留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三位一体膨胀型阻燃剂诱导聚脲复合材料阻燃性能提升

王军 胡闯 王超 张亚 孙亚如 阳平平 刘彦

王军, 胡闯, 王超, 等. 三位一体膨胀型阻燃剂诱导聚脲复合材料阻燃性能提升[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 王军, 胡闯, 王超, 等. 三位一体膨胀型阻燃剂诱导聚脲复合材料阻燃性能提升[J]. 复合材料学报, 2024, 42(0): 1-11.
WANG Jun, HU Chuang, WANG Chao, et al. Preparation of trinity intumescent flame retardants to enhance the flame retardancy of polyurea composites[J]. Acta Materiae Compositae Sinica.
Citation: WANG Jun, HU Chuang, WANG Chao, et al. Preparation of trinity intumescent flame retardants to enhance the flame retardancy of polyurea composites[J]. Acta Materiae Compositae Sinica.

三位一体膨胀型阻燃剂诱导聚脲复合材料阻燃性能提升

基金项目: 中央高校基本科研业务费(Nos.NS2024008, NJ2024003);爆炸科学与安全防护全国重点实验室(北京理工大学, No.KFJJ24-06M);国家自然科学基金(No. 12202066);南京航空航天大学人才资助经费(No. 1001-YAH23034)
详细信息
    通讯作者:

    阳平平,博士,副教授,硕士生导师,研究方向为复合材料力学与先进防护复合材料 E-mail: P.Yang@nuaa.edu.cn

  • 中图分类号: TB332

Preparation of trinity intumescent flame retardants to enhance the flame retardancy of polyurea composites

Funds: The Fundamental Research Funds for the Central Universities (Nos. NS2024008, NJ2024003); the opening project of State Key Laboratory of Explosion Science and Safety Protection (Beijing Institute of Technology, No. KFJJ24-06M); the National Natural Science Foundation of China (No.12202066); the supporting funds for talents of Nanjing University of Aeronautics and Astronautics (No.1001-YAH23034)
  • 摘要: 聚合物材料存在易燃、易被氧化的缺点,以及传统膨胀型阻燃体系存吸湿性大、阻燃效率较低、与基体相容性差等缺陷。结合气相阻燃、凝聚相阻燃的设计理念,制备出三位一体膨胀型阻燃剂(PTA-PA)。研究不同含量的PTA-PA对聚脲(PUA)的阻燃性能及力学的影响,分析材料在燃烧、热解过程中气相和凝聚相产物,探究PTA-PA阻燃剂的阻燃机制,建立膨胀型阻燃剂与复合材料热稳定性、阻燃性能和火灾安全性之间的关系。结果表明:和纯PUA相比,添加20.0wt% PTA-PA 的PUA复合材料(PUA-4)具有较高的热稳定性,800 ℃下残炭量为21.9%;PUA-4复合材料的垂直燃烧等级从V-2级提高到V-0级,LOI分别从22.2%提高到28.4%,线烧蚀率、热释放速率峰值和总热释放量分别降低19.8%,71.7%和18.3%。本研究为高性能阻燃聚合物复合材料的制备提供理论基础和事实依据。

     

  • 图  1  三位一体膨胀型阻燃剂(PTA-PA)合成示意图

    Figure  1.  Synthesis process of trinity intumescent flame retardant (PTA-PA)

    图  2  (a)FT-IR光谱、(b)-(d) PTA-PA的XPS光电子能谱、(e) XRD图谱和(f) PTA-PA的1H-NMR图谱

    Figure  2.  (a)FT-IR spectra, (b)-(d) XPS spectra of PTA-PA, (e) XRD patterns and (f) 1H-NMR spectra of PTA-PA

