纳米聚多巴胺六方氮化硼–二氧化硅/环氧树脂涂层对水泥砂浆抗碳化能力的影响

Effect of nano polydopamine hexagonal boron nitride-functionalised silicon dioxide/epoxy coating for resistance carbonation ability of cement mortar

  • 摘要: 为了获得具有良好分散性、填充性和阻隔性的纳米材料,同时将其作为填料以提升环氧树脂涂层对水泥砂浆试件的防护能力,本文制备了纳米聚多巴胺六方氮化硼–二氧化硅(PDABN-fSiO2)/环氧树脂涂层,涂覆于水泥砂浆试件表面,研究涂层对试件的防护效果。首先,利用盐酸多巴胺(DA)自聚合形成的聚多巴胺(PDA)与偶联剂(KH550),分别修饰纳米六方氮化硼(hBN)与纳米二氧化硅(SiO2),获得纳米聚多巴胺六方氮化硼(PDABN)与功能化的SiO2(fSiO2);其次,经聚合以制备纳米PDABN-fSiO2;最后,将其作为填料改性环氧树脂,并涂覆于水泥砂浆表面。通过FTIR、SEM-EDS和XPS等微观表征,观察并研究了纳米材料的微观特征;开展了碳化试验和涂层透气性试验,分析了纳米PDABN-fSiO2对环氧树脂涂层的改性效果。结果表明:制备的纳米PDABN-fSiO2具有“片层+颗粒”特殊结构,且在涂层中具有良好的分散性,可有效减缓其涂层中CO2的渗透;同无填料涂层相比,涂覆有纳米PDABN-fSiO2/环氧树脂涂层的水泥砂浆试件,在碳化7天、14天和28天时的碳化深度分别下降了68.7%、72.9%和64.8%,其涂层在48 h的透气性降低了34.7%。因此,纳米PDABN-fSiO2掺入环氧树脂涂层后,明显地提高了涂层水泥砂浆试件的抗碳化能力,并降低了环氧树脂涂层的透气性。

     

    Abstract: In order to obtain nanomaterials with better dispersal, filling and barrier properties, which were used as fillers to enhance the protection of the epoxy coatings for cement mortar, the polydopamine (PDA), which was prepared by self-polymerization of dopamine hydrochloride (DA) and silane coupling agent (KH550), was utilized to modify nano hexagonal boron nitride (hBN) and nano silicon dioxide (SiO2), respectively, to obtain two nanomaterials polydopamine hexagonal boron nitride (PDABN) and functionalised SiO2 (fSiO2) by polymerization reactions. A new nanomaterial, polydopamine hexagonal boron nitride-functionalised silicon dioxide (PDABN-fSiO2), was synthesized, and it was mixed with epoxy to prepare a modified coating. The coating was covered on the surface of cement mortar to enhance its carbonation resistance. The microscopic characteristics of nano materials were observed by FTIR, SEM-EDS and XPS. The modified effect of epoxy coating by nano PDABN-fSiO2 was analyzed by carbonation experiments and permeability tests. Results indicate that the prepared nano PDABN-fSiO2 has a layer-particle structure and better dispersion in coating, which can effectively slow down the penetration of CO2 in the coating. Compared with the blank coating, the carbonation depth of the cement mortar coated with nano PDABN-fSiO2/epoxy coating is decreased by 68.7%, 72.9% and 64.8% at 7, 14 and 28 days of carbonation, respectively, and the permeability of its coating is decreased by 34.7% at 48 hours. Thus, the epoxy coating with nano PDABN-fSiO2 can significantly improve the carbonation resistance of cement mortar and reduce its permeability.

     

/

返回文章
返回