留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高孔隙率生物炭研制及其处理废水中磷酸盐

李佳璇 王平 万斯 陈润华

李佳璇, 王平, 万斯, 等. 高孔隙率生物炭研制及其处理废水中磷酸盐[J]. 复合材料学报, 2023, 41(0): 1-12
引用本文: 李佳璇, 王平, 万斯, 等. 高孔隙率生物炭研制及其处理废水中磷酸盐[J]. 复合材料学报, 2023, 41(0): 1-12
Jiaxuan LI, Ping WANG, Si WAN, Runhua CHEN. High porosity biochar and its treatment of phosphate in wastewater[J]. Acta Materiae Compositae Sinica.
Citation: Jiaxuan LI, Ping WANG, Si WAN, Runhua CHEN. High porosity biochar and its treatment of phosphate in wastewater[J]. Acta Materiae Compositae Sinica.

高孔隙率生物炭研制及其处理废水中磷酸盐

基金项目: 湖南省自然科学基金重大项目(2021JC0001);湖南省自然科学基金面上项目(2022JJ31014);湖南省科技创新引领计划项目(2021GK4059,2020SK2006);湖南省环保厅环保科研项目(HBKT-2022010);湖南省教育厅科学研究项目(22A0193)
详细信息
    作者简介:

    王平,博士,教授,博士生导师,研究方向为水土污染控制 E-mail:csfuwp@163.com

    通讯作者:

    陈润华,博士,副教授,硕士生导师,研究方向为功能材料的研发与应用 E-mail:chen12@csuft.edu.cn

  • 中图分类号: X703

High porosity biochar and its treatment of phosphate in wastewater

Funds: Major program Natural Science Foundation of Hunan Province of China (2021JC0001); the Natural Science Foundation of Hunan Province (2022JJ31014); the Hunan Provincial Key Research Plan Program of China (2021GK4059, 2020SK2006); Environmental Research Project of Hunan Environmental Protection Department (HBKT-2022010); Hunan Provincial Education Department Scientific Research Project (22A0193)
  • 摘要: 生物炭是缺氧状态下生物质热解的产物;然而,常见的生物炭却表面积小、孔隙结构不发达、表面活性基团少,去除效果差。本文以高粱(GC)和柚子皮(YC)为原料,利用四种物质进行表面处理制备得到生物炭,其中制备的高粱/KOH(GC-KH)和柚子皮/KOH(YC-K)粉末表面孔状明显,证实了该工艺的可行性。GC-KH比表面积为2,096.05 m2/g,平均孔径4.12 nm,在其表面含有丰富的含氧官能团,为吸附提供了良好的结构空间和活性位点。通过批量实验,探讨了投加量、初始pH、接触时间、初始浓度等对磷酸盐吸附的影响,评估了离子强度。等温线结果表明,Langmuir模型可以很好地描述平衡数据,在pH值为7时GC-KH对磷酸盐最大吸附能力为74.73 mg/g,具有反应迅速等显著优势,为废水中磷酸盐的高效去除提供了创新路径。

     

  • 图  1  高粱(GC)和柚子皮(YC)粉末制备生物炭的工艺流程图

    Figure  1.  Process flow diagram for the preparation of biochar from sorghum (GC) and grapefruit peel (YC) powder

    图  2  (a,b)为不同倍数下高粱粉末的扫描电镜图像;(c,d)为不同倍数下高GC-H的扫描电镜图像;(e,f)为不同倍数下GC-S的扫描电镜图像

    Figure  2.  (a, b) Scanning electron microscopy images of sorghum powder at different magnifications; (c, d) Scanning electron microscopy images of high GC-H at different magnifications; (e, f) Scanning electron microscopy images of GC-S at different magnifications

    图  3  (a,b,c)分别为高粱粉末、GC-H和GC-S的孔径分布图;(e,f,g)分别为高粱粉末、GC-H和GC-S的N2吸附脱附等温线

    Figure  3.  (a, b, c) Pore size distribution of sorghum powder, GC-H and GC-S, respectively; (e, f, g) N2 adsorption and desorption isotherms of sorghum powder, GC-H and GC-S, respectively

