留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轴向和斜向加载下复合材料-金属-泡沫混杂管件的压溃吸能机制

王振 梅轩 曹悉奥 陈轶嵩 朱国华 郭应时

王振, 梅轩, 曹悉奥, 等. 轴向和斜向加载下复合材料-金属-泡沫混杂管件的压溃吸能机制[J]. 复合材料学报, 2023, 40(11): 6450-6461. doi: 10.13801/j.cnki.fhclxb.20230213.002
引用本文: 王振, 梅轩, 曹悉奥, 等. 轴向和斜向加载下复合材料-金属-泡沫混杂管件的压溃吸能机制[J]. 复合材料学报, 2023, 40(11): 6450-6461. doi: 10.13801/j.cnki.fhclxb.20230213.002
WANG Zhen, MEI Xuan, CAO Xi'ao, et al. Crushing energy absorption mechanisms of the composite-metal-foam hybrid tubes under axial and oblique loads[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6450-6461. doi: 10.13801/j.cnki.fhclxb.20230213.002
Citation: WANG Zhen, MEI Xuan, CAO Xi'ao, et al. Crushing energy absorption mechanisms of the composite-metal-foam hybrid tubes under axial and oblique loads[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6450-6461. doi: 10.13801/j.cnki.fhclxb.20230213.002

轴向和斜向加载下复合材料-金属-泡沫混杂管件的压溃吸能机制

doi: 10.13801/j.cnki.fhclxb.20230213.002
基金项目: 国家重点研发计划(2021YFB2501705);陕西省自然科学基金(2023-JC-QN-0430);长安大学中央高校基础研究基金(300102222107)
详细信息
    通讯作者:

    朱国华,博士,副教授,研究方向为汽车轻量化 E-mail: guohuazhu@chd.edu.cn

  • 中图分类号: TB333

Crushing energy absorption mechanisms of the composite-metal-foam hybrid tubes under axial and oblique loads

Funds: National Key R&D Program of China (2021YFB2501705); Natural Science Foundation of Shaanxi Province (2023-JC-QN-0430); Fundamental Research Funds for the Central Universities, CHD (300102222107)
  • 摘要: 本文旨在探讨碳纤维增强树脂(Carbon-fibre-reinforced polymer,CFRP)-铝合金-泡沫铝混杂管件在轴向(0°)和斜向(10°)荷载下的压溃变形特性和能量耗散机制。首先对纯碳纤维管(CF)、纯铝管(Al)、纯泡沫铝(Af)、Al-Af混杂管和CF-Al-Af混杂管进行了准静态压缩试验;在0°和10°的加载角下,Al-Af混杂管的能量吸收总是高于单一部件的能量吸收总量;与单一组分能量吸收之和相比,CF-Al-Af混杂管的能量吸收在0°加载角下减少,而在10°加载角时则显著提高。接着,在LS-DYNA中开发了混杂管件和相应的单一部件的数值模型,仿真结果表明,铝管能量吸收的提升促进了Al-Af和CF-Al-Af混杂管承载能力的提升,原因在于相比于单一铝管的“对称-钻石”混合变形,混杂管中的铝管发生了更稳定的对称变形,然而外部CF管能量吸收的降低主要削弱了CF-Al-Af混杂管的能量吸收,原因在于混杂管的CF管受到内部铝管的挤压出现了轴向撕裂失效。最后,建立了CF-Al-Af混合管和相应的单一管件在轴向荷载下的平均压溃载荷解析模型,结果表明,所开发的解析模型可以较好地预测混合管和单一部件的平均压溃载荷。

     

  • 图  1  铝合金(Al)-泡沫铝(Af)混杂管 (a) 和碳纤维(CF)-Al-Af混杂管 (b) 的制备过程

    Figure  1.  Manufacturing process of the aluminum (Al)-aluminum foam (Af) hybrid tube (a) and carbon fiber (CF)-Al-Af hybrid tube (b)

    图  2  轴向(0°)和斜向(10°) 压缩实验

    Figure  2.  Axial (0°) and oblique (10°) compressive tests

    图  3  轴向(0°)和斜向(10°) 实验的典型压溃历程

    Figure  3.  Typical crushing histories of axial (0°) and oblique (10°) tests

    图  4  纯Al、纯Af和纯CF在轴向(0°)和斜向(10°)工况下的载荷-位移曲线

    Figure  4.  Force-displacement curves of net Al, net Af and net CF tubes under axial (0°) and oblique (10°) loads

