[1] |
许金泉. 界面力学[M]. 北京: 科学出版社, 2006.XU Jinquan. Interface Mechanics[M]. Beijing: Science Press, 2006(in Chinese).
|
[2] |
BRACCINI M, DUPEUX M. Mechanics of Solid Interfaces[M]. London and Hoboken: ISTE Ltd and John Wiley & Sons, Inc, 2012.
|
[3] |
乔丕忠, 刘庆辉. 双材料梁界面力学及其应用: 综述[J]. 力学季刊, 2016, 37(1): 1-14.QIAO Pizhong, LIU Qinghui. Interface mechanics of bi-material beams and its application: a review[J]. Chinese Quarterly of Mechanics, 2016, 37(1): 1-14(in Chinese).
|
[4] |
OMAIREY S, JAYASREE N, KAZILAS M. Defects and uncertainties of adhesively bonded composite joints[J]. SN Applied Sciences, 2021, 3(Aug): 769.
|
[5] |
许巍, 陈力, 张钱城, 等. 粘结界面力学行为及其表征[J]. 中国科学: 技术科学, 2012, 42(12): 1361-1376. doi: 10.1360/092012-752CHEN Wei, CHEN Li, ZHANG Qianchen, et al. Mechanical behavior and characterization of bonding interface[J]. Scientia Sinica (Technologica), 2012, 42(12): 1361-1376(in Chinese). doi: 10.1360/092012-752
|
[6] |
BUDHE S, BANEA M D, DE BARROS S, et al. An updated review of adhesively bonded joints in composite materials[J]. International Journal of Adhesion and Adhesives, 2017, 72(Jan): 30-42.
|
[7] |
BORGES C S P, AKHAVAN-SAFAR A, TSOKANAS P. From fundamental concepts to recent developments in the adhesive bonding technology: a general view[J]. Discover Mechanical Engineering, 2023, 2(May): 8.
|
[8] |
KINLOCH A J, SHAW S J, TOD D A, et al. Deformation and fracture behaviour of a rubber-toughened epoxy: 1. Microstructure and fracture studies[J]. Polymer, 1983, 24(10): 1341-1354. doi: 10.1016/0032-3861(83)90070-8
|
[9] |
MEGUID S A, SUN Y. On the tensile and shear strength of nano-reinforced composite interfaces[J]. Materials & Design, 2004, 25(4): 289-296.
|
[10] |
HIRSCH F, KASTNER M. Microscale simulation of adhesive and cohesive failure in rough interfaces[J]. Engineering Fracture Mechanics, 2017, 178(Jun): 416-432.
|
[11] |
董聪, 杨庆雄. 细观损伤力学新进展[J]. 强度与环境, 1993, 20(4): 1-9+26.DONG Cong, YANG Qingxiong. New advances in meso-damage mechanics[J]. Structure & Environment Engineering, 1993, 20(4): 1-9+26(in Chinese).
|
[12] |
FIROOZ S, STEINMANN P, JAVILI A. Homogenization of Composites With Extended General Interfaces: Comprehensive Review and Unified Modeling[J]. Applied Mechanics Reviews, 2021, 73(4): 040802. doi: 10.1115/1.4051481
|
[13] |
LIU Q H, FU S Y, QIAO P Z. Novel bi-layer beam elements for elastic fracture analysis of delaminated composite beams[J]. Engineering Fracture Mechanics, 2022, 269(Jun): 108539.
|
[14] |
LUO Q T, TONG L Y. Linear and higher order displacement theories for adhesively bonded lap joints[J]. International Journal of Solids and Structures, 2004, 41(22-23): 6351-6381. doi: 10.1016/j.ijsolstr.2004.05.024
|
[15] |
JIANG W S, QIAO P Z. An improved four-parameter model with consideration of Poisson's effect on stress analysis of adhesive joints[J]. Engineering Structures, 2015, 88(Apr): 203-215.
|
[16] |
LI B, LI Y, SU J. A combined interface element to simulate interfacial fracture of laminated shell structures[J]. Composites Part B: Engineering, 2014, 58(Mar): 217-227.