    图  4  (a, b)为不同倍数下GC-Na高粱粉末的扫描电镜图像;(c, d)为不同倍数下高GC-KC的扫描电镜图像;(e, f)为不同倍数下GC-KO的扫描电镜图像;(g, h)为不同倍数下GC-KH高粱粉末的扫描电镜图像

    Figure  4.  (a, b) Scanning electron microscopy images of GC-Na sorghum powder at different magnifications; (c, d) Scanning electron microscopy images of high GC-KC at different magnifications; (e, f) Scanning electron microscopy images of GC-KO at different magnifications; (g, h) Scanning electron microscopy images of GC-KH sorghum powder at different magnifications

    图  5  (a, b, c, d)分别为GC-Na、GC-KC、GC-KO和GC-KH的孔径分布图;(e, f, g, h)分别为GC-Na、GC-KC、GC-KO和GC-KH的N2吸附脱附等温线

    Figure  5.  (a, b, c, d) Pore size distribution of GC-Na, GC-KC, GC-KO and GC-KH respectively; (e, f, g, h) N2 adsorption and desorption isotherms of GC-Na, GC-KC, GC-KO and GC-KH respectively

    图  6  高粱粉末、GC-S和GC-KH的傅里叶变换红外光谱图像

    Figure  6.  FTIR images of sorghum powder, GC-S and GC-KH

    图  7  (a, b)为不同倍数下柚子皮粉末的扫描电镜图像;(c, d)为不同倍数下高YC的扫描电镜图像;(e, f)为不同倍数下YC-K的扫描电镜图像

    Figure  7.  (a, b) Scanning electron microscope images of grapefruit peel powder at different magnifications; (c, d) Scanning electron microscope images of high YC at different magnifications; (e, f) Scanning electron microscope images of YC-K at different magnifications

    图  8  (a, b, c)分别为柚子皮粉末、YC和YC-K的孔径分布图;(e, f, g)分别为柚子皮粉末、YC和YC-K的N2吸附脱附等温线

    Figure  8.  (a, b, c) Pore size distribution of grapefruit peel powder, YC and YC-K, respectively; (e, f, g) N2 adsorption and desorption isotherms of grapefruit peel powder, YC and YC-K, respectively

    图  9  (a) GC-KH投加量对吸附磷酸盐效果的影响;(b) pH对GC-KH吸附磷酸盐效果的影响;(c) 共存离子对GC-KH吸附磷酸盐效果的影响;(d)不同温度下反应时间对GC-KH吸附磷酸盐效果的影响;(e)不同温度下初始浓度对GC-KH吸附磷酸盐效果的影响;

    Figure  9.  (a) Effect of GC-KH dosage on the effect of phosphate adsorption; (b) Effect of pH on the effect of phosphate adsorption by GC-KH; (c) Effect of coexisting ions on the effect of phosphate adsorption by GC-KH; (d) Effect of reaction time at different temperatures on the effect of phosphate adsorption by GC-KH; (e) Effect of initial concentration at different temperatures on the effect of phosphate adsorption by GC-KH.

    qt is the amount adsorbed at time t; qe is the amount adsorbed when adsorption equilibrium is reached; Ce is the concentration of pollutant in the solution after removal

    图  10  (a) GC-KH吸附磷酸盐的伪一阶动力学模型;(b) GC-KH吸附磷酸盐的伪二阶动力学模型;(c) 不同温度下GC-KH吸附磷酸盐的Langmuir模型和Freundlich模型;(d) 不同温度下GC-KH吸附磷酸盐的D-R模型;(f) 不同温度下GC-KH吸附磷酸盐的热力学;

    Figure  10.  (a) Pseudo-first-order kinetic model for phosphate adsorption by GC-KH; (b) Pseudo-second-order kinetic model for phosphate adsorption by GC-KH; (c) Langmuir and Freundlich models for phosphate adsorption by GC-KH at different temperatures; (d) D-R model for phosphate adsorption by GC-KH at different temperatures; (f) Thermodynamics of phosphate adsorption by GC-KH at different temperatures

    θ is the isotherm constant; T is the absolute temperature; Kd is the thermodynamic equilibrium constant

