留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高孔隙率生物炭研制及其处理废水中磷酸盐

李佳璇 王平 万斯 陈润华

李佳璇, 王平, 万斯, 等. 高孔隙率生物炭研制及其处理废水中磷酸盐[J]. 复合材料学报, 2023, 40(11): 6395-6406. doi: 10.13801/j.cnki.fhclxb.20230131.001
引用本文: 李佳璇, 王平, 万斯, 等. 高孔隙率生物炭研制及其处理废水中磷酸盐[J]. 复合材料学报, 2023, 40(11): 6395-6406. doi: 10.13801/j.cnki.fhclxb.20230131.001
LI Jiaxuan, WANG Ping, WAN Si, et al. High porosity biochar and its treatment of phosphate in wastewater[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6395-6406. doi: 10.13801/j.cnki.fhclxb.20230131.001
Citation: LI Jiaxuan, WANG Ping, WAN Si, et al. High porosity biochar and its treatment of phosphate in wastewater[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6395-6406. doi: 10.13801/j.cnki.fhclxb.20230131.001

高孔隙率生物炭研制及其处理废水中磷酸盐

doi: 10.13801/j.cnki.fhclxb.20230131.001
基金项目: 湖南省自然科学基金重大项目(2021JC0001);湖南省自然科学基金面上项目(2022JJ31014);湖南省科技创新引领计划项目(2021GK4059;2020SK2006);湖南省环保厅环保科研项目(HBKT-2022010);湖南省教育厅科学研究项目(22A0193)
详细信息
    通讯作者:

    王平,博士,教授,博士生导师,研究方向为水土污染控制 E-mail:csfuwp@163.com

    陈润华,博士,副教授,硕士生导师,研究方向为功能材料的研发与应用 E-mail:chen12@csuft.edu.cn

  • 中图分类号: X703;TB33

High porosity biochar and its treatment of phosphate in wastewater

Funds: Major Program Natural Science Foundation of Hunan Province of China (2021JC0001); Natural Science Foundation of Hunan Province (2022JJ31014); Hunan Provincial Key Research Plan Program of China (2021GK4059; 2020SK2006); Environmental Research Project of Hunan Environmental Protection Department (HBKT-2022010); Hunan Provincial Education Department Scientific Research Project (22A0193)
  • 摘要: 生物炭是缺氧状态下生物质热解的产物;然而,常见的生物炭表面积小、孔隙结构不发达、表面活性基团少,吸附效果差。本文以高粱(GC)和柚子皮(YC)为原料,利用4种物质进行表面处理制备得到生物炭,其中制备的高粱/KOH(GC-KH)和柚子皮/KOH(YC-K)粉末表面孔状明显,证实了该工艺的可行性。GC-KH比表面积为2096.05 m2/g,平均孔径4.12 nm,在其表面含有丰富的含氧官能团,为吸附提供了良好的结构空间和活性位点。通过批量实验,探讨了不同因素对磷酸盐吸附的影响,评估了离子强度。等温线结果表明GC-KH对磷酸盐的吸附发生在单分子层表面,在pH值为7时GC-KH对磷酸盐最大吸附能力为74.73 mg/g,具有反应迅速等显著优势,为废水中磷酸盐的高效去除提供了创新路径。

     

  • 图  1  高粱(GC)和柚子皮(YC)粉末制备生物炭的工艺流程

    Figure  1.  Process flow diagram for the preparation of biochar from sorghum (GC) and grapefruit peel (YC) powder

    图  2  不同倍数下高粱粉末 ((a), (b))、GC-H ((c), (d)) 和GC-S ((e), (f)) 的SEM图像

    Figure  2.  SEM images of sorghum powder ((a), (b)), GC-H ((c), (d)) and GC-S ((e), (f)) at different magnifications

    图  3  高粱粉末、GC-H和GC-S的孔径分布图 ((a)~(c)) 和N2吸附脱附等温线 ((e)~(g))