|
[17] |
GHOVANLOU M K, JAHED H, KHAJEPOUR A. Cohesive zone modeling of ductile tearing process in brazed joints[J]. Engineering Fracture Mechanics, 2013, 102(Apr): 156-170.
|
[18] |
吴业飞, 陈伟球. 基于内聚力模型的FRP-混凝土粘结强度分析[J]. 工程力学, 2010, 27(7): 113-119.WU Yefei, CHEN Weiqiu. Cohesive zone model based analysis of bond strength between FRP and concrete[J]. Engineering Mechanics, 2010, 27(7): 113-119(in Chinese).
|
[19] |
HUI C Y, RUINA A, LONG R, et al. Cohesive Zone Models and Fracture[J]. Journal of Adhesion, 2011, 87(1): 1-52. doi: 10.1080/00218464.2011.538315
|
[20] |
JOKINEN J, KANERVA M, WALLIN M, et al. The simulation of a double cantilever beam test using the virtual crack closure technique with the cohesive zone modelling[J]. International Journal of Adhesion and Adhesives, 2019, 88(Jan): 50-58.
|
[21] |
PALMIERI V, DE LORENZIS L. Multiscale modeling of concrete and of the FRP-concrete interface[J]. Engineering Fracture Mechanics, 2014, 131(Nov): 150-175.
|
[22] |
杨庆生. 复合材料力学[M]. 北京: 科学出版社, 2020.YANG Qingsheng. Mechanics of Composite Materials[M]. Beijing: Science Press, 2020(in Chinese).
|
[23] |
CID ALFARO M V, SUIKER A S J, VERHOOSEL C V, et al. Numerical homogenization of cracking processes in thin fibre-epoxy layers[J]. European Journal of Mechanics a-Solids, 2010, 29(2): 119-131. doi: 10.1016/j.euromechsol.2009.09.006
|
[24] |
GEERS M, KOUZNETSOVA V, MATOUŠ K, et al. Homogenization methods and multiscale modeling: nonlinear problems[M]. 2nd edn. Stein E, de Borst R, Hughes T. Encyclopedia of computational mechanics. Atlanta: John Wiley & Sons, Ltd, 2017: 1-34.
|
[25] |
VOIGT W. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper[J]. Annalen der physik, 1889, 274(12): 573-587. doi: 10.1002/andp.18892741206
|
[26] |
REUSS A. Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle[J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1929, 9(1): 49-58.
|
[27] |
ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proceedings of the Royal Society of London, 1957, 241(1226): 376-396.
|
[28] |
HILL R J. Elastic properties of reinforced solids: Some theoretical principles[J]. Journal of the Mechanics and Physics of Solids, 1963, 11(5): 357-372. doi: 10.1016/0022-5096(63)90036-X
|
[29] |
HASHIN Z, SHTRIKMAN S. A variational approach to the theory of the elastic behaviour of multiphase materials[J]. Journal of the Mechanics and Physics of Solids, 1963, 11(2): 127-140. doi: 10.1016/0022-5096(63)90060-7
|
[30] |
MORI T, TANAKA K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metallurgica, 1973, 21(5): 571-574. doi: 10.1016/0001-6160(73)90064-3
|
[31] |
GEERS M G D, KOUZNETSOVA V G, BREKELMANS W A M. Multi-scale computational homogenization: Trends and challenges[J]. Journal of Computational and Applied Mathematics, 2010, 234(7): 2175-2182. doi: 10.1016/j.cam.2009.08.077
|
[32] |
MATOUS K, GEERS M G D, KOUZNETSOVA V G, et al. A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials[J]. Journal of Computational Physics, 2017, 330(Feb): 192-220.