    图  5  Al-Af混杂管和CF-Al-Af混杂管在轴向(0°)和斜向(10°)工况下的载荷-位移曲线

    Figure  5.  Force-displacement curves of Al-Af and CF-Al-Af hybrid tubes under axial (0°) and oblique (10°) loads

    图  6  单一管件和混杂管件的吸能对比

    Figure  6.  Comparisons in energy absorption of single and hybrid tubes

    图  7  铝合金材料的真实应力-应变曲线

    Figure  7.  True stress-strain curve of aluminum material

    图  8  泡沫铝材料的应力-应变曲线

    Figure  8.  Stress-strain curve of aluminum foam

    图  9  CF-Al-Af试样的有限元模型

    Figure  9.  Finite element model of CF-Al-Af samples

    图  10  纯Al (a)、纯Af (b)、纯CF (c)、Al-Af (d)和CF-Al-Af混杂管 (e) 的仿真与实验曲线对比

    Exp—Experiment; Sim—Simulation

    Figure  10.  Comparisons in curves between experiments and simulations of net Al (a), net Af (b), net CF (c), Al-Af (d) and CF-Al-Af tubes (e)

    图  11  纯Al (a)、纯Af (b)、纯CF (c)、Al-Af (d) 和CF-Al-Af混杂管 (e) 的仿真与实验的变形模式对比

    Figure  11.  Comparisons in deformation modes between experiments and simulations of net Al (a), net Af (b), net CF (c), Al-Af (d) and CF-Al-Af tubes (e)

    图  12  轴向(0°)工况下Al-Af混杂管及其不同组分的能量吸收对比

    IE—Internal energy; FE—Frictional energy

    Figure  12.  Comparisons in energy absorptions between Al-Af hybrid tube and its different counterparts under axial (0°) load

    图  13  斜向(10°)工况下Al-Af混杂管及其不同组分的能量吸收对比

    Figure  13.  Comparisons in energy absorptions between Al-Af hybrid tube and its different counterparts under oblique (10°) load

    图  14  轴向(0°)工况下CF-Al-Af混杂管及其不同组分的能量吸收对比

    Figure  14.  Comparisons in energy absorptions between CF-Al-Af hybrid tube and its different counterparts under axial (0°) load

    图  15  斜向(10°)工况下CF-Al-Af混杂管及其不同组分的能量吸收对比

    Figure  15.  Comparisons in energy absorptions between CF-Al-Af hybrid tube and its different counterparts under oblique (10°) load

    图  16  轴向(0°)和斜向(10°)工况下混杂管中的Af、Al和CF及相应的单一组分的能量吸收对比

    Figure  16.  Comparisons in energy absorptions between Af, Al, CF in hybrid tubes and the corresponding single counterparts under axial (0°) and oblique (0°) loads

    图  17  轴向(0°)工况下Al-Af和CF-Al-Af混杂管中的Al及其相应的单一组分的载荷-位移曲线对比

    Figure  17.  Comparisons in force-displacement curves among Al in Al-Af and CF-Al-Af hybrid tubes and the corresponding single counterparts under axial (0°) load

    图  18  轴向(0°)工况下Al-Af和CF-Al-Af混杂管中的Al及其相应的单一组分的变形模式对比

    Figure  18.  Comparisons in deformation modes among Al in Al-Af and CF-Al-Af hybrid tubes and the corresponding single counterparts under axial (0°) load

    图  19  斜向(10°)工况下Al-Af和CF-Al-Af混杂管中的Al及其相应的单一组分的载荷-位移曲线对比

    Figure  19.  Comparisons in force-displacement curves among Al in Al-Af and CF-Al-Af hybrid tubes and the corresponding single counterparts under oblique (10°) load

    图  20  斜向(10°)工况下Al-Af和CF-Al-Af混杂管中的Al及其相应的单一组分的变形模式对比

    Figure  20.  Comparisons in deformation modes among Al in Al-Af and CF-Al-Af hybrid tubes and the corresponding single counterparts under oblique (10°) load

    表  1  所有实验试样的信息汇总

    Table  1.   Information summary of all testing samples

    SampleOuter diameter/mmThickness
    /mm
    Mass
    /g
    Load
    angle
    Al-0° 60 1.00 58
    Al-10° 60 1.00 58 10°
    Af-0° 58 1.00 94
    Af-10° 58 1.00 94 10°
    CF-0° 63 1.51 44
    CF-10° 63 1.51 44 10°
    Al-Af-0° 60 2.51 102
    Al-Af-10° 60 2.51 102 10°
    CF-Al-Af-0° 63 195
    CF-Al-Af-10° 63 196 10°
    下载: 导出CSV

    表  2  碳纤维复合材料(CFRP)力学性能参数

    Table  2.   Mechanical property parameters of carbon-fibre-reinforced polymer (CFRP)