    STP— Standard temperature and pressure

    Figure  3.  Pore size distribution ((a)-(c)) and N2 adsorption and desorption isotherms ((e)-(g)) of sorghum powder, GC-H and GC-S, respectively

    图  4  不同倍数下GC-Na ((a), (b))、GC-KC ((c), (d))、GC-KO ((e), (f)) 和GC-KH ((g), (h)) 的SEM图像

    Figure  4.  SEM images of GC-Na ((a), (b)), GC-KC ((c), (d)), GC-KO ((e), (f)) and GC-KH ((g), (h)) at different magnifications

    图  5  GC-Na、GC-KC、GC-KO和GC-KH的孔径分布图 ((a)~(d)) 和N2吸附脱附等温线 ((e)~(h))

    Figure  5.  Pore size distribution ((a)-(d)) and N2 adsorption and desorption isotherms ((e)-(h)) of GC-Na, GC-KC, GC-KO and GC-KH respectively

    图  6  高粱粉末、GC-S和GC-KH的FTIR图谱

    Figure  6.  FTIR spectras of sorghum powder, GC-S and GC-KH

    图  7  不同倍数下柚子皮粉末 ((a), (b))、YC ((c), (d)) 和YC-K ((e), (f)) 的SEM图像

    Figure  7.  SEM images of grapefruit peel powder ((a), (b)), YC ((c), (d)) and YC-K ((e), (f)) at different magnifications

    图  8  柚子皮粉末、YC和YC-K的孔径分布图 ((a)~(c)) 和N2吸附脱附等温线 ((e)~(g))

    Figure  8.  Pore size distribution ((a)-(c)) and N2 adsorption and desorption isotherms ((e)-(g)) of grapefruit peel powder, YC and YC-K, respectively

    图  9  GC-KH投加量 (a)、pH (b)、共存离子 (c)、不同温度下反应时间(d)和不同温度下初始浓度 (e) 对GC-KH吸附磷酸盐效果的影响

    Figure  9.  Effect of GC-KH dosage (a), pH (b), coexisting ions (c), reaction time at different temperatures (d), initial concentration at different temperatures (e) on the effect of phosphate adsorption by GC-KH

    m—Mass; qt—Amount adsorbed at time t; qe—Amount adsorbed when adsorption equilibrium is reached; Ce—Concentration of pollutant in the solution after removal; C0—Initial concentration

    图  10  GC-KH吸附磷酸盐的伪一阶动力学模型 (a)、伪二阶动力学模型 (b);不同温度下GC-KH吸附磷酸盐的Langmuir模型和Freundlich模型 (c)、D-R模型 (d) 及热力学 (f)

    Figure  10.  Pseudo-first-order kinetic model (a) and Pseudo-second-order kinetic model (b) for phosphate adsorption by GC-KH; Langmuir and Freundlich models (c), D-R model (d) and thermodynamics (f) of phosphate adsorption by GC-KH at different temperatures

    θ—Isotherm constant; T—Absolute temperature; Kd—Thermodynamic equilibrium constant

    表  1  产物及其说明

    Table  1.   Products and their descriptions

    Sample Description
    GC-H Sorghum powder carbonised product after water treatment
    GC-S Sorghum powder carbonised product after FeSO4 treatment
    GC-Na GC-S activated product after Na2C2O4 treatment
    GC-KC GC-S activated by K2C2O4 treatment
    GC-KO GC-S activated product after CH3COOK treatment
    GC-KH GC-S activated by KOH treatment
    YC Pomelo peel powder carbonised by FeSO4 treatment
    YC-K YC activated product after KOH treatment
    下载: 导出CSV