    表  1  生物炭BET表征结果

    Table  1.   BET characterization results

    SampleSurface aeraa
    /(m2·g−1)
    Pore volumeb
    /(cm3·g −1)
    Pore diameterc
    /nm
    Sorghum powder11.890315.61590.023938
    GC-H65.103710.83450.048291
    GC-S189.31845.79140.115718
    GC-Na437.86707.69350.35028
    GC-KC737.94313.28920.353356
    GC-KO565.20833.85950.307675
    GC-KH2,096.04754.11661.000354
    Grapefruit peel powder8.78065.91190.010157
    YC144.58472.76330.070626
    YC-K1059.84722.55870.51121
    Notes: a is BET multi-point method specific surface; b is BJH method desorption (cylindrical pore model, 2.0 nm−49.6 nm) pore volume; c is BJH method desorption (cylindrical hole model) average hole diameter.
    下载: 导出CSV

    表  2  GC-KH吸附磷酸盐的伪一阶和二阶动力学参数

    Table  2.   Pseudo-first- and second-order kinetic parameters for phosphate adsorption by GC-KH

    SamplePseudo-first-order model Pseudo-second-order model
    qcal /(mg·g−1)k1/(min−1)R2qcal /(mg·g−1)k2 /(g·mg−1·min−1)R2
    GC-KH (15℃)7.60710.02750.9649 12.39160.08070.9948
    GC-KH (25℃)15.16530.03100.968917.39740.05750.9939
    GC-KH (35℃)17.93830.02880.971221.88180.04570.9971
    Notes: qcal is the adsorption capacity at equilibrium time; k1 and k2 are reaction rate constants of pseudo-first-order and pseudo-second-order equations, respectively; R2 is the correlation coefficient.
    下载: 导出CSV

    表  3  GC-KH吸附磷酸盐的Langmuir、Freundlich和DR等温线参数

    Table  3.   Langmuir, Freundlich and DR isotherm parameters for phosphate adsorption by GC-KH

    SampleLangmuirFreundlichD-R
    qm/(mg·g-1)KL /(L·mg-1)R2KF /(mg·g-1)nR2qm/(mol·g-1)E/(kJ·mol-1)R2
    GC-KH (15℃)44.790.08790.98298.452.720.91213.35325.640.8702
    GC-KH (25℃)49.920.12500.973812.213.120.94194.02957.680.8997
    GC-KH (35℃)74.730.16940.944522.873.590.91045.913311.570.8876
    Notes: qm represents the maximum adsorption capacity of Langmuir; KL is Langmuir adsorption constant; KF is the Freundlich adsorption constant, and n is the constant related to the adsorption strength.
    下载: 导出CSV

