留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

载Ag/Cu纳米粒子多孔聚丙烯腈复合纤维膜的制备及其抑菌性

徐鹏 汪杨 王莎莎 戴伟 陈难难 李群

徐鹏, 汪杨, 王莎莎, 等. 载Ag/Cu纳米粒子多孔聚丙烯腈复合纤维膜的制备及其抑菌性[J]. 复合材料学报, 2022, 40(0): 1-8
引用本文: 徐鹏, 汪杨, 王莎莎, 等. 载Ag/Cu纳米粒子多孔聚丙烯腈复合纤维膜的制备及其抑菌性[J]. 复合材料学报, 2022, 40(0): 1-8
Peng XU, Yang WANG, Shasha WANG, Wei DAI, Nannan CHEN, Qun LI. Preparation and antibacterial properties of porous polyacrylonitrile composite fiber membrane loaded with silver/copper nanoparticles[J]. Acta Materiae Compositae Sinica.
Citation: Peng XU, Yang WANG, Shasha WANG, Wei DAI, Nannan CHEN, Qun LI. Preparation and antibacterial properties of porous polyacrylonitrile composite fiber membrane loaded with silver/copper nanoparticles[J]. Acta Materiae Compositae Sinica.

载Ag/Cu纳米粒子多孔聚丙烯腈复合纤维膜的制备及其抑菌性

基金项目: 江苏省自然科学基金 (BK20130969)
详细信息
    通讯作者:

    徐 鹏,博士,副教授,硕士生导师,研究方向为功能纳米材料的制备与应用 E-mail: xupeng@njfu.edu.cn

  • 中图分类号: TB331

Preparation and antibacterial properties of porous polyacrylonitrile composite fiber membrane loaded with silver/copper nanoparticles

  • 摘要: 金属纳米粒子因其独特的物理化学性能,在催化、抑菌、水污染处理和生物医学等领域表现出巨大的应用前景。但是金属纳米粒子在制备和使用过程中容易发生团聚而影响其性能。因此,提高金属纳米粒子的稳定性,对提升其应用性能具有重大意义。本研究在以聚丙烯腈(PAN)为基体,聚乙烯吡咯烷酮(PVP)为致孔剂,基于静电纺丝技术制得多孔聚丙烯腈纳米纤维(PPAN NFs)的基础上,通过浸渍沉积法分别制备出负载银纳米粒子(Ag NPs)复合纳米纤维(Ag-PPAN NFs)和负载铜纳米粒子(Cu NPs)复合纳米纤维(Cu -PPAN NFs)。在利用FESEM、EDS、XRD等方法对制备纤维膜的形貌和结构进行表征的基础上,通过抑菌圈法和FESEM观察经复合纳米纤维处理前后的细菌形貌来研究Ag-PPAN NFs和Cu -PPAN NFs对大肠杆菌、金黄色葡萄球菌和白色念球菌的抑菌性能。研究结果发现:PPAN NFs可有效解决Ag NPs和Cu NPs在制备和使用过程中易于聚集的问题,制得的复合纳米纤维对大肠杆菌、金黄色葡萄球菌和白色念球菌具有一定的抗菌活性,可成为是一新型的抗菌纤维材料。

     

  • 图  1  纳米纤维的FESEM图像和直径分布图:多孔聚丙烯腈纳米纤维(PPAN NFs)((a)和(d));Ag-PPAN NFs((b)和(e));Cu-PPAN NFs((c)和(f))

    Figure  1.  FESEM images and diameter distribution of nanofibers: porous polyacrylonitrile nanofibers (PPAN NFs) ((a) and (d)); Ag-PPAN NFs((b) and (e)); Cu-PPAN NFs((c) and (f)).

    图  2  复合纳米纤维的FESEM图:Ag-PPAN NFS(a);Cu-PPAN NFs(b);纳米粒子的粒径分布图:Ag NPs(c);Cu NPs(d).

    Figure  2.  FESEM images of the nanofibers: Ag-PPAN NFs(a); Cu-PPAN NFs(b); Size distribution of the diameter of nanoparticles: Ag NPs(c); Cu NPs(d).

