Study on the high cycle fatigue properties of in-situ TiB2/7050 composite
-
摘要:
陶瓷颗粒增强铝基复合材料是一种将单一或多种陶瓷颗粒通过物理(外加,非原位合成)或化学(原位自生)反应合成方式融入铝合金材料中形成的多相材料,结合了陶瓷材料高硬度、耐高温、耐腐蚀等和铝合金材料良好的韧性和塑性加工特性等的性能特点,具有高比强度、高比刚度、广泛的合金基体选择范围、原材料成本低、制造和热处理工艺多样化等优势,且具有良好的抗疲劳、耐磨损、导电性和导热性,受到了工业界的广泛关注。原位自生TiB2/Al复合材料为我国自主研发的新型铝基复合材料,是我国自主研发大飞机起落架与机身的连接结构和民用大涵道比涡扇发动机的风扇和压气机叶片机等重大装备的潜在结构材料。然而,该材料的疲劳特性研究尚不完善,疲劳试验数据还不够充分。本文以颗粒体积分数为3.67%的原位自生TiB2/7050复合材料(in-situ TiB2/7050)为研究对象,开展了其高周疲劳特性试验研究,并与7050铝合金(7050-Al)进行对比。试验结果表明,在相同的疲劳载荷下,in-situ TiB2/7050的疲劳寿命明显高于7050-Al;应力比为0.1和0.5时,复合材料的疲劳极限较7050铝合金分别提高了24.59%和13.56%。以上结果说明TiB2颗粒引入后,in-situ TiB2/7050的疲劳裂纹萌生阻抗显著增加。开展了不同应力集中系数下的疲劳寿命对比,结果表明颗粒引入后一定程度上限制了复合材料基体的塑性变形而提高了其缺口敏感性,因此in-situ TiB2/7050缺口敏感性高于7050铝合金;尽管如此,in-situ TiB2/7050在存在缺口情况下的寿命仍高于7050铝合金。上述研究表明,in-situ TiB2/7050是一种潜在的新型航空结构轻量化材料,有望代替传统铝合金,实现结构静强度和疲劳性能的共同提升。 in-situ TiB2/7050和7050-Al疲劳寿命曲线对比: (a) R=0.1; (b) R=0.5 不同应力比下疲劳寿命曲线对比: (a) in-situ TiB2/7050; (b) 7050-Al. -
关键词:
- 颗粒增强铝基复合材料 /
- 高周疲劳 /
- 颗粒强化 /
- 缺口效应
Abstract: In-situ TiB2/Al composite is a new type of aluminum matrix composite, which has the advantages of high specific strength and specific stiffness, good performances on wear resistance, electrical conductivity and thermal conductivity, a variety of matrix alloy candidates, low raw material cost, simple and diversified manufacturing and heat treatment processes. The existing research on the fatigue of in-situ TiB2/Al composites mainly focuses on the strengthening mechanism in micro-scale and the general understanding of its fatigue performance is not sufficient. It is also lack of fatigue test data of in-situ TiB2/Al composite for the engineering use. High cycle fatigue properties of the in-situ TiB2 particle reinforced 7050 aluminum alloy composite (in-situ TiB2/7050) were experimentally investigated with comparison to 7050-Al, the matrix alloy of the composite. The results reveal that the fatigue strength of the in-situ TiB2/7050 is apparently higher than that of 7050-Al. The fatigue limits of in-situ TiB2/7050 are improved by 24.59% and 13.56% for stress ratios 0.1 and 0.5 separately, resulting from the increase of fatigue resistance induced by the tiny TiB2 particles. The results at different stress concentration levels show that the notch sensitivity of in-situ TiB2/7050 is higher than that of 7050-Al, which may attribute to TiB2 particles impeding the plastic deformation of the aluminum alloy matrix in the composite. Despite the higher notch sensitivity, the fatigue resistance the notched composite is still higher than that of the 7050-Al. Therefore, in-situ TiB2/7050 is a promising material for lightweight structure application to replace traditional aluminum alloy in certain circumstances and achieve the joint improvement of static strength and fatigue performance. -
表 1 in-situ TiB2/7050和7050-Al拉伸性能
Table 1. Tensile properties of in-situ TiB2/7050 and 7050-Al
Material E/GPa σy/MPa σb/MPa δ/% in-situ TiB2/7050 73.21 657.53 719.75 6.35 7050-Al 70.27 500.43 593.48 10.93 Note: E, elastic modulus; σy, yield strength; σb, ultimate strength; δ, elongation. 表 2 环槽缺口圆棒试样分组信息
Table 2. Sets of the notched round bar specimens
R /mm D /mm Kt 0.2 6 2.53 1.0 6 1.77 3.0 6 1.37 Note:R, notch root radius; D, diameter of minimum section; Kt, stress concentration factor. 表 3 成组法疲劳试验结果分析(R=0.1)
Table 3. Statistics results of fatigue life by grouping method (R=0.1)