    表  4  GC-KH吸附磷酸盐的热力学参数

    Table  4.   Thermodynamic parameters of phosphate adsorption by GC-KH

    C/(mg L−1)ΔH/(kJ·mol−1)ΔS/(J·mol−1·K−1)ΔG/(kJ·mol−1)
    15℃25℃35℃
    20 86.5333 311.6134 −89.6581 −92.7743 −95.8904
    30 72.9616 257.7752 −74.1663 −76.7441 −79.3218
    40 30.8975= 113.1529 −32.5572 −33.6887 −34.8202
    50 36.3046 128.6047 −37.0018 −38.2879 −39.5739
    60 39.3341 137.6547 −39.6052 −40.9818 −42.3583
    80 34.9713 120.6423 −34.71 −35.9164 −37.1229
    100 32.4302 109.8654 −31.6088 −32.7075 −33.8061
    Notes: ΔG is Gibbs free energy change; ΔH is enthalpy change; ΔS is entropy change.
    下载: 导出CSV
  • [1] YAN L G, XU Y Y, YU H Q, et al. Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites[J]. Journal of Hazardous Materials,2010,179(1-3):244-250. doi: 10.1016/j.jhazmat.2010.02.086
    [2] HUANG Xin, LIAO Xuepin and SHI Bi. Adsorption removal of phosphate in industrial wastewater by using metal-loaded skin split waste[J]. Journal of hazardous materials,2009,166(2-3):1261-1265. doi: 10.1016/j.jhazmat.2008.12.045
    [3] Hu R. Pollution control and remediation of rural water resource based on urbanization perspective[J]. Environmental Technology & Innovation,2020,20:40-60.
    [4] MAYER B K, BAKER L A, BOYER T H, et al. Total Value of Phosphorus Recovery[J]. Environmental Science & Technology,2016,50(13):6606-6620.
    [5] YIN Z C, CHEN Q F, ZHAO C S, et al. A new approach to removing and recovering phosphorus from livestock wastewater using dolomite[J]. Chemosphere,2020,255:80-100.
    [6] LAW Yingyu, KIRKEGAARD Rasmus Hansen, COKRO Angel Anisa, et al. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions[J]. Scientific Reports,2016,6(1):1-15. doi: 10.1038/s41598-016-0001-8
    [7] XIE Ming, LIU Zhiying and XU Yanhua. Removal of glyphosate in neutralization liquor from the glycine-dimethylphosphit process by nanofiltration[J]. Journal of hazardous materials,2010,181(1-3):975-980. doi: 10.1016/j.jhazmat.2010.05.109
    [8] DRENKOV-TUHTAN Asya, SCHNEIDER Michael, FRANZREB Matthias, et al. Pilot-scale removal and recovery of dissolved phosphate from secondary wastewater effluents with reusable ZnFeZr adsorbent@ Fe3 O4/SiO2 particles with magnetic harvesting[J]. Water Research,2017,109:77-87. doi: 10.1016/j.watres.2016.11.039
    [9] 孙健, 尚依依, 徐兆郢, 等. NaOH浓度对树脂基HFO复合吸附剂的结构及除磷影响[J]. 复合材料学报, 2022, 39(12):5678-5687.

    SUN Jian, SHANG Yiyi, XU Zhaoying, et al. Effect of NaOH concentration on structure and phosphate adsorption of polymer-based hydrated ferric oxide composite adsorbents[J]. Acta Materiae Compositae Sinica,2022,39(12):5678-5687(in Chinese).
    [10] BLANEY L M, CINAR S and SEMGUPTA A K. Hybrid anion exchanger for trace phosphate removal from water and wastewater[J]. Water Research,2007,41(7):1603-1613. doi: 10.1016/j.watres.2007.01.008
    [11] HUANG Xuanqi, WU Wufeng, XIA Yan, et al. Alkali resistant nanocomposite gel beads as renewable adsorbents for water phosphate recovery[J]. Science of The Total Environment,2019,685:10-18. doi: 10.1016/j.scitotenv.2019.05.296
    [12] Amann A, Zoboli O, Krampe J, et al. Environmental impacts of phosphorus recovery from municipal wastewater[J]. Resources Conservation and Recycling,2018,130:127-139. doi: 10.1016/j.resconrec.2017.11.002
    [13] AHMAD Mahtab, RAJAPAKSHA Anushka Upamali, LIM Jung Eun, et al. Biochar as a sorbent for contaminant management in soil and water: a review[J]. Chemosphere,2014,99:19-33. doi: 10.1016/j.chemosphere.2013.10.071
    [14] 王申宛, 钟爽, 郑丽丽, 等. 共热解法制备方解石/生物炭复合材料及其吸附 Pb (II) 性能和机制[J]. 复合材料学报, 2021, 38(12):4282-4293.

    WANG Shenwan, ZHONG Shuang, ZHENG Lili, et al. Preparation of calcite/biochar composite by co-pyrolysis and its adsorption properties and mechanism for Pb(II)[J]. Acta Materiae Compositae Sinica,2021,38(12):4282-4293(in Chinese).
    [15] 曾涛涛, 农海杜, 沙海超, 等. 污泥基生物炭负载纳米零价铁去除 Cr (VI) 的性能与机制[J]. 复合材料学报, 2023, 40(2):1-16.

    ZENG Taotao, NONG Haidu, SHA Haichao, et al. Performance and mechanism of Cr(VI) removal by sludge-derived biochar loaded with nanoscale zero-valent iron[J]. Acta Materiae Compositae Sinica,2023,40(2):1-16(in Chinese).
    [16] 刘清, 许艺文, 招国栋, 等. 生物炭负载绿色纳米铁颗粒去除水中U(Ⅵ)[J]. 复合材料学报, 2022, 39(12):5934-5945.