|
[33] |
KANOUTE P, BOSO D P, CHABOCHE J L, et al. Multiscale Methods for Composites: A Review[J]. Archives of Computational Methods in Engineering, 2009, 16(1): 31-75. doi: 10.1007/s11831-008-9028-8
|
[34] |
FISH J, WAGNER G, KETEN S. Mesoscopic and multiscale modelling in materials[J]. Nature Materials, 2021, 20(6): 774-786. doi: 10.1038/s41563-020-00913-0
|
[35] |
陈玉丽, 马勇, 潘飞, 等. 多尺度复合材料力学研究进展[J]. 固体力学学报, 2018, 39(1): 1-68.CHEN Yuli, MA Yong, PAN Fei, et al. Research progress in multi-scale mechanics of composite materials[J]. Chinese Journal of Solid Mechanics, 2018, 39(1): 1-68(in Chinese).
|
[36] |
MATOUS K, KULKARNI M G, GEUBELLE P H. Multiscale cohesive failure modeling of heterogeneous adhesives[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(4): 1511-1533. doi: 10.1016/j.jmps.2007.08.005
|
[37] |
NGUYEN V P, STROEVEN M, SLUYS L J. Multiscale continuous and discontinuous modeling of heterogeneous materials: A review on recent developments[J]. Journal of Multiscale Modelling, 2012, 3(4): 229-270.
|
[38] |
BELYTSCHKO T, SONG J H. Coarse-graining of multiscale crack propagation[J]. International Journal for Numerical Methods in Engineering, 2010, 81(5): 537-563. doi: 10.1002/nme.2694
|
[39] |
KULKARNI M G, MATOUS K, GEUBELLE P H. Coupled multi-scale cohesive modeling of failure in heterogeneous adhesives[J]. International Journal for Numerical Methods in Engineering, 2010, 84(8): 916-946. doi: 10.1002/nme.2923
|
[40] |
张廼龙, 郭小明. 多尺度模拟与计算研究进展[J]. 计算力学学报, 2011, 28(S1): 1-5.ZHANG Nailong, GUO Xiaoming. Review on multiscale modeling and computation[J]. Chinese Journal of Computational Mechanics, 2011, 28(S1): 1-5(in Chinese).
|
[41] |
赵婷婷, 冯云田. 大规模颗粒系统的精确缩尺和粗粒化离散元方法[J]. 计算力学学报, 2022, 39(3): 365-372. doi: 10.7511/jslxCMGM202213ZHAO Tingting, FENG Yuntian. Exact scaling laws and coarse-grained discrete element modeling of large scale granular systems[J]. Chinese Journal of Computational Mechanics, 2022, 39(3): 365-372(in Chinese). doi: 10.7511/jslxCMGM202213
|
[42] |
HIRSCHBERGER C B, RICKER S, STEINMANN P, et al. Computational multiscale modelling of heterogeneous material layers[J]. Engineering Fracture Mechanics, 2009, 76(6): 793-812. doi: 10.1016/j.engfracmech.2008.10.018
|
[43] |
VERHOOSEL C V, REMMERS J J C, GUTIERREZ M A, et al. Computational homogenization for adhesive and cohesive failure in quasi-brittle solids[J]. International Journal for Numerical Methods in Engineering, 2010, 83(8-9): 1155-1179. doi: 10.1002/nme.2854
|
[44] |
NGUYEN V P, LLOBERAS-VALLS O, STROEVEN M, et al. Homogenization-based multiscale crack modelling: From micro-diffusive damage to macro-cracks[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(9-12): 1220-1236. doi: 10.1016/j.cma.2010.10.013
|
[45] |
GITMAN I M, ASKES H, SLUYS L J. Representative volume: Existence and size determination[J]. Engineering Fracture Mechanics, 2007, 74(16): 2518-2534. doi: 10.1016/j.engfracmech.2006.12.021
|
[46] |
NGUYEN V P, LLOBERAS-VALLS O, STROEVEN M, et al. On the existence of representative volumes for softening quasi-brittle materials-A failure zone averaging scheme[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45-48): 3028-3038. doi: 10.1016/j.cma.2010.06.018
|
[47] |
KULKARNI M G, GEUBELLE P H, MATOUS K. Multi-scale modeling of heterogeneous adhesives: Effect of particle decohesion[J]. Mechanics of Materials, 2009, 41(5): 573-583. doi: 10.1016/j.mechmat.2008.10.012
|
[48] |
ZHAO Q, HOA S V. Toughening mechanism of epoxy resins with micro/nano particles[J]. Journal of Composite Materials, 2007, 41(2): 201-219. doi: 10.1177/0021998306063361
|
[49] |
BAGHERI R, MAROUF B T, PEARSON R A. Rubber-Toughened Epoxies: A Critical Review[J]. Polymer Reviews, 2009, 49(3): 201-225. doi: 10.1080/15583720903048227
