留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于连续介质力学的界面多尺度模拟研究进展

刘庆辉 马金东 蔡新

刘庆辉, 马金东, 蔡新. 基于连续介质力学的界面多尺度模拟研究进展[J]. 复合材料学报, 2024, 41(12): 6268-6278.
引用本文: 刘庆辉, 马金东, 蔡新. 基于连续介质力学的界面多尺度模拟研究进展[J]. 复合材料学报, 2024, 41(12): 6268-6278.
LIU Qinghui, MA Jindong, CAI Xin. Literature review on multiscale modelling of interface based on continuum mechanics[J]. Acta Materiae Compositae Sinica, 2024, 41(12): 6268-6278.
Citation: LIU Qinghui, MA Jindong, CAI Xin. Literature review on multiscale modelling of interface based on continuum mechanics[J]. Acta Materiae Compositae Sinica, 2024, 41(12): 6268-6278.

基于连续介质力学的界面多尺度模拟研究进展

基金项目: 国家自然科学基金 (52279129,51979094)
详细信息
    通讯作者:

    刘庆辉,博士,副教授,硕士生导师,研究方向为界面力学和复合材料力学 E-mail: hhulqh@hhu.edu.cn

  • 中图分类号: O346;TB333

Literature review on multiscale modelling of interface based on continuum mechanics

Funds: National Natural Science Foundation of China (52279129, 51979094)
  • 摘要: 界面是复合材料/结构的重要组成部分和薄弱环节,其力学性能对复合材料/结构的整体力学行为和功能具有重要影响。唯象学的界面本构关系在求解各类含界面的材料和结构问题中发挥了重要作用,但其忽略了细观尺度上复杂的损伤失效过程。随着多相粘结剂的发展和应用,界面多尺度模拟领域取得了重要进展。本文首先对界面进行分类,其次阐述界面多尺度模拟的基本问题,然后总结界面多尺度模拟方法和界面均匀化中的几个关键问题;接着分别综述界面单向多尺度和双向多尺度研究相关进展,最后对界面多尺度力学需要进一步研究的问题进行展望。

     

  • 图  1  界面或界面相微观结构

    Figure  1.  Microstructure of interface or interphase

    图  2  界面分类图[2]

    Figure  2.  Diagrams of Interface classification[2]

    图  3  界面多尺度问题示意图

    Figure  3.  Schematic of multiscale modeling of interface

    图  4  界面的计算均匀化流程[37]

    Figure  4.  Computational homogenization scheme for interface[37]

    图  5  多相异质粘结剂的RVE[44]

    Figure  5.  Schematic of RVE for heterogeneous adhesive[44]

    图  6  考虑粗糙度的界面均匀化示意图[57]

    Figure  6.  Schematic of interface homogenization considering roughness[57]

    图  7  内聚力-摩擦界面模型中的代表性单元面[64]

    Figure  7.  Representative elementary area in cohesive–frictional interface model[64]

  • [1] 许金泉. 界面力学[M]. 北京: 科学出版社, 2006.

    XU Jinquan. Interface Mechanics[M]. Beijing: Science Press, 2006(in Chinese).
    [2] BRACCINI M, DUPEUX M. Mechanics of Solid Interfaces[M]. London and Hoboken: ISTE Ltd and John Wiley & Sons, Inc, 2012.
    [3] 乔丕忠, 刘庆辉. 双材料梁界面力学及其应用: 综述[J]. 力学季刊, 2016, 37(1): 1-14.

    QIAO Pizhong, LIU Qinghui. Interface mechanics of bi-material beams and its application: a review[J]. Chinese Quarterly of Mechanics, 2016, 37(1): 1-14(in Chinese).
    [4] OMAIREY S, JAYASREE N, KAZILAS M. Defects and uncertainties of adhesively bonded composite joints[J]. SN Applied Sciences, 2021, 3(Aug): 769.
    [5] 许巍, 陈力, 张钱城, 等. 粘结界面力学行为及其表征[J]. 中国科学: 技术科学, 2012, 42(12): 1361-1376. doi: 10.1360/092012-752