    表  2  生物炭的比表面积(BET)表征结果

    Table  2.   Brunauer Emmett Teller (BET) characterization results of biochar

    SampleSurface aeraa/
    (m2·g−1)
    Pore diameterb/
    nm
    Pore volumec/
    (cm3·g −1)
    Sorghum powder 11.8903000 15.61590 0.023938
    GC-H 65.1037000 10.83450 0.048291
    GC-S 189.3184000 5.79140 0.115718
    GC-Na 437.8670000 7.69350 0.350280
    GC-KC 737.9431000 3.28920 0.353356
    GC-KO 565.2083000 3.85950 0.307675
    GC-KH 2096.0475000 4.11660 1.000354
    Grapefruit peel powder 8.7806000 5.91190 0.010157
    YC 144.5847000 2.76330 0.070626
    YC-K 1059.8472000 2.55870 0.511210
    Notes: a—BET multi-point method specific surface; b—Barret-Joyner-Halenda (BJH) method desorption (cylindrical hole model) average hole diameter; c—BJH method desorption (cylindrical pore model, 2.0-49.6 nm) pore volume.
    下载: 导出CSV

    表  3  GC-KH吸附磷酸盐的伪一阶和伪二阶动力学参数

    Table  3.   Pseudo-first- and Pseudo-second-order kinetic parameters for phosphate adsorption by GC-KH

    SamplePseudo-first-order model Pseudo-second-order model
    qcal/(mg·g−1)k1/(min−1)R2qcal/(mg·g−1)k2/(g·mg−1·min−1)R2
    GC-KH (15℃) 7.60710.02750.9649 12.39160.08070.9948
    GC-KH (25℃)15.16530.03100.968917.39740.05750.9939
    GC-KH (35℃)17.93830.02880.971221.88180.04570.9971
    Notes: qcal—Adsorption capacity at equilibrium time; k1 and k2—Reaction rate constants of pseudo-first-order and pseudo-second-order equations, respectively; R2—Correlation coefficient.
    下载: 导出CSV

    表  4  GC-KH吸附磷酸盐的Langmuir、Freundlich和D-R等温线参数

    Table  4.   Langmuir, Freundlich and D-R isotherm parameters for phosphate adsorption by GC-KH

    SampleLangmuirFreundlichD-R
    qm/(mg·g−1)KL/(L·mg−1)R2KF/(mg·g−1)nR2qm/(mol·g−1)E/(kJ·mol−1)R2
    GC-KH (15℃)44.790.08790.9829 8.452.720.91213.3532 5.640.8702
    GC-KH (25℃)49.920.12500.973812.213.120.94194.0295 7.680.8997
    GC-KH (35℃)74.730.16940.944522.873.590.91045.913311.570.8876
    Notes: qm—Maximum adsorption capacity of Langmuir; KL—Langmuir adsorption constant; KF—Freundlich adsorption constant; n—Constant related to the adsorption strength; E—Reactive energy.
    下载: 导出CSV