    LIU Qing, XU Yiwen, ZHAO Guodong, et al. Biochar supported green nano-iron particles to remove U(VI) from water[J]. Acta Materiae Compositae Sinica,2022,39(12):5934-5945(in Chinese).
    [17] DIZBAY-ONAT Melike, VAIDYA Uday K and LUNGU Claudiu T. Preparation of industrial sisal fiber waste derived activated carbon by chemical activation and effects of carbonization parameters on surface characteristics[J]. Industrial crops and products,2017,95:583-590. doi: 10.1016/j.indcrop.2016.11.016
    [18] WANG Zhanghong, GUO Haiyan, SHEN Fei, et al. Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3−), and phosphate (PO43−)[J]. Chemosphere,2015,119:646-653. doi: 10.1016/j.chemosphere.2014.07.084
    [19] WANG Z H, SHEN D K, SHEN F, et al. Phosphate adsorption on lanthanum loaded biochar[J]. Chemosphere,2016,150:1-7. doi: 10.1016/j.chemosphere.2016.02.004
    [20] LI Ronghua, WANG Jim J, ZHOU Baoyue, et al. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios[J]. Science of the Total Environment,2016,559:121-129. doi: 10.1016/j.scitotenv.2016.03.151
    [21] 国家环境保护局标准处. 钼酸铵分光光度法: GB/T11893−1989[S]. 北京: 中国标准出版社, 1989.

    Standards Division of State Environmental Protection Administration. Ammonium molybdate spectrophotometric method: GB/T 11893−1989[S]. Beijing: China Standards Press, 1989(in Chinese).
    [22] SULIMAN Waled, HARSH James B, ABU Lail Nehal I, et al. Modification of biochar surface by air oxidation: Role of pyrolysis temperature[J]. Biomass and Bioenergy,2016,85:1-11. doi: 10.1016/j.biombioe.2015.11.030
    [23] LIU Qingyan, YANG Fang, LIU Zhihua, et al. Preparation of SnO2–Co3 O4/C biochar catalyst as a Lewis acid for corncob hydrolysis into furfural in water medium[J]. Journal of Industrial and Engineering Chemistry,2015,26:46-54. doi: 10.1016/j.jiec.2014.11.041
    [24] YAN Qiangu, WAN Caixia, LIU Jian, et al. Iron nanoparticles in situ encapsulated in biochar-based carbon as an effective catalyst for the conversion of biomass-derived syngas to liquid hydrocarbons[J]. Green chemistry,2013,15(6):1631-1640. doi: 10.1039/c3gc37107g
    [25] THINES KR, ABDULLAH EC, MUBARAK NM, et al. Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: a review[J]. Renewable and Sustainable Energy Reviews,2017,67:257-276. doi: 10.1016/j.rser.2016.09.057
    [26] HUANG Hua, TANG Jingchun, GAO Kai, et al. Characterization of KOH modified biochars from different pyrolysis temperatures and enhanced adsorption of antibiotics[J]. RSC advances,2017,7(24):14640-14648. doi: 10.1039/C6RA27881G
    [27] LI Bing, YANG Lan, WANG Chang quan, et al. Adsorption of Cd (II) from aqueous solutions by rape straw biochar derived from different modification processes[J]. Chemosphere,2017,175:332-340. doi: 10.1016/j.chemosphere.2017.02.061
    [28] ZHAO Chuanqi, MA Junguan, LI Ziyin, et al. Highly enhanced adsorption performance of tetracycline antibiotics on KOH-activated biochar derived from reed plants[J]. RSC advances,2020,10(9):5066-5076. doi: 10.1039/C9RA09208K
    [29] ROMANOS J, BECKNER M, RASH T, et al. Nanospace engineering of KOH activated carbon[J]. Nanotechnology,2011,23(1):015401.
    [30] 黄明堦, 陈卫群, 陈燕丹, 等. 草酸钾活化法制备榴莲壳活性炭及其表征[J]. 环境工程学报, 2012, 6(10):3730-3734.