    CHEN Wei, CHEN Li, ZHANG Qianchen, et al. Mechanical behavior and characterization of bonding interface[J]. Scientia Sinica (Technologica), 2012, 42(12): 1361-1376(in Chinese). doi: 10.1360/092012-752
    [6] BUDHE S, BANEA M D, DE BARROS S, et al. An updated review of adhesively bonded joints in composite materials[J]. International Journal of Adhesion and Adhesives, 2017, 72(Jan): 30-42.
    [7] BORGES C S P, AKHAVAN-SAFAR A, TSOKANAS P. From fundamental concepts to recent developments in the adhesive bonding technology: a general view[J]. Discover Mechanical Engineering, 2023, 2(May): 8.
    [8] KINLOCH A J, SHAW S J, TOD D A, et al. Deformation and fracture behaviour of a rubber-toughened epoxy: 1. Microstructure and fracture studies[J]. Polymer, 1983, 24(10): 1341-1354. doi: 10.1016/0032-3861(83)90070-8
    [9] MEGUID S A, SUN Y. On the tensile and shear strength of nano-reinforced composite interfaces[J]. Materials & Design, 2004, 25(4): 289-296.
    [10] HIRSCH F, KASTNER M. Microscale simulation of adhesive and cohesive failure in rough interfaces[J]. Engineering Fracture Mechanics, 2017, 178(Jun): 416-432.
    [11] 董聪, 杨庆雄. 细观损伤力学新进展[J]. 强度与环境, 1993, 20(4): 1-9+26.

    DONG Cong, YANG Qingxiong. New advances in meso-damage mechanics[J]. Structure & Environment Engineering, 1993, 20(4): 1-9+26(in Chinese).
    [12] FIROOZ S, STEINMANN P, JAVILI A. Homogenization of Composites With Extended General Interfaces: Comprehensive Review and Unified Modeling[J]. Applied Mechanics Reviews, 2021, 73(4): 040802. doi: 10.1115/1.4051481
    [13] LIU Q H, FU S Y, QIAO P Z. Novel bi-layer beam elements for elastic fracture analysis of delaminated composite beams[J]. Engineering Fracture Mechanics, 2022, 269(Jun): 108539.
    [14] LUO Q T, TONG L Y. Linear and higher order displacement theories for adhesively bonded lap joints[J]. International Journal of Solids and Structures, 2004, 41(22-23): 6351-6381. doi: 10.1016/j.ijsolstr.2004.05.024
    [15] JIANG W S, QIAO P Z. An improved four-parameter model with consideration of Poisson's effect on stress analysis of adhesive joints[J]. Engineering Structures, 2015, 88(Apr): 203-215.
    [16] LI B, LI Y, SU J. A combined interface element to simulate interfacial fracture of laminated shell structures[J]. Composites Part B: Engineering, 2014, 58(Mar): 217-227.
    [17] GHOVANLOU M K, JAHED H, KHAJEPOUR A. Cohesive zone modeling of ductile tearing process in brazed joints[J]. Engineering Fracture Mechanics, 2013, 102(Apr): 156-170.
    [18] 吴业飞, 陈伟球. 基于内聚力模型的FRP-混凝土粘结强度分析[J]. 工程力学, 2010, 27(7): 113-119.

    WU Yefei, CHEN Weiqiu. Cohesive zone model based analysis of bond strength between FRP and concrete[J]. Engineering Mechanics, 2010, 27(7): 113-119(in Chinese).
    [19] HUI C Y, RUINA A, LONG R, et al. Cohesive Zone Models and Fracture[J]. Journal of Adhesion, 2011, 87(1): 1-52. doi: 10.1080/00218464.2011.538315
    [20] JOKINEN J, KANERVA M, WALLIN M, et al. The simulation of a double cantilever beam test using the virtual crack closure technique with the cohesive zone modelling[J]. International Journal of Adhesion and Adhesives, 2019, 88(Jan): 50-58.
    [21] PALMIERI V, DE LORENZIS L. Multiscale modeling of concrete and of the FRP-concrete interface[J]. Engineering Fracture Mechanics, 2014, 131(Nov): 150-175.
    [22] 杨庆生. 复合材料力学[M]. 北京: 科学出版社, 2020.