    表  5  GC-KH吸附磷酸盐的热力学参数

    Table  5.   Thermodynamic parameters of phosphate adsorption by GC-KH

    C/(mg L−1)ΔH/(kJ·mol−1)ΔS/(J·mol−1·K−1)ΔG/(kJ·mol−1)
    15℃25℃35℃
    20 86.5333 311.6134 −89.6581 −92.7743 −95.8904
    30 72.9616 257.7752 −74.1663 −76.7441 −79.3218
    40 30.8975 113.1529 −32.5572 −33.6887 −34.8202
    50 36.3046 128.6047 −37.0018 −38.2879 −39.5739
    60 39.3341 137.6547 −39.6052 −40.9818 −42.3583
    80 34.9713 120.6423 −34.7100 −35.9164 −37.1229
    100 32.4302 109.8654 −31.6088 −32.7075 −33.8061
    Notes: C—Initial concentration; ΔG—Gibbs free energy change; ΔH—Enthalpy change; ΔS—Entropy change.
    下载: 导出CSV
  • [1] YAN L G, XU Y Y, YU H Q, et al. Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites[J]. Journal of Hazardous Materials,2010,179(1-3):244-250. doi: 10.1016/j.jhazmat.2010.02.086
    [2] HUANG X, LIAO X P, SHI B. Adsorption removal of phosphate in industrial wastewater by using metal-loaded skin split waste[J]. Journal of Hazardous Materials,2009,166(2-3):1261-1265. doi: 10.1016/j.jhazmat.2008.12.045
    [3] HU R. Pollution control and remediation of rural water resource based on urbanization perspective[J]. Environmental Technology & Innovation,2020,20:40-60.
    [4] MAYER B K, BAKER L A, BOYER T H, et al. Total value of phosphorus recovery[J]. Environmental Science & Technology,2016,50(13):6606-6620.
    [5] YIN Z C, CHEN Q F, ZHAO C S, et al. A new approach to removing and recovering phosphorus from livestock wastewater using dolomite[J]. Chemosphere,2020,255:80-100.
    [6] LAW Y, KIRKEGAARD R H, COKRO A A, et al. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions[J]. Scientific Reports,2016,6(1):1-15. doi: 10.1038/s41598-016-0001-8
    [7] XIE M, LIU Z Y, XU Y H. Removal of glyphosate in neutralization liquor from the glycine-dimethylphosphit process by nanofiltration[J]. Journal of Hazardous Materials,2010,181(1-3):975-980. doi: 10.1016/j.jhazmat.2010.05.109
    [8] DRENKOV-TUHTAN A, SCHNEIDER M, FRANZREB M, et al. Pilot-scale removal and recovery of dissolved phosphate from secondary wastewater effluents with reusable ZnFeZr adsorbent@Fe3O4/SiO2 particles with magnetic harvesting[J]. Water Research,2017,109:77-87. doi: 10.1016/j.watres.2016.11.039
    [9] 孙健, 尚依依, 徐兆郢, 等. NaOH浓度对树脂基HFO复合吸附剂的结构及除磷影响[J]. 复合材料学报, 2022, 39(12):5678-5687. doi: 10.13801/j.cnki.fhclxb.20211207.002

    SUN Jian, SHANG Yiyi, XU Zhaoying, et al. Effect of NaOH concentration on structure and phosphate adsorption of polymer-based hydrated ferric oxide composite adsorbents[J]. Acta Materiae Compositae Sinica,2022,39(12):5678-5687(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211207.002
    [10] BLANEY L M, CINAR S, SEMGUPTA A K. Hybrid anion exchanger for trace phosphate removal from water and wastewater[J]. Water Research,2007,41(7):1603-1613. doi: 10.1016/j.watres.2007.01.008
    [11] 国家环境保护总局. 国家质量监督检验检疫总局. 城镇污水处理厂污染物排放标准: GB/T 18918—2002[S]. 北京: 中国标准出版社, 2002.

    State Environmental Protection Administration of China. General Administration of Quality Supervision, Inspection and Quarantine of China. Pollutant emission standards for urban sewage treatment plants: GB/T 18918—2002[S]. Beijing: China Standard Press, 2002(in Chinese).
    [12] AMANN A, ZOBOLI O, KRAMPE J, et al. Environmental impacts of phosphorus recovery from municipal wastewater[J]. Resources Conservation and Recycling,2018,130:127-139. doi: 10.1016/j.resconrec.2017.11.002
    [13] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review[J]. Chemosphere,2014,99:19-33. doi: 10.1016/j.chemosphere.2013.10.071
    [14] 王申宛, 钟爽, 郑丽丽, 等. 共热解法制备方解石/生物炭复合材料及其吸附Pb(II)性能和机制[J]. 复合材料学报, 2021, 38(12):4282-4293.

    WANG Shenwan, ZHONG Shuang, ZHENG Lili, et al. Preparation of calcite/biochar composite by co-pyrolysis and its adsorption properties and mechanism for Pb(II)[J]. Acta Materiae Compositae Sinica,2021,38(12):4282-4293(in Chinese).
    [15] 曾涛涛, 农海杜, 沙海超, 等. 污泥基生物炭负载纳米零价铁去除Cr(VI)的性能与机制[J]. 复合材料学报, 2023, 40(2):1037-1049.