Material ${\sigma _{{\text{max}}}}$/MPa Net $\overline N $/Cycle S Cov/% in-situ TiB2/
7050530 4 19376 0.134 3.12 500 4 34545 0.081 1.79 470 5 40440 0.107 2.32 440 4 95806 0.154 3.09 7050-Al 400 3 23543 0.058 1.33 370 6 98418 0.195 3.92 340 4 175461 0.099 1.89 320 3 1742584 0.133 2.14 Note: Net, number of effective tests; $\overline N $, Log. mean life; S, standard deviation; Cov, dispersion coefficients. 表 4 成组法疲劳试验结果分析(R=0.5)
Table 4. Statistics results of fatigue life by grouping method (R=0.5)
Material ${\sigma _{{\text{max}}}}$/MPa Net $\overline N $/Cycle S Cov/% in-situ TiB2/
7050530 3 43931 0.040 0.86 500 3 88728 0.058 1.18 470 5 100643 0.159 3.17 450 3 4075838 0.111 1.68 7050-Al 500 4 34343 0.054 1.18 450 3 62569 0.088 1.84 430 3 94361 0.096 1.93 410 3 795591 0.060 1.02 表 5 升降法疲劳极限结果分析
Table 5. The fatigue limit obtained by up-down method
Material Rs Nep ${{\text{σ }}_{\text{f}}}$/MPa S/MPa Cov/% in-situ TiB2/
70500.1 6 380 10.95 2.88 0.5 6 446.67 16.33 3.66 7050-Al 0.1 4 305 10 3.28 0.5 6 393.33 7.53 1.91 Note: Nep, number of effective matched pairs; ${{\text{σ }}_{\text{f}}}$, fatigue limit; S, standard deviation; Cov, dispersion coefficients. 表 6 in-situ TiB2/7050和7050-Al S-N曲线参数
Table 6. Equation parameters of the fitted S-N curves of in-situ TiB2/7050 and 7050-Al
Material Rs a b c in-situ TiB2/7050 0.1 380.28 4.6306×10−6 −0.13448 0.5 446.43 1.0202×10−5 −0.17071 7050-Al 0.1 309.13 1.0565×10−6 −0.06955 0.5 401.79 1.5637×10−5 −0.24802 表 7 成组法环槽缺口圆棒疲劳试验结果分析(R=0.1)
Table 7. The statistics analysis of fatigue life from notched round bar specimens by grouping method (R=0.1)
Material Kt $\mathop {\text{σ }}\nolimits_{{\text{max}}}^{{\text{notch}}} $/MPa Net $\overline N $
/CycleS Cov
/%in-situ TiB2/7050 1.37 340 4 73292 0.124 2.87 360 3 43990 0.087 1.88 380 4 22079 0.152 3.13 1.77 220 4 29680 0.088 2.33 260 4 17564 0.105 2.47 320 3 5820 0.030 0.68 2.53 120 4 128424 0.132 2.90 160 4 34241 0.138 2.70 7050-Al 1.37 320 8 31409 0.242 5.38 360 3 25044 0.087 1.98 400 4 9902 0.116 2.90 1.77 220 3 32184 0.043 1.07 280 3 9793 0.039 0.87 2.53 120 3 74996 0.026 0.58 170 3 34097 0.090 1.84 -
[1] LLOYD DJ. Particle reinforced aluminium and magnesium matrix composites[J]. International Materials Reviews,1994,39(1):1-23. doi: 10.1179/imr.1994.39.1.1 [2] 侯丽丽, 尹志新, 樊新波. 铝基复合材料的研究现状及发展[J]. 热加工工艺, 2008, 37(10):84-88.HOU L, YIN Z, FAN X. Study status and progr ess of aluminum matrix composite[J]. Hot Working Technology,2008,37(10):84-88(in Chinese). [3] 王宇鑫, 张瑜, 严鹏飞, 等. 铝基复合材料的研究[J]. 上海有色金属, 2010, 31(4):194-198.WANG Y, ZHANG Y, YAN P, et al. Development of aluminum matrix composites[J]. Shanghai Nonferrous Metals,2010,31(4):194-198(in Chinese). [4] 武高辉, 匡泽洋. 装备升级换代背景下金属基复合材料的发展机遇和挑战[J]. 中国工程科学, 2020, 22(2):79-90.WU G, KUANG Z. Opportunities and challenges for metal matrix composites in the context of equipment upgrading[J]. Strategic Study of Chinese Academy of Engineering,2020,22(2):79-90(in Chinese). [5] MATIN MA, LU L, GUPTA M. Investigation of the reactions between boron and titanium compounds with magnesium[J]. Scripta Materialia,2001,45(4):479-486. doi: 10.1016/S1359-6462(01)01059-4 [6] 曹鹏, 曲选辉. 金属基复合材料的原位反应合成技术[J]. 