    图  3  PTA-PA微观形貌: (a)SEM图像和(b)TEM图像

    Figure  3.  Microtopography of PTA-PA: (a) SEM image and (b) TEM image

    图  4  PTA-PA阻燃剂和PUA复合材料的(a) TGA和(b) DTG曲线

    Figure  4.  (a)TGA and(a) DTG curves of PTA-PAand PUA composite

    图  5  PUA复合材料的 (a)热释放速率(HRR)和(b)总热释放速率(THR)曲线

    Figure  5.  (a) HRR and (b) THR of PUA and its composites

    图  6  PUA复合材料其它性能:(a)密度(ρ)、(b)导热率(λ)、(c)断裂伸长率(εt)和(d)断裂强度(σt)

    Figure  6.  Other properties results for PUA composites: (a) density (ρ), (b)thermal conductivity (λ), (c) elongation at break (εt), and (d)tensile strength (σt)

    图  7  样品PUA-4的TG-IR分析: (a)Gram-Schmidt曲线;(b)Gram-Schmidt曲线峰值下FTIR光谱;(c)全过程NH3吸收光谱;(d)全过程饱和烷烃吸收光谱

    Figure  7.  TG-IR of PUA-4: (a) Gram-Schmidt curve; (b) FTIR of sample at the peaks of Gram-Schmidt curve; (c) whole process absorption spectrum of NH3; (d) whole process absorption spectrum of saturated alkane

    图  8  PUA复合材料炭层拉曼光谱谱图

    Figure  8.  Raman spectroscopy of the PUA composite residual char.

    图  9  PUA复合材料锥形量热测试后残炭的数码照片图: (a) 主视图和(b) 俯视图

    Figure  9.  Digital pictures of char residues of PUA composites: (a) profile view and (b) top view.

    图  10  锥型量热仪测试后的PUA复合材料残炭SEM图

    Figure  10.  SEM images of the residual char after cone calorimeter tests.

    图  11  PUA复合材料阻燃机制示意图Fig.11 Flame retardancy mechanism of PUA composite

    表  1  喷涂耐烧蚀绝热材料配方

    Table  1.   1 Formulation of sprayed ablation resistant material

    Sample Component A/
    wt%
    Component B/
    wt%
    PTA-PA/wt%
    PUA 66.7 33.3 -
    PUA-1 63.3 31.7 5.0
    PUA-2 60.0 30.0 10.0
    PUA-3 56.7 28.3 15.0
    PUA-4 53.3 26.7 20.0
    Notes: PUA−Neat polyurea; PTA-PA−Flame retardant.
    下载: 导出CSV

    表  2  PUA复合材料LOI、UL-94、氧乙炔烧蚀和锥形量热仪测试数据

    Table  2.   Results of LOI, UL-94, OTA and cone calorimeter testsfor EVA composites

    SampleUL-94LOILARPHRRTPHRRTHRFPIFGITTI
    DrippingRating%mm/skW/m2sMJ/m2m2·s/kWkW/m2·ss
    PUAYV-222.20.85365415868.30.0324.13921
    PUA-1YV-224.10.77445416868.00.0422.70219
    PUA-2YV-226.50.70132622766.90.0551.43618
    PUA-3NV-027.00.69526826466.00.0631.01517
    PUA-4NV-028.40.68418532955.80.0920.56217
    Notes: N−No; Y−Yes; LOI−Limiting oxygenindex; LAR−Linear ablation rate; PHRR−Peak heat release rate; TPHRR−Peak time corresponding to the heat release rate; THR−Total heat release; FPI−Fire performance index (FPI = TTI/PHRR); FGI−Fire growth index(FGI = PHRR/T PHRR); TTI−Ignition time.
    下载: 导出CSV
  • [1] 张帅, 张隐, 潘明珠. 阻燃预警智能涂层的研究进展[J]. 复合材料学报, 2021, 38(1): 55-66.