    YANG Qingsheng. Mechanics of Composite Materials[M]. Beijing: Science Press, 2020(in Chinese).
    [23] CID ALFARO M V, SUIKER A S J, VERHOOSEL C V, et al. Numerical homogenization of cracking processes in thin fibre-epoxy layers[J]. European Journal of Mechanics a-Solids, 2010, 29(2): 119-131. doi: 10.1016/j.euromechsol.2009.09.006
    [24] GEERS M, KOUZNETSOVA V, MATOUŠ K, et al. Homogenization methods and multiscale modeling: nonlinear problems[M]. 2nd edn. Stein E, de Borst R, Hughes T. Encyclopedia of computational mechanics. Atlanta: John Wiley & Sons, Ltd, 2017: 1-34.
    [25] VOIGT W. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper[J]. Annalen der physik, 1889, 274(12): 573-587. doi: 10.1002/andp.18892741206
    [26] REUSS A. Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle[J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1929, 9(1): 49-58.
    [27] ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proceedings of the Royal Society of London, 1957, 241(1226): 376-396.
    [28] HILL R J. Elastic properties of reinforced solids: Some theoretical principles[J]. Journal of the Mechanics and Physics of Solids, 1963, 11(5): 357-372. doi: 10.1016/0022-5096(63)90036-X
    [29] HASHIN Z, SHTRIKMAN S. A variational approach to the theory of the elastic behaviour of multiphase materials[J]. Journal of the Mechanics and Physics of Solids, 1963, 11(2): 127-140. doi: 10.1016/0022-5096(63)90060-7
    [30] MORI T, TANAKA K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metallurgica, 1973, 21(5): 571-574. doi: 10.1016/0001-6160(73)90064-3
    [31] GEERS M G D, KOUZNETSOVA V G, BREKELMANS W A M. Multi-scale computational homogenization: Trends and challenges[J]. Journal of Computational and Applied Mathematics, 2010, 234(7): 2175-2182. doi: 10.1016/j.cam.2009.08.077
    [32] MATOUS K, GEERS M G D, KOUZNETSOVA V G, et al. A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials[J]. Journal of Computational Physics, 2017, 330(Feb): 192-220.
    [33] KANOUTE P, BOSO D P, CHABOCHE J L, et al. Multiscale Methods for Composites: A Review[J]. Archives of Computational Methods in Engineering, 2009, 16(1): 31-75. doi: 10.1007/s11831-008-9028-8
    [34] FISH J, WAGNER G, KETEN S. Mesoscopic and multiscale modelling in materials[J]. Nature Materials, 2021, 20(6): 774-786. doi: 10.1038/s41563-020-00913-0
    [35] 陈玉丽, 马勇, 潘飞, 等. 多尺度复合材料力学研究进展[J]. 固体力学学报, 2018, 39(1): 1-68.

    CHEN Yuli, MA Yong, PAN Fei, et al. Research progress in multi-scale mechanics of composite materials[J]. Chinese Journal of Solid Mechanics, 2018, 39(1): 1-68(in Chinese).
    [36] MATOUS K, KULKARNI M G, GEUBELLE P H. Multiscale cohesive failure modeling of heterogeneous adhesives[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(4): 1511-1533. doi: 10.1016/j.jmps.2007.08.005
    [37] NGUYEN V P, STROEVEN M, SLUYS L J. Multiscale continuous and discontinuous modeling of heterogeneous materials: A review on recent developments[J]. Journal of Multiscale Modelling, 2012, 3(4): 229-270.
    [38] BELYTSCHKO T, SONG J H. Coarse-graining of multiscale crack propagation[J]. International Journal for Numerical Methods in Engineering, 2010, 81(5): 537-563. doi: 10.1002/nme.2694
    [39] KULKARNI M G, MATOUS K, GEUBELLE P H. Coupled multi-scale cohesive modeling of failure in heterogeneous adhesives[J]. International Journal for Numerical Methods in Engineering, 2010, 84(8): 916-946. doi: 10.1002/nme.2923
    [40] 张廼龙, 郭小明. 多尺度模拟与计算研究进展[J]. 计算力学学报, 2011, 28(S1): 1-5.

    ZHANG Nailong, GUO Xiaoming. Review on multiscale modeling and computation[J]. Chinese Journal of Computational Mechanics, 2011, 28(S1): 1-5(in Chinese).
    [41] 赵婷婷, 冯云田. 大规模颗粒系统的精确缩尺和粗粒化离散元方法[J]. 计算力学学报, 2022, 39(3): 365-372. doi: 10.7511/jslxCMGM202213