上海有色金属, 1995, 6(4):235-239.CAO P, QU X. In-situ reactive synthesis technique of metal-base composite[J]. Shanghai Nonferrous Metals,1995,6(4):235-239(in Chinese). [7] DAS K, BANDYOPADHYAY TK, DAS S. A Review on the various synthesis routes of TiC reinforced ferrous based composites[J]. Journal of Materials Science,2002,37(18):3881-3892. doi: 10.1023/A:1019699205003 [8] KURUVILLA AK, PRASAD KS, BHANUPRASAD VV, et al. Microstructure-property correlation in AlTiB2 (XD) composites[J]. Scripta Metallurgica et Materialia,1990,24(5):873-878. doi: 10.1016/0956-716X(90)90128-4 [9] CARACOSTAS CA, CHIOU WA, FINE ME, et al. Wear mechanisms during lubricated sliding of XD™ 2024-AlTiB2 metal matrix composites against steel[J]. Scripta Metallurgica et Materialia,1992,27(2):167-172. doi: 10.1016/0956-716X(92)90107-P [10] GOTMAN I, KOCZAK MJ, SHTESSEL E. Fabrication of Al matrix in situ composites via self-propagating synthesis[J]. Materials Science and Engineering:A,1994,187(2):189-199. doi: 10.1016/0921-5093(94)90347-6 [11] CARACOSTAS CA, CHIOU WA, FINE ME, et al. Tribological properties of aluminum alloy matrix TiB2 composite prepared by in situ processing[J]. Metallurgical and Materials Transactions A,1997,28(2):491-502. doi: 10.1007/s11661-997-0150-2 [12] WANG M, CHEN D, CHEN Z, et al. Mechanical properties of in-situ TiB2/A356 composites[J]. Materials Science & Engineering A,2014,590:246-254. [13] GENG J, LIU G, WANG F, et al. Microstructural and mechanical anisotropy of extruded in-situ TiB2/2024 composite plate[J]. Materials Science & Engineering A,2017,687:131-140. [14] 谭志刚, 赵兴东, 唐军, 等. TiB2/7050铝基复合材料风扇叶片锻件的研制[J]. 热加工工艺, 2018, 47(11):114-116+119.TAN Z, ZHAO X, TANG J, et al. Development of TiB2/7050 aluminium matrix composite Fan blade forgings[J]. Hot Working Technology,2018,47(11):114-116+119(in Chinese). [15] 周超羡, 李迪, 廖连芳, 等. TiB2增强铝基复合材料低压压气机静子叶片高循环疲劳试验研究[J]. 航空制造技术, 2018, 61(16):85-90+95.ZHOU C, LI D, LIAO L, et al. Study on high cycle fatigue experiment of low pressure compressor stator vanes of TiB2 reinforced aluminum metal matrix composite[J]. Aeronautical Manufacturing Technology,2018,61(16):85-90+95(in Chinese). [16] PANDEY AB, MISHRA RS, MAHAJAN YR. High-temperature creep of Al/TiB2 particulate composites[J]. Materials Science and Engineering:A,1994,189(1):95-104. [17] WANG F, XU J, LI J, et al. Fatigue crack initiation and propagation in A356 alloy reinforced with in situ TiB2 particles[J]. Materials & Design,2012,33:236-241. [18] KARBALAEI AM, BAHARVANDI HR, SHIRVANIMOGHADDAM K. Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites[J]. Materials & Design,2015,66:150-161. [19] MA Y, CHEN Z, WANG M, et al. High cycle fatigue behavior of the in-situ TiB2/7050 composite[J]. Materials Science & Engineering A,2015,640:350-356. [20] GENG J, LIU G, WANG F, et al. Microstructural correlated damage mechanisms of the high-cycle fatigued in-situ TiB2/Al-Cu-Mg composite[J]. Materials & Design,2017,135:423-438. [21] MA Y, GENG J, CHEN Z, et al. Experimental study of the mechanisms of nanoparticle influencing the fatigue crack growth in an in-situ TiB2/Al-Zn-Mg-Cu composite[J]. Engineering Fracture Mechanics,2019,207:23-35. doi: 10.1016/j.engfracmech.2018.12.011 [22] XIONG Y, WANG W, SHI Y, et al. Fatigue behavior of in-situ TiB2/7050 Al metal matrix composites: Fracture mechanisms and fatigue life modeling after milling[J]. International Journal of Fatigue,2020,138:105698. doi: 10.1016/j.ijfatigue.2020.105698 [23] GENG J, LI Y, XIAO H, et al. Study fatigue crack initiation in TiB2/Al-Cu-Mg composite by in-situ SEM