    Material propertyValue
    Density $ \rho $/(g·cm−3) 1.53
    In-plane Young's modulus $ {E_1} = {E_2} $/GPa 55.4
    In-plane shear modulus $ {G_1}{\text{ = }}{G_2} $/GPa 3.4
    Poisson's ratio $ \nu $ 0.056
    Tensile strength along weft direction $ {X_{\text{T}}} $/MPa 455
    Tensile strength along warp direction $ {Y_{\text{T}}} $/MPa 405
    Failure parameter of tension $ {D_{{\text{FAILT}}}} $ 0.05
    Failure parameter of compression $ {D_{{\text{FAILC}}}} $ −0.05
    Softening factor $ {S_{ {\text{OFT}}}} $ 0.5
    Inter-laminar stiffness $ {G_{\text{N}}} $/MPa 40000
    Inter-laminar critical distance $ {C_{{\text{CRIT}}}} $/mm 0.005
    Inter-laminar normal strength $ {X_{{\text{NFLS}}}} $/MPa 38.2
    Inter-laminar shear strength $ {X_{{\text{SFLS}}}} $/MPa 72.2
    下载: 导出CSV

    表  3  实验与仿真的耐撞性指标对比

    Table  3.   Comparisons in crashworthiness indicators between experiments and simulations

    SampleTest$ {E_{\text{A}}} $/J$ {P_{{\text{CF}}}} $/kN$ {C_{{\text{FE}}}} $/%
    Al-0° Experiment 1735.20 61.52 39
    Simulation 1785.60 58.43 42
    Al-10° Experiment 1634.40 29.86 76
    Simulation 1605.60 31.99 70
    Af-0° Experiment 1191.60 17.12 84
    Simulation 1282.32 21.35 83
    Af-10° Experiment 1200.24 18.77 83
    Simulation 1131.12 17.33 91
    CF-0° Experiment 3191.04 55.74 80
    Simulation 3175.92 55.31 80
    CF-10° Experiment 2665.44 47.91 77
    Simulation 2676.07 37.92 98
    Al-Af-0° Experiment 3502.77 46.87 84
    Simulation 3287.23 64.00 71
    Al-Af-10° Experiment 3573.77 57.04 87
    Simulation 3304.81 56.27 82
    CF-Al-Af-10° Experiment 5723.28 143.50 55
    Simulation 5405.04 134.66 56
    CF-Al-Af-10° Experiment 5803.92 116.47 69
    Simulation 5573.52 99.76 78
    Notes: EA—Energy absorption; PCF—Peak crushing force; CFE—Crushing force efficiency.
    下载: 导出CSV

    表  4  CF-Al-Af-0°管件的轴向压溃性能实验与预测结果对比

    Table  4.   Comparisons in axial crushing performances of CF-Al-Af-0° tube between experimental and predicted results

    TubeMethod$ M_{_{{\rm{net \;Al}}}}^{{\rm{CF}}} $
    /kN
    $ M_{{\rm{net \;Af}}}^{{\rm{CF}}} $
    /kN
    $ M_{{\rm{net \;CF}}}^{{\rm{CF}}} $
    /kN
    $ M_{{\rm{IE}}}^{{\rm{CF}}} $
    /kN
    $ M_{{\rm{CF {\text{-}} Al {\text{-}} Af}}}^{{\rm{CF}}} $
    /kN
    CF-Al-Af-0° Test 24.10 16.55 44.32 −5.48 79.49
    FEA 24.80 17.81 44.11 −11.65 75.07
    |Error|/% 2.90 7.61 0.47 112.50 5.56
    Theory 24.15 17.96 47.55 −2.27 87.39
    |Error|/% 0.21 8.52 7.29 58.60 9.90
    Notes: $M_{{\rm{net Al}}}^{{\rm{CF}}} $—Crushing force of the net Al tube; $M_{{\rm{net Af}}}^{{\rm{CF}}} $—Crushing force of the net aluminum foam; $M_{{\rm{net CF}}}^{{\rm{CF}}} $—Crushing force of the net CFRP tube; $M_{{\rm{IE}}}^{{\rm{CF}}} $—Crushing force of the interactive effect; $M_{_{{\rm{CF - Al - Af}}}}^{{\rm{CF}}} $—Crushing force of the CF-Al-Af hybrid tube.
    下载: 导出CSV
  • [1] KIM H C, SHIN D K, LEE J J, et al. Crashworthiness of aluminum/CFRP square hollow section beam under axial impact loading for crash box application[J]. Composite Structures,2014,112:1-10. doi: 10.1016/j.compstruct.2014.01.042
    [2] HUANG Z X, ZHANG X, YANG C Y. Experimental and numerical studies on the bending collapse of multi-cell aluminum/CFRP hybrid tubes[J]. Composites Part B: Engineering,2020,181:107527. doi: 10.1016/j.compositesb.2019.107527
    [3] 王振, 朱国华, 吴永强, 等. 铝合金/碳纤维混合前纵梁的轴向冲击吸能特性[J]. 复合材料学报, 2022, 39(10):5020-5031.