    ZHAO Tingting, FENG Yuntian. Exact scaling laws and coarse-grained discrete element modeling of large scale granular systems[J]. Chinese Journal of Computational Mechanics, 2022, 39(3): 365-372(in Chinese). doi: 10.7511/jslxCMGM202213
    [42] HIRSCHBERGER C B, RICKER S, STEINMANN P, et al. Computational multiscale modelling of heterogeneous material layers[J]. Engineering Fracture Mechanics, 2009, 76(6): 793-812. doi: 10.1016/j.engfracmech.2008.10.018
    [43] VERHOOSEL C V, REMMERS J J C, GUTIERREZ M A, et al. Computational homogenization for adhesive and cohesive failure in quasi-brittle solids[J]. International Journal for Numerical Methods in Engineering, 2010, 83(8-9): 1155-1179. doi: 10.1002/nme.2854
    [44] NGUYEN V P, LLOBERAS-VALLS O, STROEVEN M, et al. Homogenization-based multiscale crack modelling: From micro-diffusive damage to macro-cracks[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(9-12): 1220-1236. doi: 10.1016/j.cma.2010.10.013
    [45] GITMAN I M, ASKES H, SLUYS L J. Representative volume: Existence and size determination[J]. Engineering Fracture Mechanics, 2007, 74(16): 2518-2534. doi: 10.1016/j.engfracmech.2006.12.021
    [46] NGUYEN V P, LLOBERAS-VALLS O, STROEVEN M, et al. On the existence of representative volumes for softening quasi-brittle materials-A failure zone averaging scheme[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45-48): 3028-3038. doi: 10.1016/j.cma.2010.06.018
    [47] KULKARNI M G, GEUBELLE P H, MATOUS K. Multi-scale modeling of heterogeneous adhesives: Effect of particle decohesion[J]. Mechanics of Materials, 2009, 41(5): 573-583. doi: 10.1016/j.mechmat.2008.10.012
    [48] ZHAO Q, HOA S V. Toughening mechanism of epoxy resins with micro/nano particles[J]. Journal of Composite Materials, 2007, 41(2): 201-219. doi: 10.1177/0021998306063361
    [49] BAGHERI R, MAROUF B T, PEARSON R A. Rubber-Toughened Epoxies: A Critical Review[J]. Polymer Reviews, 2009, 49(3): 201-225. doi: 10.1080/15583720903048227
    [50] TUTUNCHI A, KAMALI R, KIANVASH A. Adhesive strength of steel-epoxy composite joints bonded with structural acrylic adhesives filled with silica nanoparticles[J]. Journal of Adhesion Science and Technology, 2015, 29(3): 195-206. doi: 10.1080/01694243.2014.981469
    [51] DE MOURA M, DANIAUD R, MAGALHAES A G. Simulation of mechanical behaviour of composite bonded joints containing strip defects[J]. International Journal of Adhesion and Adhesives, 2006, 26(6): 464-473. doi: 10.1016/j.ijadhadh.2005.06.010
    [52] SHI X Q, ZHANG X R, PANG J H L. Determination of interface fracture toughness of adhesive joint subjected to mixed-mode loading using finite element method[J]. International Journal of Adhesion and Adhesives, 2006, 26(4): 249-260. doi: 10.1016/j.ijadhadh.2005.02.007
    [53] 陈珍平, 刘庆辉, 张雷, 等. 考虑粗糙度的FRP-混凝土单剪试验细观模拟[J]. 力学季刊, 2024, 45(1): 58-69.

    CHEN Zhenping, LIU Qinghui, ZHANG Lei, et al. Mesoscopic simulation of FRP-concrete single shear test considering roughness[J]. Chinese Quarterly of Mechanics, 2024, 45(1): 58-69(in Chinese).
    [54] MOSBY M, MATOUS K. On mechanics and material length scales of failure in heterogeneous interfaces using a finite strain high performance solver[J]. Modelling and Simulation in Materials Science and Engineering, 2015, 23(8).
    [55] WRIGGERS P, REINELT J. Multi-scale approach for frictional contact of elastomers on rough rigid surfaces[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(21-26): 1996-2008. doi: 10.1016/j.cma.2008.12.021
    [56] TEMIZER I, WRIGGERS P. Inelastic analysis of granular interfaces via computational contact homogenization[J]. International Journal for Numerical Methods in Engineering, 2010, 84(8): 883-915. doi: 10.1002/nme.2921
    [57] DE LORENZIS L, WRIGGERS P. Computational homogenization of rubber friction on rough rigid surfaces[J]. Computational Materials Science, 2013, 77(Sep): 264-280.
    [58] TWORZYDLO W W, CECOT W, ODEN J T, et al. Computational micro- and macroscopic models of contact and friction: formulation, approach and applications[J]. Wear, 1998, 220(2): 113-140. doi: 10.1016/S0043-1648(98)00194-X
    [59] HARALDSSON A, WRIGGERS P. A strategy for numerical testing of frictional laws with application to contact between soil and concrete[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190(8-10): 963-977. doi: 10.1016/S0045-7825(99)00456-9
    [60] BANDEIRA A A, WRIGGERS P, PIMENTA P D. Numerical derivation of contact mechanics interface laws using a finite element approach for large 3D deformation[J]. International Journal for Numerical Methods in Engineering, 2004, 59(2): 173-195. doi: 10.1002/nme.867
    [61] TEMIZER I, WRIGGERS P. A multiscale contact homogenization technique for the modeling of third bodies in the contact interface[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 198(3-4): 377-396. doi: 10.1016/j.cma.2008.08.008
    [62] TEMIZER I. Multiscale thermomechanical contact: Computational homogenization with isogeometric analysis[J]. International Journal for Numerical Methods in Engineering, 2014, 97(8): 582-607. doi: 10.1002/nme.4604
    [63] TEMIZER I. Computational homogenization of soft matter friction: Isogeometric framework and elastic boundary layers[J]. International Journal for Numerical Methods in Engineering, 2014, 100(13): 953-981. doi: 10.1002/nme.4778
    [64] ALFANO G, SACCO E. Combining interface damage and friction in a cohesive-zone model[J]. International Journal for Numerical Methods in Engineering, 2006, 68(5): 542-582. doi: 10.1002/nme.1728
    [65] SACCO E, TOTI J. Interface Elements for the Analysis of Masonry Structures[J]. International Journal for Computational Methods in Engineering Science and Mechanics, 2010, 11(4): 354-373.
    [66] 陈晓, 何鹏飞, 董建华, 等. 冻土-构筑物界面粘聚-损伤-摩擦本构模型[J]. 兰州理工大学学报, 2021, 47(5): 115-121. doi: 10.3969/j.issn.1673-5196.2021.05.017