and X-ray microtomography[J]. International Journal of Fatigue,2021,142:105976. doi: 10.1016/j.ijfatigue.2020.105976 [24] LIU K, LI Y, DUAN M, et al. Fatigue life prediction of in-situ TiB2/2024 aluminum matrix composite[J]. International Journal of Fatigue,2021,145:106128. doi: 10.1016/j.ijfatigue.2020.106128 [25] XIONG Y, WANG W, SHI Y, et al. Investigation on surface roughness, residual stress and fatigue property of milling in-situ TiB2/7050 Al metal matrix composites[J]. Chinese Journal of Aeronautics,2021,34(4):451-464. doi: 10.1016/j.cja.2020.08.046 [26] ASTM E466 Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials[S], 2015. [27] 中国国家标准化管理委员会. GB/T 3075 金属材料 疲劳试验 轴向力控制方法[S]. 中国标准出版社, 北京, 2008.Standardization Administration of the People’s Republic of China. Metallic materials: Fatigue testing: Axial-force controlled method: GB/T 3075-2008[S]. Beijing: China Standards Press, 2008(in Chinese). [28] 中华人们共和国航空工业部, HB/Z 112 材料疲劳试验统计分析方法[S]. 航空工业部, 北京, 1986.Ministry of Aviation Industry of the People’s Republic of China. HB/Z 112, The statistical analysis method for material fatigue tests[S]. Beijing: Ministry of Aviation Industry, 1986 (in Chinese) [29] SUGIMURA Y, SURESH S, Effects of SiC content on fatigue crack growth in aluminum alloys reinforced with SiC particles[J]. Metallurgical Transactions A, 1992, 23(8): 2231-2242. [30] PARK BG, CROSKY AG, HELLIER AK. High cycle fatigue behaviour of microsphere Al2O3–Al particulate metal matrix composites[J]. Composites:Part B,2008,39:1257-1269. doi: 10.1016/j.compositesb.2008.01.006 [31] DUAN M, LI Y, YANG X, et al. Mechanical responses of in-situ TiB2/7050 composite subjected to monotonic and cyclic loadings: A comparative study with 7050-Al,[J]. International Journal of Fatigue,2022,163:107102. doi: 10.1016/j.ijfatigue.2022.107102 [32] CHAWLA N, HABEL U, SHEN YL, et al. The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix composites[J]. Metallurgical and Materials Transactions A,2000,31(2):531-540. doi: 10.1007/s11661-000-0288-7 [33] MOHANTY PS, GRUZLESKI JE. Mechanism of grain refinement in aluminium[J]. Acta Metallurgica et Materialia,1995,43(5):2001-2012. doi: 10.1016/0956-7151(94)00405-7 [34] WANG C, WANG M, YU B, et al. The grain refinement behavior of TiB2 particles prepared with in situ technology[J]. Materials Science and Engineering:A,2007,459(1-2):238-243. doi: 10.1016/j.msea.2007.01.013 [35] ARMSTRONG RW. The influence of polycrystal grain size on several mechanical properties of materials[J]. Metallurgical and Materials Transactions B,1970,1(5):1169-1176. doi: 10.1007/BF02900227 [36] THOMPSON AW, BACKOFEN WA. The effect of grain size on fatigue[J]. Acta Metallurgica,1971,19(7):597-606. doi: 10.1016/0001-6160(71)90012-5 [37] TURNBULL A, DE LOS RIOS ER. The Effect of Grain Size on Fatigue Crack Growth in an Aluminium Magnesium Alloy[J]. Fatigue & Fracture of Engineering Materials and Structures,1995,18(11):1355-1366. [38] MA ZY, LI JH, LI SX, et al. Property-microstructure correlation in in situ formed Al2O3, TiB2 and Al3Ti mixture-reinforced aluminium composites[J]. Journal of Materials Science,1996,31(3):741-747. doi: 10.1007/BF00367894 [39] LU L, LAI MO, CHEN FL. Al-4 wt% Cu Composite reinforced with in-situ TiB2 particles[J]. Acta Materialia,1997,45(10):4297-4309. doi: 10.1016/S1359-6454(97)00075-X -

计量
- 文章访问数: 111
- HTML全文浏览量: 73
- 被引次数: 0