留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于应变传递的形状记忆合金复合材料损伤监测模型

张亚楠 胡旭东 刘兵飞

张亚楠, 胡旭东, 刘兵飞. 基于应变传递的形状记忆合金复合材料损伤监测模型[J]. 复合材料学报, 2023, 40(11): 6462-6470. doi: 10.13801/j.cnki.fhclxb.20230310.004
引用本文: 张亚楠, 胡旭东, 刘兵飞. 基于应变传递的形状记忆合金复合材料损伤监测模型[J]. 复合材料学报, 2023, 40(11): 6462-6470. doi: 10.13801/j.cnki.fhclxb.20230310.004
ZHANG Yanan, HU Xudong, LIU Bingfei. Damage monitoring model of shape memory alloy composites based on strain transfer[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6462-6470. doi: 10.13801/j.cnki.fhclxb.20230310.004
Citation: ZHANG Yanan, HU Xudong, LIU Bingfei. Damage monitoring model of shape memory alloy composites based on strain transfer[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6462-6470. doi: 10.13801/j.cnki.fhclxb.20230310.004

基于应变传递的形状记忆合金复合材料损伤监测模型

doi: 10.13801/j.cnki.fhclxb.20230310.004
基金项目: 中央高校基金(3122015C019)
详细信息
    通讯作者:

    张亚楠,博士,讲师,硕士生导师,研究方向为材料结构力学 E-mail: zyn603@163.com

  • 中图分类号: TG139.6;TB33

Damage monitoring model of shape memory alloy composites based on strain transfer

Funds: Fundamental Research Funds for the Central Universities of China (3122015C019)
  • 摘要: 复合材料由于其优异的性能已被广泛地应用于建筑、医学、航空航天等各个领域中,然而其损伤监测一直是国内外专家和学者关注的难点问题之一。本文将形状记忆合金(SMA)埋入到复合材料中,考虑了界面层的应变传递作用,利用SMA的电阻传感特性建立了基于应变传递的SMA复合材料塑性损伤监测模型,实现复合材料塑性损伤应变的实时监测。基于该监测模型讨论了不同材料参数条件对SMA和复合材料间平均应变传递率的影响,并讨论了SMA在不同初始状态和温度条件下损伤监测行为。研究结果表明:减小界面层厚度、增加界面层剪切模量及增加SMA的埋入长度均增加界面平均应变传递率,SMA电阻变化和复合材料塑性损伤应变呈分段线性关系。本文可为SMA复合材料损伤监测的进一步优化设计和应用提供理论基础。

     

  • 图  1  形状记忆合金(SMA)复合材料板示意图

    r—Radial direction

    Figure  1.  Schematic diagram of shape memory alloys (SMA) composite material plate

    图  2  三相分析模型:(a)纵剖图;(b)横剖图

    Figure  2.  Three phase analysis model: (a) Transverse sections; (b) Longitudinal sections

    2L—Length; $ {{{r}}_{\rm{f}}} $—SMA fiber radius; $ {{{r}}_{\rm{i}}} $—Interface layer radius

    图  3  dx微元段SMA复合材料应力分布

    Figure  3.  Stress distribution of dx microelement SMA composite

    $ {\sigma _{\rm{m}}} $—Composite axial stress; $ {\sigma _{\rm{i}}} $—Interface layer axial stress; $ {\sigma _{\rm{f}}} $—SMA fiber axial stress;$ {\tau _{{\text{im}}}} $—Shear stress between interface layer and composite;$ {\tau _{{\text{fi}}}} $—Shear stress between SMA fiber and interface layer

    图  4  马氏体体积分数与SMA纤维和碳纳米纤维(CNFs)/环氧树脂复合材料之间的平均应变传递率的关系

    Figure  4.  Relationship between martensite volume fraction and average strain transmissibility between SMA fiber and carbon nanofibers (CNFs)/epoxy resin composites

    图  5  SMA埋置长度与SMA纤维和CNFs/环氧树脂复合材料之间的平均应变传递率的关系

    Figure  5.  Relationship between embedded length of SMA and average strain transmissibility between SMA fiber and CNFs/epoxy resin composites