    WANG Zhen, ZHU Guohua, WU Yongqiang, et al. Axial impact energy absorption characteristics of the aluminum/ carbon fiber reinforced plastic hybrid front rail[J]. Acta Materiae Compositae Sinica,2022,39(10):5020-5031(in Chinese).
    [4] 王振, 朱国华. Al-碳纤维增强聚丙烯混合帽型梁的热模压成形特性及三点弯曲特性[J]. 复合材料学报, 2022, 39(12):6096-6108.

    WANG Zhen, ZHU Guohua. Hot press molding characteristics and three-point bending characteristics of Al-carbon fiber reinforced polypropylene hybrid hat-shaped rail[J]. Acta Materiae Compositae Sinica,2022,39(12):6096-6108(in Chinese).
    [5] 王健, 郑学丰, 付昌云, 等. 碳纤维/环氧树脂复合材料-铝合金层合板深拉成型特性[J]. 复合材料学报, 2019, 36(12):2786-2794. doi: 10.13801/j.cnki.fhclxb.20190313.001

    WANG Jian, ZHENG Xuefeng, FU Changyun, et al. Deep drawing characteristics of carbon fiber/epoxy resin composite-aluminum alloy laminates[J]. Acta Materiae Compositae Sinica,2019,36(12):2786-2794(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190313.001
    [6] BAMBACH M R. Axial capacity and crushing behavior of metal-fiber square tubes-Steel, stainless steel and aluminum with CFRP[J]. Composites Part B: Engineering,2010,41(7):550-559. doi: 10.1016/j.compositesb.2010.06.002
    [7] KALHOR R, AKBARSHAHI H, CASE S W. Numerical modeling of the effects of FRP thickness and stacking sequence on energy absorption of metal-FRP square tubes[J]. Composite Structures,2016,147:231-246. doi: 10.1016/j.compstruct.2016.03.038
    [8] KALHOR R, CASE S W. The effect of FRP thickness on energy absorption of metal-FRP square tubes subjected to axial compressive loading[J]. Composite Structures,2015,130:44-50. doi: 10.1016/j.compstruct.2015.04.009
    [9] HUANG Z X, ZHANG X. Crashworthiness and optimization design of quadruple-cell aluminum/CFRP hybrid tubes under transverse bending[J]. Composite Structures,2020,235:111753. doi: 10.1016/j.compstruct.2019.111753
    [10] FENG P, HU L L, QIAN P, et al. Compressive bearing capacity of CFRP-aluminum alloy hybrid tubes[J]. Composite Structures,2016,140:749-757. doi: 10.1016/j.compstruct.2016.01.041
    [11] ZHU G H, LIAO J P, SUN G Y, et al. Comparative study on metal/CFRP hybrid structures under static and dynamic loading[J]. International Journal of Impact Engineering,2020,141:103509.
    [12] YANG H Y, LEI H S, LU G X, et al. Energy absorption and failure pattern of hybrid composite tubes under quasi-static axial compression[J]. Composites Part B: Engineering,2020,198:108271. doi: 10.1016/j.compositesb.2020.108217
    [13] MING S Z, SONG Z B, ZHOU C H, et al. The crashworthiness design of metal/CFRP hybrid tubes based on origami-ending approach: Experimental research[J]. Composite Structures,2022,279:114843. doi: 10.1016/j.compstruct.2021.114843
    [14] BAMBACH M R, ZHAO X L, JAMA H. Energy absorbing characteristics of aluminium beams strengthened with CFRP subjected to transverse blast load[J]. International Journal of Impact Engineering,2010,37(1):37-49. doi: 10.1016/j.ijimpeng.2009.06.007
    [15] 沈勇, 柯俊, 吴震宇. 不同编织角碳纤维增强聚合物复合材料-Al方管的吸能特性[J]. 复合材料学报, 2020, 37(3):591-600. doi: 10.13801/j.cnki.fhclxb.20190528.003

