留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位自生TiB2/7050铝基复合材料高周疲劳特性

段敏鸽 李晨 李彪 李亚智

段敏鸽, 李晨, 李彪, 等. 原位自生TiB2/7050铝基复合材料高周疲劳特性[J]. 复合材料学报, 2023, 41(0): 1-9
引用本文: 段敏鸽, 李晨, 李彪, 等. 原位自生TiB2/7050铝基复合材料高周疲劳特性[J]. 复合材料学报, 2023, 41(0): 1-9
Minge DUAN, Chen LI, Biao LI, Yazhi LI. Study on the high cycle fatigue properties of in-situ TiB2/7050 composite[J]. Acta Materiae Compositae Sinica.
Citation: Minge DUAN, Chen LI, Biao LI, Yazhi LI. Study on the high cycle fatigue properties of in-situ TiB2/7050 composite[J]. Acta Materiae Compositae Sinica.

原位自生TiB2/7050铝基复合材料高周疲劳特性

基金项目: 国家科技重大专项 (J2019-I-0016-0015),中国航空发动机集团产学研合作项目 (HFZL2019 CXY015)
详细信息
    通讯作者:

    李亚智,博士研究生,教授,博士生导师,研究方向为复合材料及其结构力学性能、结构疲劳与断裂、飞机结构耐久性/损伤容限, E-mail: yazhi.li@nwpu.edu.cn

  • 中图分类号: TB331

Study on the high cycle fatigue properties of in-situ TiB2/7050 composite

Funds: National Science and Technology Major Project (J2019-I-0016-0015); Aero Engine Corporation of China Industry-University-Research Cooperation Project (No. HFZL2019 CXY015)
  • 摘要: 陶瓷颗粒增强铝基复合材料是一种将单一或多种陶瓷颗粒通过物理(外加,非原位合成)或化学(原位自生)反应合成方式融入铝合金材料中形成的多相材料,结合了陶瓷材料高硬度、耐高温、耐腐蚀等和铝合金材料良好的韧性和塑性加工特性等的性能特点,具有高比强度、高比刚度、广泛的合金基体选择范围、原材料成本低、制造和热处理工艺多样化等优势,且具有良好的抗疲劳、耐磨损、导电性和导热性,受到了工业界的广泛关注。原位自生TiB2/Al复合材料为我国自主研发的新型铝基复合材料,是我国自主研发大飞机起落架与机身的连接结构和民用大涵道比涡扇发动机的风扇和压气机叶片机等重大装备的潜在结构材料。然而,该材料的疲劳特性研究尚不完善,疲劳试验数据还不够充分。本文以颗粒体积分数为3.67%的原位自生TiB2/7050复合材料(in-situ TiB2/7050)为研究对象,开展了其高周疲劳特性试验研究,并与7050铝合金(7050-Al)进行对比。试验结果表明,在相同的疲劳载荷下,in-situ TiB2/7050的疲劳寿命明显高于7050-Al;应力比为0.1和0.5时,复合材料的疲劳极限较7050铝合金分别提高了24.59%和13.56%。以上结果说明TiB2颗粒引入后,in-situ TiB2/7050的疲劳裂纹萌生阻抗显著增加。开展了不同应力集中系数下的疲劳寿命对比,结果表明颗粒引入后一定程度上限制了复合材料基体的塑性变形而提高了其缺口敏感性,因此in-situ TiB2/7050缺口敏感性高于7050铝合金;尽管如此,in-situ TiB2/7050在存在缺口情况下的寿命仍高于7050铝合金。上述研究表明,in-situ TiB2/7050是一种潜在的新型航空结构轻量化材料,有望代替传统铝合金,实现结构静强度和疲劳性能的共同提升。in-situ TiB2/7050和7050-Al疲劳寿命曲线对比: (a) R=0.1; (b) R=0.5不同应力比下疲劳寿命曲线对比: (a) in-situ TiB2/7050; (b) 7050-Al.

     

  • 图  1  高周疲劳试样形状及尺寸(单位:mm)

    Figure  1.  Geometry of high cycle fatigue specimen (Unit: mm)

    图  2  环槽缺口试件形式和尺寸:(a) V型缺口,R0.2;(b) 圆弧缺口,R1和R3(单位:mm)

    Figure  2.  Geometry of notched specimens: (a) V-type notch, notch root radius R0.2; (b) Arc notch, notch radius R1 and R3 (Unit: mm)

    图  3  环槽缺口试样最小截面沿径向由中心至缺口应力分布变化

    Figure  3.  Tensile stress distributions of notched bar specimens from center to notch edge of the minimum section

    图  4  HCF典型断口形貌,疲劳裂纹萌生于: (a)和(b) in-situ TiB2/7050,近表面夹杂处萌生和表面萌生; (c) 7050-Al,表面萌生

    Figure  4.  Fatigue fractography, cracks initiate sites: (a) and (b) in-situ TiB2/7050, near surface and surface; (c) 7050-Al, surface.