    图  3  多孔复合纳米纤维的元素分布图和EDS元素分析图:Ag-PPAN NFs((a)、(b)、(c)、(d)和(e));Cu-PPAN NFs((f)、(g)、(h)、(i)和(j))

    Figure  3.  Element distribution and EDS element analysis diagram of the porous nanofibers: Ag-PPAN NFs((a)、(b)、(c)、(d) and (e)); Cu-PPAN NFs((f)、(g)、(h)、(i) and (j))

    图  4  复合纳米纤维的元素分布图和EDS元素分析图:Ag-PAN NFs((a)、(b)、(c)、(d)和(e));Cu-PAN NFs((f)、(g)、(h)、(i)和(j)

    Figure  4.  Element distribution and EDS element analysis diagram of the nanofibers: Ag-PAN NFs((a)、(b)、(c)、(d) and (e)); Cu-PAN NFs((f)、(g)、(h)、(i) and (j)).

    图  5  PPAN NFs、Ag-PPAN NFs和Cu-PPAN NFs的热重分析曲线

    Figure  5.  Thermogravimetric curves of PPAN NFs、 Ag-PPAN NFs and Cu-PPAN NFs.

    图  6  聚丙烯腈(PAN) NFs和PPAN NFs的N2吸附-脱附等温线(a)和孔径分布曲线(b)

    Figure  6.  N2 adsorption-desorption isotherm (a) and pore size distribution curves (b) of polyacrylonitrile (PAN) NFs and PPAN NFs.

    图  7  Ag-PPAN NFs(a)和Cu-PPAN NFs(b)的XRD图

    Figure  7.  X-ray diffraction patterns of Ag-PPAN NFs(a); Cu-PPAN NFs(b).

    图  8  PPAN NFs、Ag-PPAN NFs和Cu-PPAN NFs的抗菌抑制区

    Figure  8.  The antibacterial inhibition zone of PPAN NFs, Ag-PPAN NFs and Cu-PPAN NFs.

    图  9  加入Ag-PPAN NFs和Cu-PPAN NFs前后细菌形貌变化图

    Figure  9.  Changes in bacterial morphology before and after adding Ag-PPAN NFs and Cu-PPAN NFs.

    表  1  多孔复合纳米纤维的抗菌抑制区直径

    Table  1.   The diameter of antibacterial inhibition zone of the porous composite nanofibers.


    Samples

    Number
    E. Coli/
    mm
    C. albicans/
    mm
    S. aureus/
    mm
    Ag-PPAN
    NFs (1)
    113.514.513.5
    Ag-PPAN
    NFs (2)
    214.515.014.0
    Ag-PPAN
    NFs (3)
    315.016.014.0
    Cu-PPAN
    NFs (1)
    4not obviousnot obvious12.0
    Cu-PPAN
    NFs (2)
    5not obviousnot obvious19.0
    Cu-PPAN
    NFs (3)
    6not obviousnot obvious20.0
    下载: 导出CSV
  • [1] BEHRAVAN M, PANAHI A H, NAGHIZADEH A, et al. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity[J]. International Journal of Biological Macromolecules,2019,124:148-154. doi: 10.1016/j.ijbiomac.2018.11.101
    [2] TAO Y, JU E G, REN J S, et al. Bifunctionalized Mesoporous Silica-Supported Gold Nanoparticles: Intrinsic Oxidase and Peroxidase Catalytic Activities for Antibacterial Applications[J]. Advanced Materials,2015,27(6):1097-1104. doi: 10.1002/adma.201405105
    [3] PATTANAYAK D S, MALLICK N, THAKUR C, et al. Plant mediated green synthesis of silver nanoparticles for antimicrobial application: Present status[J]. Journal of the Indian Chemical Society,2020,97(7):1108-1114.
    [4] SHAIKH S, NAZAM N, RIZVI S M D, et al. Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance[J]. International Journal of Molecular Sciences,2019,20:10.
    [5] MUBARAKALI D, THAJUDDIN N, JEGANATHAN K, et al. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens[J]. Colloids and Surfaces B:Biointerfaces,2011,85(2):360-365. doi: 10.1016/j.colsurfb.2011.03.009
    [6] DURAN N, DURAN M, DE JESUS M B, et al. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity[J]. Nanomedicine-Nanotechnology and Medicine,2016,12(3):789-799. doi: 10.1016/j.nano.2015.11.016
    [7] SHU Z, ZHANG Y, YANG Q, et al. Halloysite Nanotubes Supported Ag and ZnO Nanoparticles with Synergistically Enhanced Antibacterial Activity[J]. N anoscale Research Letters,2017,12:135. doi: 10.1186/s11671-017-1859-5
    [8] ANANDALAKSHMI K, VENUGOBAL J, RAMASAMY V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity[J]. Applied Nanoscience,2016,6(3):399-408. doi: 10.1007/s13204-015-0449-z
    [9] CHEN Y F, ZHANG Y T, LIU J D, et al. Preparation and antibacterial property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes loaded with copper ions[J]. Chemical Engineering Journal,2012,210:298-308. doi: 10.1016/j.cej.2012.08.100
    [10] 刘亚飞, 李梦, 赵欣, 等. 浅谈纳米银粒子的制备及其在抗菌涂料中的应用[J]. 化工新型材料, 2019, 47(2):37-41.