    ZHANG Shuai, ZHANG Yin, PAN Mingzhu. Research progress of intelligent flame retardant coating with fire-warning capabilities[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 55-66(in Chinese).
    [2] YUAN B H, SUN Y R, CHEN X F, et al. Poorly-/well-dispersed graphene: abnormal influence on flammability and fire behavior of intumescent flame retardant[J]. Composites Part A: Applied Science and Manufacturing, 2018, 109: 345-354. doi: 10.1016/j.compositesa.2018.03.022
    [3] SUN Y R, YUAN B H, SHANG S, et al. Surface modification of ammonium polyphosphate by supramolecular assembly for enhancing fire safety properties of polypropylene[J]. Composites Part B: Engineering, 2020, 181: 107588. doi: 10.1016/j.compositesb.2019.107588
    [4] 程鹏飞, 徐文总, 程传明, et al. 改性鸡蛋壳协效膨胀型阻燃剂对热塑性聚氨酯弹性体阻燃抑烟性能的影响[J]. 复合材料学报, 2023, 40(9): 5170-5180.

    CHENG Pengfei, XU Wenzong, CHENG Chuanming, et al. Effect of modified chicken eggshell and intumescent flame retardant on flame retardancy and smoke suppression of thermoplastic polyurethane elastomer[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5170-5180(in Chinese).
    [5] 李茁实, 程文华, 董春, 等. 微胶囊化膨胀型阻燃剂与有机蒙脱土协效阻燃乙烯-醋酸乙烯共聚物性能[J]. 复合材料学报, 2021, 38(8): 2546-2553.

    LI Zhuoshi, CHENG Wenhua, DONG Chun, et al. Synergistic properties of microencapsulated intumescent flame retardant-organically modified montmorillonite/ethylene-vinyl acetate copolymer composites[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2546-2553(in Chinese).
    [6] SUN Y R, YU B, LIU Y, et al. Novel bio-based nanosheets: Improving the fire safety, electromagnetic shielding and mechanical properties of polylactic acid[J]. Composites Part A: Applied Science and Manufacturing, 2024, 179: 108044. doi: 10.1016/j.compositesa.2024.108044
    [7] MNGOMEZULU M E, JOHN M J, JACOBS V, et al. Review on flammability of biofibres and biocomposites[J]. Carbohydrate Polymers, 2014, 111(20): 149-182.
    [8] CHEN H D, WANG J H, NI A Q, et al. Effect of novel intumescent flame retardant on mechanical and flame retardant properties of continuous glass fibre reinforced polypropylene composites[J]. Composite Structures, 2018, 203: 894-902. doi: 10.1016/j.compstruct.2018.07.071
    [9] SUN Y R, YU B, LIU Y, et al. Design of 2d charring-foaming agent for highly efficient intumescent flame retardant polylactic acid composites[J]. Composites Communications, 2023, 43: 101720. doi: 10.1016/j.coco.2023.101720
    [10] ZHAN Y Y, WU X J, WANG S S, et al. Synthesis of a bio-based flame retardant via a facile strategy and its synergistic effect with ammonium polyphosphate on the flame retardancy of polylactic acid[J]. Polymer Degradation and Stability, 2021, 191: 109684. doi: 10.1016/j.polymdegradstab.2021.109684
    [11] WU Q, CUI X Y, MU C Z, et al. Toward a new approach to synchronously improve the fire performance and toughness of polylactic acid by the incorporation of facilely synthesized ammonium polyphosphate derivatives[J]. Composites Part A: Applied Science and Manufacturing, 2021, 150: 106595. doi: 10.1016/j.compositesa.2021.106595
    [12] JIN X D, GU X Y, CHEN C, et al. The fire performance of polylactic acid containing a novel intumescent flame retardant and intercalated layered double hydroxides[J]. Journalofmaterialsscience, 2017, 52(20): 12235-12250.
    [13] TAWIAH B, ZHOU Y Y, YUEN R K K, et al. Microporous boron based intumescent macrocycle flame retardant for poly (lactic acid) with excellent UV protection[J]. Chemical Engineering Journal, 2020, 402: 126209. doi: 10.1016/j.cej.2020.126209
    [14] 解维闵, 梁晓正, 赵晓光, 等. 黏土矿物基纳米复合阻燃材料的研究进展[J]. 材料导报, 2021, 35(23): 23192-23204. doi: 10.11896/cldb.20110151

    XIE Weimin, LIANG Xiaozheng, ZHAO Xiaoguang, et al. Research Progress of Clay Mineral-based Nanocomposite Flame Retardants[J]. Materials Reports, 2021, 35(23): 23192-23204(in Chinese). doi: 10.11896/cldb.20110151
    [15] 贾锡宁, 王严, 石慧, 等. 兼具阻燃和导热性能的环氧树脂复合材料: 石墨烯纳米片杂化三聚氰胺磷酸盐的作用[J]. 复合材料学报, 2023, 40(3): 1395-1405.