|
[50] |
TUTUNCHI A, KAMALI R, KIANVASH A. Adhesive strength of steel-epoxy composite joints bonded with structural acrylic adhesives filled with silica nanoparticles[J]. Journal of Adhesion Science and Technology, 2015, 29(3): 195-206. doi: 10.1080/01694243.2014.981469
|
[51] |
DE MOURA M, DANIAUD R, MAGALHAES A G. Simulation of mechanical behaviour of composite bonded joints containing strip defects[J]. International Journal of Adhesion and Adhesives, 2006, 26(6): 464-473. doi: 10.1016/j.ijadhadh.2005.06.010
|
[52] |
SHI X Q, ZHANG X R, PANG J H L. Determination of interface fracture toughness of adhesive joint subjected to mixed-mode loading using finite element method[J]. International Journal of Adhesion and Adhesives, 2006, 26(4): 249-260. doi: 10.1016/j.ijadhadh.2005.02.007
|
[53] |
陈珍平, 刘庆辉, 张雷, 等. 考虑粗糙度的FRP-混凝土单剪试验细观模拟[J]. 力学季刊, 2024, 45(1): 58-69.CHEN Zhenping, LIU Qinghui, ZHANG Lei, et al. Mesoscopic simulation of FRP-concrete single shear test considering roughness[J]. Chinese Quarterly of Mechanics, 2024, 45(1): 58-69(in Chinese).
|
[54] |
MOSBY M, MATOUS K. On mechanics and material length scales of failure in heterogeneous interfaces using a finite strain high performance solver[J]. Modelling and Simulation in Materials Science and Engineering, 2015, 23(8).
|
[55] |
WRIGGERS P, REINELT J. Multi-scale approach for frictional contact of elastomers on rough rigid surfaces[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(21-26): 1996-2008. doi: 10.1016/j.cma.2008.12.021
|
[56] |
TEMIZER I, WRIGGERS P. Inelastic analysis of granular interfaces via computational contact homogenization[J]. International Journal for Numerical Methods in Engineering, 2010, 84(8): 883-915. doi: 10.1002/nme.2921
|
[57] |
DE LORENZIS L, WRIGGERS P. Computational homogenization of rubber friction on rough rigid surfaces[J]. Computational Materials Science, 2013, 77(Sep): 264-280.
|
[58] |
TWORZYDLO W W, CECOT W, ODEN J T, et al. Computational micro- and macroscopic models of contact and friction: formulation, approach and applications[J]. Wear, 1998, 220(2): 113-140. doi: 10.1016/S0043-1648(98)00194-X
|
[59] |
HARALDSSON A, WRIGGERS P. A strategy for numerical testing of frictional laws with application to contact between soil and concrete[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190(8-10): 963-977. doi: 10.1016/S0045-7825(99)00456-9
|
[60] |
BANDEIRA A A, WRIGGERS P, PIMENTA P D. Numerical derivation of contact mechanics interface laws using a finite element approach for large 3D deformation[J]. International Journal for Numerical Methods in Engineering, 2004, 59(2): 173-195. doi: 10.1002/nme.867
|
[61] |
TEMIZER I, WRIGGERS P. A multiscale contact homogenization technique for the modeling of third bodies in the contact interface[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 198(3-4): 377-396. doi: 10.1016/j.cma.2008.08.008
|
[62] |
TEMIZER I. Multiscale thermomechanical contact: Computational homogenization with isogeometric analysis[J]. International Journal for Numerical Methods in Engineering, 2014, 97(8): 582-607. doi: 10.1002/nme.4604
|
[63] |
TEMIZER I. Computational homogenization of soft matter friction: Isogeometric framework and elastic boundary layers[J]. International Journal for Numerical Methods in Engineering, 2014, 100(13): 953-981. doi: 10.1002/nme.4778
|
[64] |
ALFANO G, SACCO E. Combining interface damage and friction in a cohesive-zone model[J]. International Journal for Numerical Methods in Engineering, 2006, 68(5): 542-582. doi: 10.1002/nme.1728
|
[65] |
SACCO E, TOTI J. Interface Elements for the Analysis of Masonry Structures[J]. International Journal for Computational Methods in Engineering Science and Mechanics, 2010, 11(4): 354-373.