    LIU Yafei, LI Meng, ZHAO Xin, et al. Discussion on preparation of silver nanoparticles and its application in antibactrial coating[J]. New Chemical Materials,2019,47(2):37-41(in Chinese).
    [11] HAN D L, HAN Y J, LI J, et al. Enhanced photocatalytic activity and photothermal effects of cu-doped metal-organic frameworks for rapid treatment of bacteria-infected wounds[J]. Applied Catalysis B-Environmental,2020,261:118248. doi: 10.1016/j.apcatb.2019.118248
    [12] WANG L L, HU C, SHAO L Q, et al. The antimicrobial activity of nanoparticles: present situation and prospects for the future[J]. International Journal of Nanomedicine,2017,12:1227-1249. doi: 10.2147/IJN.S121956
    [13] SANCHEZ-LOPEZ E, GOMES D, ESTERUELAS G, et al. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview[J]. Nanomaterials,2020,10:2.
    [14] KHATRI O P, ICHII T, MURASE K, et al. Covalent assembly of silver nanoparticles on hydrogen-terminated silicon surface[J]. Journal of Colloid and Interface Science,2012,382:22-27. doi: 10.1016/j.jcis.2012.06.001
    [15] DAI H, CHEN Y L, LIN Y Y, et al. A new metal electrocatalysts supported matrix: Palladium nanoparticles supported silicon carbide nanoparticles and its application for alcohol electrooxidation[J]. Electrochimica Acta,2012,85:644-649. doi: 10.1016/j.electacta.2012.08.109
    [16] ZHANG P, SHAO C L, ZHANG Z Y, et al. In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol[J]. Nanoscale,2011,3(8):3357-3363. doi: 10.1039/c1nr10405e
    [17] 李甫, 康卫民, 程博闻, 等. 负载银中空纳米碳纤维的制备及电化学性能[J]. 材料工程, 2016, 44(11):56-60. doi: 10.11868/j.issn.1001-4381.2016.11.009

    LI Fu, KANG Weimin, CHENG Bowen, et al. Preparation and electrochemical properties of silver doped hollow carbon nanofibers[J]. Journal of Materials Engineering,2016,44(11):56-60(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.11.009
    [18] DE FARIA A F, MARTINEZ D S T, MEIRA S M M, et al. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets[J]. Colloids and Surfaces B-Biointerfaces,2014,113:115-124. doi: 10.1016/j.colsurfb.2013.08.006
    [19] XIANG J, LI J L, ZHANG X H, et al. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers[J]. Journal of Materials Chemistry A,2014,2(40):16905-16914. doi: 10.1039/C4TA03732D
    [20] 向军, 张雄辉, 褚艳秋, 等. Fe-Ni 合金/Ni 铁氧体复合纳米纤维的制备、表征与磁性能研究[J]. 化学学报, 2012, 70:2265-2272. doi: 10.6023/A12080587