    图  5  in-situ TiB2/7050近表面夹杂疲劳裂纹源扫描电镜图: (a) 二次电子模式; (b) 背散模式; (c) 图(b)中箭头所示部位EDS元素分析

    Figure  5.  SEM photographs of a fatigue crack initiated from a near-surface inclusion in the in-situ TiB2/7050: (a) SE mode; (b) BSE mode; (c) EDS element analysis of the site in (b) pointed by arrow

    图  6  in-situ TiB2/7050高周疲劳断口疲劳辉纹

    Figure  6.  The typical fatigue striation of in-situ TiB2/7050 in HCF fracture surface

    图  7  in-situ TiB2/7050和7050-Al疲劳寿命曲线对比: (a) R=0.1; (b) R=0.5

    Figure  7.  S-N curves of in-situ TiB2/7050 and 7050-Al: (a) R=0.1; (b) R=0.5

    图  8  不同应力比下疲劳寿命曲线对比: (a) in-situ TiB2/7050; (b) 7050-Al

    Figure  8.  The S-N curves comparison of different stress ratio: (a) in-situ TiB2/7050; (b) 7050-Al

    图  9  缺口试样NRB-R3的典型疲劳断口(裂纹从表面起始),(a) in-situ TiB2/7050; (b) 7050-Al

    Figure  9.  Typical fatigue fractography of NRB-R3 specimens (initiated from surfaces): (a) in-situ TiB2/7050; (b) 7050-Al

    图  10  不同应力集中系数下疲劳寿命对比: (a) 7050-Al; (b) in-situ TiB2/7050

    Figure  10.  The S-N curves comparison at different stress concentration: (a) 7050-Al; (b) in-situ TiB2/7050

    表  1  in-situ TiB2/7050和7050-Al拉伸性能

    Table  1.   Tensile properties of in-situ TiB2/7050 and 7050-Al

    MaterialE/GPaσy/MPaσb/MPaδ/%
    in-situ TiB2/705073.21657.53719.756.35
    7050-Al70.27500.43593.4810.93
    Note: E, elastic modulus; σy, yield strength; σb, ultimate strength; δ, elongation.
    下载: 导出CSV

    表  2  环槽缺口圆棒试样分组信息

    Table  2.   Sets of the notched round bar specimens

    R /mmD /mmKt
    0.262.53
    1.061.77
    3.061.37
    Note:R, notch root radius; D, diameter of minimum section; Kt, stress concentration factor.
    下载: 导出CSV

    表  3  成组法疲劳试验结果分析(R=0.1)

    Table  3.   Statistics results of fatigue life by grouping method (R=0.1)

    Material${\sigma _{{\text{max}}}}$/MPaNet$\overline N $/CycleSCov/%
    in-situ TiB2/
    7050
    5304193760.1343.12
    5004345450.0811.79
    4705404400.1072.32
    4404958060.1543.09
    7050-Al4003235430.0581.33
    3706984180.1953.92
    34041754610.0991.89
    320317425840.1332.14
    Note: Net, number of effective tests; $\overline N $, Log. mean life; S, standard deviation; Cov, dispersion coefficients.
    下载: 导出CSV

    表  4  成组法疲劳试验结果分析(R=0.5)

    Table  4.   Statistics results of fatigue life by grouping method (R=0.5)

    Material${\sigma _{{\text{max}}}}$/MPaNet$\overline N $/CycleSCov/%
    in-situ TiB2/
    7050
    5303439310.0400.86
    5003887280.0581.18
    47051006430.1593.17
    450340758380.1111.68
    7050-Al5004343430.0541.18
    4503625690.0881.84
    4303943610.0961.93
    41037955910.0601.02
    下载: 导出CSV

    表  5  升降法疲劳极限结果分析

    Table  5.   The fatigue limit obtained by up-down method

    MaterialRsNep${{\text{σ }}_{\text{f}}}$/MPaS/MPaCov/%
    in-situ TiB2/
    7050
    0.1638010.952.88
    0.56446.6716.333.66
    7050-Al0.14305103.28
    0.56393.337.531.91
    Note: Nep, number of effective matched pairs; ${{\text{σ }}_{\text{f}}}$, fatigue limit; S, standard deviation; Cov, dispersion coefficients.
    下载: 导出CSV