    图  6  界面层厚度与SMA纤维和CNFs/环氧树脂复合材料之间的平均应变传递率的关系

    Figure  6.  Relationship between thickness of interface layer and average strain transmissibility between SMA fiber and CNFs/epoxy resin composites

    图  7  界面层剪切模量与SMA纤维和CNFs/环氧树脂复合材料之间的应变传递率的关系

    Figure  7.  Relationship between shear modulus of interface layer and strain transmissibility between SMA fiber and CNFs/epoxy resin composites

    图  8  $ {{T}} $<马氏体相变结束温度($ {{{M}}_{\rm{f}}} $)时SMA电阻相对变化和应变的关系

    Figure  8.  Relationship between SMA resistance relative change and strain at $ {{T}} $< ends temperature of martensitic transformation ($ {{{M}}_{\rm{f}}} $)

    图  9  奥氏体相变开始温度($ {{{A}}_{\rm{s}}} $)<$ {{T}} $<奥氏体相变结束温度($ {{{A}}_{\rm{f}}} $)时SMA电阻相对变化和应变的关系

    Figure  9.  Relationship between SMA resistance relative change and strain at starts temperature of austenite trasformation ($ {{{A}}_{\rm{s}}} $)<$ {{T}} $<ends temperature of austenite trasformation ($ {{{A}}_{\rm{f}}} $)

    图  10  $ {{T}} $>$ {{{A}}_{\rm{f}}} $时SMA电阻相对变化和应变的关系

    Figure  10.  Relationship between SMA resistance relative change and strain at $ {{T}} $>$ {{{A}}_{\rm{f}}} $

    图  11  $ {{{M}}_{\rm{f}}} $<$ {{T}} $<马氏体相变开始温度($ {{{M}}_{\rm{s}}} $)时SMA电阻相对变化和应变的关系

    Figure  11.  Relationship between SMA resistance relative change and strain at $ {{{M}}_{\rm{f}}} $<$ {{T}} $< starts temperature of martensitic transformation ($ {{{M}}_{\rm{s}}} $)

    表  1  SMA纤维材料参数

    Table  1.   SMA fiber material parameters

    $ {{{E}}_{\rm{A}}} $/MPa$ {{{E}}_{\rm{M}}} $/MPa$ {{{M}}_{\rm{f}}} $/℃$ {{{M}}_{\rm{s}}} $/℃$ {{{A}}_{\rm{s}}} $/℃$ {{{A}}_{\rm{f}}} $/℃$ \theta $/(MPa·℃−1)
    67×10326.3×103918.434.5490.55
    $ \sigma _{\rm{s}}^{{\rm{cr}}} $/MPa$ \sigma _{\rm{f}}^{{\rm{cr}}} $/MPa$ {{{C}}_{\rm{M}}} $/(MPa·℃−1)$ {{{C}}_{\rm{A}}} $/(MPa·℃−1)$ {\varepsilon _{\rm{L}}} $$ {{v}} $$ {{{r}}_{\rm{f}}} $/m
    100170813.80.0670.330.001
    $ {{{C}}_{{\rm{M1}}}} $/(Ω·m·℃−1)$ {{{C}}_{{\rm{M2}}}} $/(Ω·m)$ {{{C}}_{{\rm{A1}}}} $/(Ω·m·℃−1)$ {{{C}}_{{\rm{A2}}}} $/(Ω·m)$ {{{L}}_{\rm{f}}} $/m
    7×10−100.87×10−68×10−100.72×10−60.1
    Notes: $ {{{E}}_{\rm{A}}} $ and $ {{{E}}_{\rm{M}}} $—Elastic modulus of SMA austenite and martensite; $ {{{M}}_{\rm{s}}} $ and $ {{{M}}_{\rm{f}}} $—Starts and ends temperature of martensitic transformation; $ {{{A}}_{\rm{s}}} $ and $ {{{A}}_{\rm{f}}} $—Starts and ends temperature of austenite transformation; $ \theta $—Thermal elastic modulus of SMA; $ \sigma _{\rm{s}}^{{\rm{cr}}} $ and $ \sigma _{\rm{f}}^{{\rm{cr}}} $—SMA reorientation starts and ends critical stress; $ {{{C}}_{\rm{M}}} $ and $ {{{C}}_{\rm{A}}} $—Stress influence coefficient of martensite and austenite; $ {\varepsilon _{\rm{L}}} $—Maximum residual strain of SMA; $ {{v}} $—Poisson's ratio of SMA; $ {{{C}}_{{\rm{M1}}}} $, $ {{{C}}_{{\rm{M2}}}} $, $ {{{C}}_{{\rm{A1}}}} $ and $ {{{C}}_{{\rm{A2}}}} $—Material parameters related to resistivity; $ {{{r}}_{\rm{f}}} $—Fiber radius of SMA; $ {{{L}}_{\rm{f}}} $—Axial length of SMA fiber.
    下载: 导出CSV