    SHEN Yong, KE Jun, WU Zhenyu. Energy-absorbing characteristics of carbon fiber reinforced polymer compo-site-Al square tubes with different braiding angles[J]. Acta Materiae Compositae Sinica,2020,37(3):591-600(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190528.003
    [16] 朱烨飞, 孙雨果. 单轴压缩载荷下闭孔泡沫铝的变形机制[J]. 复合材料学报, 2017, 34(8):1810-1816. doi: 10.13801/j.cnki.fhclxb.20161116.002

    ZHU Yefei, SUN Yuguo. Deformation mechanism of closed-cell aluminum foam under uniaxial compression[J]. Acta Materiae Compositae Sinica,2017,34(8):1810-1816(in Chinese). doi: 10.13801/j.cnki.fhclxb.20161116.002
    [17] 卢子兴, 陈伟. 泡沫变形模式对泡沫填充圆管压溃行为的影响[J]. 复合材料学报, 2011, 28(5):168-173. doi: 10.13801/j.cnki.fhclxb.2011.05.031

    LU Zixing, CHEN Wei. Effect of the foam deformation modes on the crushing behavior of foam-filled circular tube[J]. Acta Materiae Compositae Sinica,2011,28(5):168-173(in Chinese). doi: 10.13801/j.cnki.fhclxb.2011.05.031
    [18] 杨旭东, 安涛, 冯晓琳, 等. 泡沫铝填充碳纤维增强树脂复合材料薄壁管的压缩变形行为与吸能特性[J]. 复合材料学报, 2020, 37(8):1850-1860. doi: 10.13801/j.cnki.fhclxb.20191206.002

    YANG Xudong, AN Tao, FENG Xiaolin, et al. Compressive deformation behavior and energy absorption of Al foam-filled carbon fiber reinforced plastic thin-walled tube[J]. Acta Materiae Compositae Sinica,2020,37(8):1850-1860(in Chinese). doi: 10.13801/j.cnki.fhclxb.20191206.002
    [19] COSTAS M, MORIN D, LANGSETH M, et al. Axial crushing of aluminum extrusions filled with PET foam and GFRP: An experimental investigation[J]. Thin-Walled Structures,2016,99:45-57. doi: 10.1016/j.tws.2015.11.003
    [20] YANG H Y, GUO X G, WANG H P, et al. Low-velocity impact performance of composite-aluminum tubes prepared by mesoscopic hybridization[J]. Composite Structures,2021,274:114348. doi: 10.1016/j.compstruct.2021.114348
    [21] YANG S, QI C. Multiobjective optimization for empty and foam-filled square columns under oblique impact loading[J]. International Journal of Impact Engineering,2013,54:177-191. doi: 10.1016/j.ijimpeng.2012.11.009
    [22] YANG W L, XIE S C, LI H H, et al. Design and injury analysis of the seated occupant protection posture in train collision[J]. Safety Science,2019,117:263-275. doi: 10.1016/j.ssci.2019.04.028
    [23] CHEN D D, XIAO S, YANG B, et al. Axial crushing response of carbon/glass hybrid composite tubes: An experimental and multi-scale computational study[J]. Composite Structures, 2022, 294: 115640.
    [24] HANSSEN A G, LANGSETH M, HOPPERSTAD O S. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler[J]. International Journal of Impact Engineering,2000,24(5):475-507. doi: 10.1016/S0734-743X(99)00170-0
    [25] LU G X, YU T X. Energy absorption of structures and materials[M]. Cambridge: Woodhead Publishing Limited, 2003: 144-173.
    [26] ALEXANDER J M. An approximate analysis of the collapse of thin cylindrical shells under axial loading[J]. The Quarterly Journal of Mechanics and Applied Mathematics,1960,13(1):10-15. doi: 10.1093/qjmam/13.1.10
    [27] ABRAMOWICZ W, JONES N. Dynamic axial crushing of circular tubes[J]. International Journal of Impact Engi-neering,1984,2(3):263-281. doi: 10.1016/0734-743X(84)90010-1
    [28] ABRAMOWICZ W, JONES N. Dynamic axial crushing of square tubes[J]. International Journal of Impact Engineering,1984,2(2):179-208. doi: 10.1016/0734-743X(84)90005-8
    [29] BORIA S, PETTINARI S, GIANNONI F. Theoretical analysis on the collapse mechanisms of thin-walled composite tubes[J]. Composite Structures,2013,103:43-49. doi: 10.1016/j.compstruct.2013.03.020
  • 加载中
图(20) / 表(4)
计量
  • 文章访问数:  422
  • HTML全文浏览量:  314
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-02
  • 修回日期:  2023-01-17
  • 录用日期:  2023-01-18
  • 网络出版日期:  2023-02-14
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回