    JIA Xining, WANG Yan, SHI Hui, et al. Epoxy resin composites with flame retardancy and thermal conductivity: Effect of graphene nanoplatelets hybridized with melamine phosphate[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1395-1405(in Chinese).
    [16] SUN Y R, YU B, LIU Y, et al. Bio-inspired surface manipulation of halloysite nanotubes for high-performance flame retardant polylactic acid nanocomposites[J]. Nano Research, 2024, 17(3): 1595-606. doi: 10.1007/s12274-023-6050-y
    [17] GAO YY, DENG C, DU YY, et al. A novel bio-based flame retardant for polypropylene from phytic acid[J]. Polym Degrad Stab, 2019, 161: 298-308. doi: 10.1016/j.polymdegradstab.2019.02.005
    [18] HUANG Z, WANG Z. Synthesis of a bio-based piperazine phytate flame retardant for epoxy resin with improved flame retardancy and smoke suppression[J]. Polymersfor Advanced Technologies, 2021, 32(11): 4282-4295. doi: 10.1002/pat.5429
    [19] GUNASEKARAN S, ANITA B. Spectral investigation and normal coordinate analysis of piperazine[J]. Indian Journal of Pure and Applied Physics, 2008, 46(12): 833-838.
    [20] SUN Y R, LIU Y, ZOU Y Y, et al. Poorly-/well-dispersedFe3O4: Abnormal influence on electromagnetic wave absorption behavior of high-mechanical performance polyurea[J]. Chemical Engineering Journal, 2024, (493): 152833.
    [21] XU MJ, XIA SY, LIU C, et al. Preparation of Poly(phosphoric acid piperazine) and Its Application as an Effective Flame Retardant for Epoxy Resin[J]. Chinese Journal of Polymer Science, 2018, 36(5): 655-664. doi: 10.1007/s10118-018-2036-8
    [22] XIAO X, HU S, ZHAI J G, et al. Thermal properties and combustion behaviors of flame-retarded glass fiber-reinforced polyamide 6 with piperazine pyrophosphate and aluminum hypophosphite[J]. Journal of Thermal Analysis and Calorimetry, 2016, 125(1): 175-185. doi: 10.1007/s10973-016-5391-0
    [23] WANG X G, WANG S H, WANG W J, et al. The flammability and mechanical properties of poly (lactic acid) composites containing Ni-MOF nanosheets with polyhydroxy groups[J]. Composites Part B: Engineering, 2020, 183: 107568. doi: 10.1016/j.compositesb.2019.107568
    [24] PAN N, JIN Y D, WANG X Q, et al. A Self-Assembled Supramolecular Material Containing Phosphoric Acid for Ultrafast and Efficient Capture of Uranium from Acidic Solutions[J]. ACS Sustainable Chemistryand Engineering, 2019, 7(1): 950-960. doi: 10.1021/acssuschemeng.8b04596
    [25] LECOUVET B, SCLAVONS M, BAILLY C, et al. A comprehensive study of the synergistic flame retardant mechanisms of halloysite in intumescent polypropylene[J]. Polymer Degradation and Stability, 2013, 98(11): 2268-2281. doi: 10.1016/j.polymdegradstab.2013.08.024
    [26] SHAO ZB, DENG C, TAN Y, et al. An Efficient Mono-Component Polymeric Intumescent Flame Retardant for Polypropylene: Preparation and Application[J]. ACS Applied Materials and Interfaces, 2014, 6(10): 7363-7370. doi: 10.1021/am500789q
    [27] DENG C L, DU S L, ZHAO J, et al. An intumescent flame retardant polypropylene system with simultaneously improved flame retardancy and water resistance[J]. Polymer Degradation and Stability, 2014, 108: 97-107. doi: 10.1016/j.polymdegradstab.2014.06.008
    [28] YUAN B H, FAN A, YANG M, et al. The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios[J]. Polymer Degradation and Stability, 2017, 143: 42-56. doi: 10.1016/j.polymdegradstab.2017.06.015
    [29] SCHARTEL B, HULL T R. Development of fire-retarded material--Interpretation of cone calorimeter data[J]. Fire and Materials, 2010, 31(5): 327-354.
    [30] 程博, 安晓航, 李定华, 等. ATH/ADP 配比对 EVA 阻燃性能及机理转变的影响[J]. 无机材料学报, 2024, 39(5): 509-516. doi: 10.15541/jim20230502

