Quantitative Research on the Effect of Grain Size on Mechanical Properties and Fatigue Behaviors of 304 Stainless Steel[D]. Lanzhou University of Technology, 2011(in Chinese). -

计量
- 文章访问数: 241
- HTML全文浏览量: 83
- 被引次数: 0