    XIANG Jun, ZHANG Xionghui, CHU Yanqiu, et al. Preparation, characterization and magnetic properties of Fe-Ni alloy/Ni-ferrite composite nanofibers[J]. Acta Chemica Sinica,,2012,70:2265-2272(in Chinese). doi: 10.6023/A12080587
    [21] WANG F Y, SUN Y Q, SUN Y Q, et al. Microwave absorption properties of 3 D cross-linked Fe/C porous nanofibers prepared by electrospinning[J]. Carbon,2018,134:164-273.
    [22] ZHAO W X, CI S Q, HU X, et al. Highly dispersed ultrasmall NiS2 nanoparticles in porous carbon nanofiber anodes for sodium ion batteries[J]. Nanoscale,2019,11(11):4688-4695. doi: 10.1039/C9NR00160C
    [23] WANG M Q, YE C, LIU H, et al. General Synthesis of Nano-Metal Phosphides Embedded Ndoped Porous Carbon Nanofibers for Enhanced Hydrogen Evolution at All pH Values[J]. Angewandte Chemie International Edition,2017,10:150.
    [24] SONG Z M, LIU X F, SUN X, et al. Alginate-templated synthesis of CoFe/carbon fiber composite and the effect of hierarchically porous structure on electromagnetic wave absorption performance[J]. Carbon,2019,151:36-45. doi: 10.1016/j.carbon.2019.05.025
    [25] FU Y, YU H Y, JIANG C, et al. NiCo Alloy Nanoparticles Decorated on N-Doped Carbon Nanofibers as Highly Active and Durable Oxygen Electrocatalyst[J]. Advanced Functional Materials,2018,28:9.
    [26] 孔祥前, 豆彩霞, 柴源涛, 等. 银缓释载银杀菌活性炭的低温水热炭化法制备[J]. 功能材料, 2016, 01(47):1203-1206.

    KONG Xiangqian, DOU Caixia, CHAI Yuantao, et al. Activated carbon with silver control release and antibacterial behavior by low temperature hydrothermal method[J]. Journal of Functional Materials,2016,01(47):1203-1206(in Chinese).
    [27] 兰小林, 段正康, 王永胜, 等. 不同晶相结构ZrO2负载铜基催化剂用于二乙醇胺脱氢反应[J]. 精细化工, 2019, 36(12):2438-2445.

    LAN Xiaolin, DUAN Zhengkang, WANG Yongsheng, et al. ZrO2 with different crystal structure supported Cu catalysts for the dehydrogenation of diethanolamine[J]. Fine Chemicals,2019,36(12):2438-2445(in Chinese).
    [28] 罗凤凤, 王日昕, 廖先金, 等. 葡萄糖还原制备Cu20及其形貌表征[J]. 化工新型材料, 2020, 48:48-50.

    LUO Fengfeng, WANG Rixin, LIAO Xianjin, et al. Preparation and morphology characterization of Cu2O by glucose reducing[J]. New Chemical Materials,2020,48:48-50(in Chinese).
    [29] CHEN Y Q, WU W, XU Z Q, et al. Photothermal-assisted antibacterial application of graphene oxide-Ag nanocomposites against clinically isolated multi-drug resistant Escherichia coli[J]. Royal Society Open Science, 2020, 7(7).
    [30] CHATTERJEE A K, CHAKRABORTY R, BASU T. Mechanism of antibacterial activity of copper nanoparticles[J]. Nanotechnology, 2014, 25(13).
    [31] WANG H L, HAO L L, WANG P, et al. Release kinetics and antibacterial activity of curcumin loaded zein fibers[J]. Food Hydrocolloids,2017,63:437-446. doi: 10.1016/j.foodhyd.2016.09.028
  • 加载中
计量
  • 文章访问数:  53
  • HTML全文浏览量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-07
  • 录用日期:  2022-04-04
  • 修回日期:  2022-03-19
  • 网络出版日期:  2022-04-28

目录

    /

    返回文章
    返回