    表  2  碳纳米纤维/环氧树脂基复合材料和环氧树脂材料参数[21]

    Table  2.   Carbon nanofibers/epoxy composites and epoxy resin material parameters[21]

    $ {{{L}}_{\rm{m}}} $/m$ {\varepsilon _{{\rm{mt}}}} $$ {{{G}}_{\rm{i}}} $/GPa$ {{{r}}_{\rm{i}}} $/m$ {{{E}}_{\rm{i}}} $/GPa
    0.10.01251.30.0022.3
    Notes: $ {{{L}}_{\rm{m}}} $—Axial length of composite; $ {\varepsilon _{{\rm{mt}}}} $—Maximum elastic strain of composite; $ {{{G}}_{\rm{i}}} $—Shear modulus of epoxy resin; $ {{{r}}_{\rm{i}}} $—Radius of epoxy resin; $ {{{E}}_{\rm{i}}} $—Elastic modulus of epoxy resin.
    下载: 导出CSV
  • [1] CHANDARANA N, MATTHIEU G, SOUTIS C. Damage detection and monitoring in composite pipes using piezoelectric sensors[C]//9th European Workshop on Structural Health Monitoring. Manchester: NDT. net, 2018: 1-9.
    [2] BENAZZO F, RIGAMONTI D, BETTINI P, et al. Interlaminar fracture of structural fibre/epoxy composites integrating damage sensing and healing[J]. Composites Part B: Engineering,2022,244:110137. doi: 10.1016/j.compositesb.2022.110137
    [3] SENTHILKUMAR M, SREEKANTH T G, MANIKANTA REDDY S. Nondestructive health monitoring techniques for composite materials: A review[J]. Polymers and Polymer Composites,2021,29(5):528-540. doi: 10.1177/0967391120921701
    [4] EL-SABBAGH A, STEUERNAGEL L, ZIEGMANN G. Characterisation of flax polypropylene composites using ultrasonic longitudinal sound wave technique[J]. Compo-sites Part B: Engineering,2013,45(1):1164-1172. doi: 10.1016/j.compositesb.2012.06.010
    [5] FREEMANTLE R J, HANKINSON N, BROTHERHOOD C J. Rapid phased array ultrasonic imaging of large area composite aerospace structures[J]. Insight,2005,47(3):129-132. doi: 10.1784/insi.47.3.129.61315
    [6] RYU C H, PARK S H, KIM D H, et al. Nondestructive evaluation of hidden multi-delamination in a glass-fiber-reinforced plastic composite using terahertz spectroscopy[J]. Composite Structures,2016,156:338-347. doi: 10.1016/j.compstruct.2015.09.055
    [7] HOSOI A, YAMAGUCHI Y, JU Y, et al. Detection and quantitative evaluation of defects in glass fiber reinforced plastic laminates by microwaves[J]. Composite Structures,2015,128:134-144. doi: 10.1016/j.compstruct.2015.03.050
    [8] KALYANAVALLI V, ABILASHA RAMADHAS T K, SASTIKUMAR D. Long pulse thermography investigations of basalt fiber reinforced composite[J]. NDT & E International,2018,100:84-91.
    [9] 邱自学, 姚兴田. 结构中埋入TiNi超弹性丝传感网络的实验研究[J]. 传感器技术, 2001, 20(11):11-13.