    ZENG Taotao, NONG Haidu, SHA Haichao, et al. Performance and mechanism of Cr(VI) removal by sludge-derived biochar loaded with nanoscale zero-valent iron[J]. Acta Materiae Compositae Sinica,2023,40(2):1037-1049(in Chinese).
    [16] 刘清, 许艺文, 招国栋, 等. 生物炭负载绿色纳米铁颗粒去除水中U(Ⅵ)[J]. 复合材料学报, 2022, 39(12):5934-5945.

    LIU Qing, XU Yiwen, ZHAO Guodong, et al. Biochar supported green nano-iron particles to remove U(VI) from water[J]. Acta Materiae Compositae Sinica,2022,39(12):5934-5945(in Chinese).
    [17] DIZBAY-ONAT M, VAIDYA U K, LUNGU C T. Preparation of industrial sisal fiber waste derived activated carbon by chemical activation and effects of carbonization parameters on surface characteristics[J]. Industrial Crops and Products,2017,95:583-590. doi: 10.1016/j.indcrop.2016.11.016
    [18] WANG Z H, GUO H Y, SHEN F, et al. Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3), and phosphate (PO43−)[J]. Chemosphere,2015,119:646-653. doi: 10.1016/j.chemosphere.2014.07.084
    [19] WANG Z H, SHEN D K, SHEN F, et al. Phosphate adsorption on lanthanum loaded biochar[J]. Chemosphere,2016,150:1-7. doi: 10.1016/j.chemosphere.2016.02.004
    [20] LI R H, WANG J J, ZHOU B Y, et al. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios[J]. Science of the Total Environment,2016,559:121-129. doi: 10.1016/j.scitotenv.2016.03.151
    [21] 国家环境保护局标准处. 钼酸铵分光光度法: GB/T 11893−1989[S]. 北京: 中国标准出版社, 1989.

    Standards Division of State Environmental Protection Administration. Ammonium molybdate spectrophotometric method: GB/T 11893−1989[S]. Beijing: China Standards Press, 1989(in Chinese).
    [22] SULIMAN W, HARSH J B, ABU L N I, et al. Modification of biochar surface by air oxidation: Role of pyrolysis temperature[J]. Biomass and Bioenergy,2016,85:1-11. doi: 10.1016/j.biombioe.2015.11.030
    [23] LIU Q Y, YANG F, LIU Z H, et al. Preparation of SnO2-Co3O4/C biochar catalyst as a Lewis acid for corncob hydrolysis into furfural in water medium[J]. Journal of Industrial and Engineering Chemistry,2015,26:46-54. doi: 10.1016/j.jiec.2014.11.041
    [24] YAN Q G, WAN C X, LIU J, et al. Iron nanoparticles in situ encapsulated in biochar-based carbon as an effective catalyst for the conversion of biomass-derived syngas to liquid hydrocarbons[J]. Green Chemistry,2013,15(6):1631-1640. doi: 10.1039/c3gc37107g
    [25] THINES K R, ABDULLAH E C, MUBARAK N M, et al. Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: A review[J]. Renewable and Sustainable Energy Reviews,2017,67:257-276. doi: 10.1016/j.rser.2016.09.057
    [26] HUANG H, TANG J C, GAO K, et al. Characterization of KOH modified biochars from different pyrolysis temperatures and enhanced adsorption of antibiotics[J]. RSC Advances,2017,7(24):14640-14648. doi: 10.1039/C6RA27881G
    [27] LI B, YANG L, WANG C Q, et al. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes[J]. Chemosphere,2017,175:332-340. doi: 10.1016/j.chemosphere.2017.02.061
    [28] ZHAO C Q, MA J G, LI Z Y, et al. Highly enhanced adsorption performance of tetracycline antibiotics on KOH-activated biochar derived from reed plants[J]. RSC Advances,2020,10(9):5066-5076. doi: 10.1039/C9RA09208K
    [29] ROMANOS J, BECKNER M, RASH T, et al. Nanospace engineering of KOH activated carbon[J]. Nanotechnology,2011,23(1):015401.
    [30] 黄明堦, 陈卫群, 陈燕丹, 等. 草酸钾活化法制备榴莲壳活性炭及其表征[J]. 环境工程学报, 2012, 6(10):3730-3734.