    CHEN Xiao, HE Pengfei, DONG Jianhua, et al. Cohesion-damage-friction constitutive model of the frozen soi-structure interface[J]. Journal of Lanzhou University of Technology, 2021, 47(5): 115-121(in Chinese). doi: 10.3969/j.issn.1673-5196.2021.05.017
    [67] SACCO E, LEBON F. A damage-friction interface model derived from micromechanical approach[J]. International Journal of Solids and Structures, 2012, 49(26): 3666-3680. doi: 10.1016/j.ijsolstr.2012.07.028
    [68] ZOU Z M, HAMEED M. Combining interface damage and friction in cohesive interface models using an energy based approach[J]. Composites Part A-Applied Science and Manufacturing, 2018, 112(Sep): 290-298.
    [69] HIRSCH F, NATKOWSKI E, M. K. Modeling and simulation of interface failure in metal-composite hybrids[J]. Composites Science and Technology, 2021, 214(Sep): 108965.
    [70] 杨志刚, 史承功, 李晓霞. 界面粗糙度及加固层长度对加固梁的力学性能影响[J]. 山东理工大学学报(自然科学版), 2024, 38(2): 15-20.

    YANG Zhigang, SHI Chenggong, LI Xiaoxia. Effect of interface roughness and reinforcement layer length on the mechanical properties of strengthened beams[J]. Journal of Shandong University of Technology (Natural Science Edition), 2024, 38(2): 15-20(in Chinese).
    [71] VOSSEN B G, SCHREURS P J G, VAN DER SLUIS O, et al. Multi-scale modeling of delamination through fibrillation[J]. Journal of the Mechanics and Physics of Solids, 2014, 66(May): 117-132.
    [72] JIANG C, AVADH K, NAGAI K. A mesoscale simulation of the FRP-to-concrete interfacial debonding propagation process by 3D RBSM[J]. Composite Structures, 2023, 304(Jan): 116336.
    [73] WANG X, ZHAO T L, GUO J L, et al. Mesoscale modelling of the FRP-concrete debonding mechanism in the pull-off test[J]. Composite Structures, 2023, 309(Apr): 116726.
    [74] REINA-ROMO E, SANZ-HERRERA J A. Multiscale simulation of particle-reinforced elastic plastic adhesives at small strains[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(25-28): 2211-2222. doi: 10.1016/j.cma.2011.03.009
    [75] MOSBY M, MATOUS K. Hierarchically parallel coupled finite strain multiscale solver for modeling heterogeneous layers[J]. International Journal for Numerical Methods in Engineering, 2015, 102(3-4): 748-765. doi: 10.1002/nme.4755
    [76] LIU Y, VAN DER MEER F P, SLUYS L J, et al. Modeling of dynamic mode I crack growth in glass fiber-reinforced polymer composites: fracture energy and failure mechanism[J]. Engineering Fracture Mechanics, 2021, 243(Feb): 107522.
  • 加载中
图(7)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  130
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-20
  • 修回日期:  2024-04-13
  • 录用日期:  2024-04-17
  • 网络出版日期:  2024-05-24
  • 刊出日期:  2024-12-15

目录

    /

    返回文章
    返回