    HUANG Mingjie, CHEN Weiqun, CHEB Yandan, et al. Preparation and characterization of activated carbons from durian shell by potassium oxalate activation[J]. Chinese Journal of Environmental Engineering,2012,6(10):3730-3734(in Chinese).
    [31] YANG Kunbin, PENG Jinhui, SRINIVASAKANNAN Chandrasekar, et al. Preparation of high surface area activated carbon from coconut shells using microwave heating[J]. Bioresource technology,2010,101(15):6163-6169. doi: 10.1016/j.biortech.2010.03.001
    [32] LI Qiang, MU Jiahui, ZHOU Jin, et al. Avoiding the use of corrosive activator to produce nitrogen-doped hierarchical porous carbon materials for high-performance supercapacitor electrode[J]. Journal of Electroanalytical Chemistry,2019,832:284-292. doi: 10.1016/j.jelechem.2018.11.013
    [33] 张鹏丽, 武莉娅, 杨宗政, 等. MXene改性材料的制备及其吸附除Sr2+性能[J]. 复合材料学报, 2023, 40:1-16.

    ZHANG Pengli, WU Liya, YANG Zongzheng, et al. Preparation of modified MXene material and its adsorption performance for Sr2+[J]. Acta Materiae Compositae Sinica,2023,40:1-16(in Chinese).
    [34] WANG X M, KUBICKI J D, BOILY J F, et al. Binding Geometries of Silicate Species on Ferrihydrite Surfaces[J]. Acs Earth and Space Chemistry,2018,2(2):125-134. doi: 10.1021/acsearthspacechem.7b00109
    [35] PAN Bingjun, WU Jun, PAN Bingcai, et al. Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents[J]. Water research,2009,43(17):4421-4429. doi: 10.1016/j.watres.2009.06.055
    [36] GU S, FU B T, AHN J W, et al. Mechanism for phosphorus removal from wastewater with fly ash of municipal solid waste incineration, Seoul, Korea[J]. Journal of Cleaner Production,2021,280(2):20-40.
    [37] LIAO TW, LI Ting, SU Xiangde, et al. La (OH) 3-modified magnetic pineapple biochar as novel adsorbents for efficient phosphate removal[J]. Bioresource technology,2018,263:207-213. doi: 10.1016/j.biortech.2018.04.108
    [38] LIU R T, CHI L N, WANG X Z, et al. Effective and selective adsorption of phosphate from aqueous solution via trivalent-metals-based amino-MIL-101 MOFs[J]. Chemical Engineering Journal,2019,357:159-168. doi: 10.1016/j.cej.2018.09.122
    [39] SU Y, CUI H, LI Q, et al. Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles[J]. Water Research,2013,47(14):5018-5026. doi: 10.1016/j.watres.2013.05.044
    [40] ZHANG Xue, YAN Liangguo, LI Jing, et al. Adsorption of heavy metals by l-cysteine intercalated layered double hydroxide: kinetic, isothermal and mechanistic studies[J]. Journal of colloid and interface science,2020,562:149-158. doi: 10.1016/j.jcis.2019.12.028
    [41] MAHMOUD Mohamed E, NABIL Gehan M, ABDEL Aal Hany, et al. Imprinting “Nano-SiO2-crosslinked chitosan-Nano-TiO2” polymeric nanocomposite for selective and instantaneous microwave-assisted sorption of Hg (II) and Cu (II)[J]. ACS Sustainable Chemistry & Engineering,2018,6(4):4564-4573.
    [42] ARYEE A. A, MPATANI F M, KANI A N, et al. A review on functionalized adsorbents based on peanut husk for the sequestration of pollutants in wastewater: Modification methods and adsorption study[J]. Journal of Cleaner Production,2021,310:1-20.
    [43] YADAV A, BAGOTIA N, SHARMA A K, et al. Advances in decontamination of wastewater using biomass-basedcomposites: A critical review[J]. Science of the Total Environment,2021,784:60-80.
  • 加载中
计量
  • 文章访问数:  170
  • HTML全文浏览量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-30
  • 修回日期:  2023-01-04
  • 录用日期:  2023-01-08
  • 网络出版日期:  2023-02-06

目录

    /

    返回文章
    返回