    QIU Zixue, YAO Xingtian. Experimental research on sensor network embedded TiNi super-elastic wire in structures[J]. Journal of Transducer Technology,2001,20(11):11-13(in Chinese).
    [10] LYNCH B. Modeling of the stress-strain-resistance behaviour of Ni-Ti and Ni-Ti-Cu shape memory alloys for use in sensorless actuator position control[D]. Ontario: Carleton University, 2013.
    [11] 马奎. NiTi形状记忆合金棒的受限回复与加热试验及分析[D]. 广州: 华南理工大学, 2013.

    MA Kui. Tests and analyses of NiTi shape memory alloy bars' restrained recovery and heating[D]. Guangzhou: South China University of Technology, 2013(in Chinese).
    [12] 崔迪. 形状记忆合金及其智能混凝土结构研究[D]. 大连: 大连理工大学, 2007.

    CUI Di. Research on shape memory alloy and shape memory alloy restrained intelligent concrete structure[D]. Dalian: Dalian University of Technology, 2007(in Chinese).
    [13] 狄生奎, 韩全治, 李慧, 等. SMA在结构健康监测中的应用研究[J]. 低温建筑技术, 2008, 30(4):58-60. doi: 10.3969/j.issn.1001-6864.2008.04.027

    DI Shengkui, HAN Quanzhi, LI Hui, et al. Research on the shape memory alloy applied in structural health monitoring[J]. Low Temperature Architecture Technology,2008, 30(4):58-60(in Chinese). doi: 10.3969/j.issn.1001-6864.2008.04.027
    [14] 狄生奎, 花尉攀, 汲生伟, 等. 约束态SMA混凝土梁的裂缝监测及自修复[J]. 建筑材料学报, 2010, 13(2):237-242. doi: 10.3969/j.issn.1007-9629.2010.02.021

    DI Shengkui, HUA Weipan, JI Shengwei, et al. Self-monitoring and self-repairing of crack in concrete beam with constraint super-elastic SMA[J]. Journal of Building Materials,2010,13(2):237-242(in Chinese). doi: 10.3969/j.issn.1007-9629.2010.02.021
    [15] LIU B F, WANG Q F, YIN K, et al. An analytical model for crack monitoring of the shape memory alloy intelligent concrete[J]. Journal of Intelligent Material Systems and Structures,2020,31(1):100-116. doi: 10.1177/1045389X19880010
    [16] 张亚楠, 刘亚冬, 刘兵飞. 形状记忆合金在复合材料损伤监测中的应用[J]. 复合材料学报, 2021, 38(4):1177-1191.

    ZHANG Yanan, LIU Yadong, LIU Bingfei. Application of shape memory alloy in damage monitoring of composite materials[J]. Acta Materiae Compositae Sinica,2021,38(4):1177-1191(in Chinese).
    [17] BRINSON L C. One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable[J]. Journal of Intelligent Material Systems and Structures,1993,4(2):229-242. doi: 10.1177/1045389X9300400213
    [18] IKUTA K, TSUKAMOTO M, HIROSE S. Mathematical model and experimental verification of shape memory alloy for designing micro actuator[C]//[1991] Proceedings. IEEE Micro Electro Mechanical Systems. New York: IEEE, 1991: 103-108.
    [19] 王花平. 损伤状态下光纤应变传递及其在多层路面的应用[D]. 大连: 大连理工大学, 2015.

    WANG Huaping. Strain transfer of optical fiber under damage conditions and its application in mutil-layered pavements[D]. Dalian: Dalian University of Technology, 2015(in Chinese).
    [20] 杨博恒. 形状记忆合金超细丝电阻传感特性试验及理论研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    YANG Boheng. Research on characteristic modeling and resistance sensing control of shape memory alloy actuators[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese).
    [21] WANG Y L, WANG Y S, WAN B L, et al. Strain and damage self-sensing of basalt fiber reinforced polymer laminates fabricated with carbon nanofibers/epoxy composites under tension[J]. Composites Part A: Applied Science and Manufacturing,2018,113:40-52. doi: 10.1016/j.compositesa.2018.07.017
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  492
  • HTML全文浏览量:  193
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-08
  • 修回日期:  2023-02-15
  • 录用日期:  2023-03-04
  • 网络出版日期:  2023-03-12
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回