    表  6  in-situ TiB2/7050和7050-Al S-N曲线参数

    Table  6.   Equation parameters of the fitted S-N curves of in-situ TiB2/7050 and 7050-Al

    MaterialRsabc
    in-situ TiB2/70500.1380.284.6306×10−6−0.13448
    0.5446.431.0202×10−5−0.17071
    7050-Al0.1309.131.0565×10−6−0.06955
    0.5401.791.5637×10−5−0.24802
    下载: 导出CSV

    表  7  成组法环槽缺口圆棒疲劳试验结果分析(R=0.1)

    Table  7.   The statistics analysis of fatigue life from notched round bar specimens by grouping method (R=0.1)

    MaterialKt$\mathop {\text{σ }}\nolimits_{{\text{max}}}^{{\text{notch}}} $/MPaNet$\overline N $
    /Cycle
    SCov
    /%
    in-situ TiB2/70501.373404732920.1242.87
    3603439900.0871.88
    3804220790.1523.13
    1.772204296800.0882.33
    2604175640.1052.47
    320358200.0300.68
    2.5312041284240.1322.90
    1604342410.1382.70
    7050-Al1.373208314090.2425.38
    3603250440.0871.98
    400499020.1162.90
    1.772203321840.0431.07
    280397930.0390.87
    2.531203749960.0260.58
    1703340970.0901.84
    下载: 导出CSV
  • [1] LLOYD DJ. Particle reinforced aluminium and magnesium matrix composites[J]. International Materials Reviews,1994,39(1):1-23. doi: 10.1179/imr.1994.39.1.1
    [2] 侯丽丽, 尹志新, 樊新波. 铝基复合材料的研究现状及发展[J]. 热加工工艺, 2008, 37(10):84-88.

    HOU L, YIN Z, FAN X. Study status and progr ess of aluminum matrix composite[J]. Hot Working Technology,2008,37(10):84-88(in Chinese).
    [3] 王宇鑫, 张瑜, 严鹏飞, 等. 铝基复合材料的研究[J]. 上海有色金属, 2010, 31(4):194-198.

    WANG Y, ZHANG Y, YAN P, et al. Development of aluminum matrix composites[J]. Shanghai Nonferrous Metals,2010,31(4):194-198(in Chinese).
    [4] 武高辉, 匡泽洋. 装备升级换代背景下金属基复合材料的发展机遇和挑战[J]. 中国工程科学, 2020, 22(2):79-90.

    WU G, KUANG Z. Opportunities and challenges for metal matrix composites in the context of equipment upgrading[J]. Strategic Study of Chinese Academy of Engineering,2020,22(2):79-90(in Chinese).
    [5] MATIN MA, LU L, GUPTA M. Investigation of the reactions between boron and titanium compounds with magnesium[J]. Scripta Materialia,2001,45(4):479-486. doi: 10.1016/S1359-6462(01)01059-4
    [6] 曹鹏, 曲选辉. 金属基复合材料的原位反应合成技术[J]. 上海有色金属, 1995, 6(4):235-239.

    CAO P, QU X. In-situ reactive synthesis technique of metal-base composite[J]. Shanghai Nonferrous Metals,1995,6(4):235-239(in Chinese).
    [7] DAS K, BANDYOPADHYAY TK, DAS S. A Review on the various synthesis routes of TiC reinforced ferrous based composites[J]. Journal of Materials Science,2002,37(18):3881-3892. doi: 10.1023/A:1019699205003
    [8] KURUVILLA AK, PRASAD KS, BHANUPRASAD VV, et al. Microstructure-property correlation in AlTiB2 (XD) composites[J]. Scripta Metallurgica et Materialia,1990,24(5):873-878. doi: 10.1016/0956-716X(90)90128-4
    [9] CARACOSTAS CA, CHIOU WA, FINE ME, et al. Wear mechanisms during lubricated sliding of XD™ 2024-AlTiB2 metal matrix composites against steel[J]. Scripta Metallurgica et Materialia,1992,27(2):167-172. doi: 10.1016/0956-716X(92)90107-P
    [10] GOTMAN I, KOCZAK MJ, SHTESSEL E. Fabrication of Al matrix in situ composites via self-propagating synthesis[J]. Materials Science and Engineering:A,1994,187(2):189-199. doi: 10.1016/0921-5093(94)90347-6
    [11] CARACOSTAS CA, CHIOU WA, FINE ME, et al. Tribological properties of aluminum alloy matrix TiB2 composite prepared by in situ processing[J]. Metallurgical and Materials Transactions A,1997,28(2):491-502. doi: 10.1007/s11661-997-0150-2
    [12] WANG M, CHEN D, CHEN Z, et al. Mechanical properties of in-situ TiB2/A356 composites[J]. Materials Science & Engineering A,2014,590:246-254.
    [13] GENG J, LIU G, WANG F, et al. Microstructural and mechanical anisotropy of extruded in-situ TiB2/2024 composite plate[J]. Materials Science & Engineering A,2017,687:131-140.
    [14] 谭志刚, 赵兴东, 唐军, 等. TiB2/7050铝基复合材料风扇叶片锻件的研制[J]. 热加工工艺, 2018, 47(11):114-116+119.