    CHENG Bo, AN Xiaohang, LI Dinghua, et al. Flame-retardant Properties and Transformation of Flame-retardant Mechanisms of EVA: Effect of ATH/ADP Ratio[J]. Journal of Inorganic Materials, 2024, 39(5): 509-516 (in Chinese) doi: 10.15541/jim20230502
    [31] LIU L, HU J, ZHUO J L, et al. Synergistic flame retardant effects between hollow glass microspheres and magnesium hydroxide in ethylene-vinyl acetate composites[J]. Polymer Degradation and Stability, 2014, 104(1): 87-94.
    [32] WANG X, XING W Y, FENG X, et al. Functionalization of graphene with grafted polyphosphamide for flame retardant epoxy composites: Synthesis, flammability and mechanism[J]. Polymer Chemistry, 2014, 5(4): 1145-1154. doi: 10.1039/C3PY00963G
    [33] 汤连东, 吴袁泊, 袁利萍, 等. 磷钨酸插层ZnAl层状双金属氢氧化物协同膨胀阻燃剂对环氧-聚酰胺树脂的阻燃作用[J]. 复合材料学报, 2020, 37(9): 2125-2136.

    TANG Liandong, WU Yuanbo, YUAN Liping, et al. Flame retardant effect of phosphotungstic acid intercalated ZnAl layered double hydroxides and intumescent flame retardant on epoxy-polyamide resin[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2125-2136(in Chinese).
    [34] PENG H Q, ZHOU Q, WANG D Y, et al. A novel charring agent containing caged bicyclic phosphate and its application in intumescent flame retardant polypropylene systems[J]. Journal of Industrial and Engineering Chemistry, 2008, 14(5): 589-595. doi: 10.1016/j.jiec.2008.05.011
    [35] 马静, 刘美哲, 朱明轩, 等. 聚焦磷酸哌嗪-埃洛石纳米管-三聚氰胺氰尿酸盐协效阻燃环氧树脂[J]. 材料工程, 2023, 51(6): 177-185. doi: 10.11868/j.issn.1001-4381.2022.000243

    MA Jing, LIU Meizhe, ZHU Mingxuan, et al. Piperazine polypyrophosphat-halloysite nanotubes-melamine cyanuratesynergistic flame retardant epoxy resin[J]. Journal of Materials Engineering, 2023, 51(6): 177-185(in Chinese) doi: 10.11868/j.issn.1001-4381.2022.000243
    [36] 刘超, 陈雨鑫, 尹付琳, 等. 双DOPO悬垂型阻燃剂化学修饰水性聚氨酯的性能[J]. 复合材料学报, 2023, 40(5): 2653-2669.

    LIU Chao, CHEN Yuxin, YIN Fulin, et al. Chemical modification of waterborne polyurethane with double DOPO pendant flame retardant[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2653-2669(in Chinese).
  • 加载中
计量
  • 文章访问数:  26
  • HTML全文浏览量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-25
  • 修回日期:  2024-05-27
  • 录用日期:  2024-06-14
  • 网络出版日期:  2024-07-02

目录

    /

    返回文章
    返回