    HUANG Mingjie, CHEN Weiqun, CHEN Yandan, et al. Preparation and characterization of activated carbons from durian shell by potassium oxalate activation[J]. Chinese Journal of Environmental Engineering,2012,6(10):3730-3734(in Chinese).
    [31] YANG K B, PENG J H, SRINIVASAKANNAN C, et al. Preparation of high surface area activated carbon from coconut shells using microwave heating[J]. Bioresource Technology,2010,101(15):6163-6169. doi: 10.1016/j.biortech.2010.03.001
    [32] LI Q, MU J H, ZHOU J, et al. Avoiding the use of corrosive activator to produce nitrogen-doped hierarchical porous carbon materials for high-performance supercapacitor electrode[J]. Journal of Electroanalytical Chemistry,2019,832:284-292. doi: 10.1016/j.jelechem.2018.11.013
    [33] 张鹏丽, 武莉娅, 杨宗政, 等. MXene改性材料的制备及其吸附除Sr2+性能[J]. 复合材料学报, 2023, 40(10): 5678-5691.

    ZHANG Pengli, WU Liya, YANG Zongzheng, et al. Preparation of modified MXene material and its adsorption performance for Sr2+[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5678-5691(in Chinese).
    [34] WANG X M, KUBICKI J D, BOILY J F, et al. Binding geometries of silicate species on ferrihydrite surfaces[J]. ACS Earth and Space Chemistry,2018,2(2):125-134. doi: 10.1021/acsearthspacechem.7b00109
    [35] PAN B J, WU J, PAN B C, et al. Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents[J]. Water Research,2009,43(17):4421-4429. doi: 10.1016/j.watres.2009.06.055
    [36] GU S, FU B T, AHN J W, et al. Mechanism for phosphorus removal from wastewater with fly ash of municipal solid waste incineration, Seoul, Korea[J]. Journal of Cleaner Production,2021,280(2):20-40.
    [37] LIAO T W, LI T, SU X D, et al. La(OH)3-modified magnetic pineapple biochar as novel adsorbents for efficient phosphate removal[J]. Bioresource Technology,2018,263:207-213. doi: 10.1016/j.biortech.2018.04.108
    [38] LIU R T, CHI L N, WANG X Z, et al. Effective and selective adsorption of phosphate from aqueous solution via trivalent-metals-based amino-MIL-101 MOFs[J]. Chemical Engineering Journal,2019,357:159-168. doi: 10.1016/j.cej.2018.09.122
    [39] SU Y, CUI H, LI Q, et al. Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles[J]. Water Research,2013,47(14):5018-5026. doi: 10.1016/j.watres.2013.05.044
    [40] ZHANG X, YAN L G, LI J, et al. Adsorption of heavy metals by L-cysteine intercalated layered double hydroxide: Kinetic, isothermal and mechanistic studies[J]. Journal of Colloid and Interface Science,2020,562:149-158. doi: 10.1016/j.jcis.2019.12.028
    [41] MAHMOUD M E, NABIL G M, ABDEL A H, et al. Imprinting “Nano-SiO2-crosslinked chitosan-Nano-TiO2” polymeric nanocomposite for selective and instantaneous microwave-assisted sorption of Hg(II) and Cu(II)[J]. ACS Sustainable Chemistry & Engineering,2018,6(4):4564-4573.
    [42] ARYEE A A, MPATANI F M, KANI A N, et al. A review on functionalized adsorbents based on peanut husk for the sequestration of pollutants in wastewater: Modification methods and adsorption study[J]. Journal of Cleaner Production,2021,310:1-20.
    [43] YADAV A, BAGOTIA N, SHARMA A K, et al. Advances in decontamination of wastewater using biomass-based composites: A critical review[J]. Science of the Total Environment,2021,784:60-80.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  627
  • HTML全文浏览量:  402
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-30
  • 修回日期:  2023-01-04
  • 录用日期:  2023-01-08
  • 网络出版日期:  2023-02-01
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回