|
[66] |
陈晓, 何鹏飞, 董建华, 等. 冻土-构筑物界面粘聚-损伤-摩擦本构模型[J]. 兰州理工大学学报, 2021, 47(5): 115-121. doi: 10.3969/j.issn.1673-5196.2021.05.017CHEN Xiao, HE Pengfei, DONG Jianhua, et al. Cohesion-damage-friction constitutive model of the frozen soi-structure interface[J]. Journal of Lanzhou University of Technology, 2021, 47(5): 115-121(in Chinese). doi: 10.3969/j.issn.1673-5196.2021.05.017
|
[67] |
SACCO E, LEBON F. A damage-friction interface model derived from micromechanical approach[J]. International Journal of Solids and Structures, 2012, 49(26): 3666-3680. doi: 10.1016/j.ijsolstr.2012.07.028
|
[68] |
ZOU Z M, HAMEED M. Combining interface damage and friction in cohesive interface models using an energy based approach[J]. Composites Part A-Applied Science and Manufacturing, 2018, 112(Sep): 290-298.
|
[69] |
HIRSCH F, NATKOWSKI E, M. K. Modeling and simulation of interface failure in metal-composite hybrids[J]. Composites Science and Technology, 2021, 214(Sep): 108965.
|
[70] |
杨志刚, 史承功, 李晓霞. 界面粗糙度及加固层长度对加固梁的力学性能影响[J]. 山东理工大学学报(自然科学版), 2024, 38(2): 15-20.YANG Zhigang, SHI Chenggong, LI Xiaoxia. Effect of interface roughness and reinforcement layer length on the mechanical properties of strengthened beams[J]. Journal of Shandong University of Technology (Natural Science Edition), 2024, 38(2): 15-20(in Chinese).
|
[71] |
VOSSEN B G, SCHREURS P J G, VAN DER SLUIS O, et al. Multi-scale modeling of delamination through fibrillation[J]. Journal of the Mechanics and Physics of Solids, 2014, 66(May): 117-132.
|
[72] |
JIANG C, AVADH K, NAGAI K. A mesoscale simulation of the FRP-to-concrete interfacial debonding propagation process by 3D RBSM[J]. Composite Structures, 2023, 304(Jan): 116336.
|
[73] |
WANG X, ZHAO T L, GUO J L, et al. Mesoscale modelling of the FRP-concrete debonding mechanism in the pull-off test[J]. Composite Structures, 2023, 309(Apr): 116726.
|
[74] |
REINA-ROMO E, SANZ-HERRERA J A. Multiscale simulation of particle-reinforced elastic plastic adhesives at small strains[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(25-28): 2211-2222. doi: 10.1016/j.cma.2011.03.009
|
[75] |
MOSBY M, MATOUS K. Hierarchically parallel coupled finite strain multiscale solver for modeling heterogeneous layers[J]. International Journal for Numerical Methods in Engineering, 2015, 102(3-4): 748-765. doi: 10.1002/nme.4755
|
[76] |
LIU Y, VAN DER MEER F P, SLUYS L J, et al. Modeling of dynamic mode I crack growth in glass fiber-reinforced polymer composites: fracture energy and failure mechanism[J]. Engineering Fracture Mechanics, 2021, 243(Feb): 107522.
|