    TAN Z, ZHAO X, TANG J, et al. Development of TiB2/7050 aluminium matrix composite Fan blade forgings[J]. Hot Working Technology,2018,47(11):114-116+119(in Chinese).
    [15] 周超羡, 李迪, 廖连芳, 等. TiB2增强铝基复合材料低压压气机静子叶片高循环疲劳试验研究[J]. 航空制造技术, 2018, 61(16):85-90+95.

    ZHOU C, LI D, LIAO L, et al. Study on high cycle fatigue experiment of low pressure compressor stator vanes of TiB2 reinforced aluminum metal matrix composite[J]. Aeronautical Manufacturing Technology,2018,61(16):85-90+95(in Chinese).
    [16] PANDEY AB, MISHRA RS, MAHAJAN YR. High-temperature creep of Al/TiB2 particulate composites[J]. Materials Science and Engineering:A,1994,189(1):95-104.
    [17] WANG F, XU J, LI J, et al. Fatigue crack initiation and propagation in A356 alloy reinforced with in situ TiB2 particles[J]. Materials & Design,2012,33:236-241.
    [18] KARBALAEI AM, BAHARVANDI HR, SHIRVANIMOGHADDAM K. Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites[J]. Materials & Design,2015,66:150-161.
    [19] MA Y, CHEN Z, WANG M, et al. High cycle fatigue behavior of the in-situ TiB2/7050 composite[J]. Materials Science & Engineering A,2015,640:350-356.
    [20] GENG J, LIU G, WANG F, et al. Microstructural correlated damage mechanisms of the high-cycle fatigued in-situ TiB2/Al-Cu-Mg composite[J]. Materials & Design,2017,135:423-438.
    [21] MA Y, GENG J, CHEN Z, et al. Experimental study of the mechanisms of nanoparticle influencing the fatigue crack growth in an in-situ TiB2/Al-Zn-Mg-Cu composite[J]. Engineering Fracture Mechanics,2019,207:23-35. doi: 10.1016/j.engfracmech.2018.12.011
    [22] XIONG Y, WANG W, SHI Y, et al. Fatigue behavior of in-situ TiB2/7050 Al metal matrix composites: Fracture mechanisms and fatigue life modeling after milling[J]. International Journal of Fatigue,2020,138:105698. doi: 10.1016/j.ijfatigue.2020.105698
    [23] GENG J, LI Y, XIAO H, et al. Study fatigue crack initiation in TiB2/Al-Cu-Mg composite by in-situ SEM and X-ray microtomography[J]. International Journal of Fatigue,2021,142:105976. doi: 10.1016/j.ijfatigue.2020.105976
    [24] LIU K, LI Y, DUAN M, et al. Fatigue life prediction of in-situ TiB2/2024 aluminum matrix composite[J]. International Journal of Fatigue,2021,145:106128. doi: 10.1016/j.ijfatigue.2020.106128
    [25] XIONG Y, WANG W, SHI Y, et al. Investigation on surface roughness, residual stress and fatigue property of milling in-situ TiB2/7050 Al metal matrix composites[J]. Chinese Journal of Aeronautics,2021,34(4):451-464. doi: 10.1016/j.cja.2020.08.046
    [26] ASTM E466 Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials[S], 2015.
    [27] 中国国家标准化管理委员会. GB/T 3075 金属材料 疲劳试验 轴向力控制方法[S]. 中国标准出版社, 北京, 2008.

    Standardization Administration of the People’s Republic of China. Metallic materials: Fatigue testing: Axial-force controlled method: GB/T 3075-2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [28] 中华人们共和国航空工业部, HB/Z 112 材料疲劳试验统计分析方法[S]. 航空工业部, 北京, 1986.

    Ministry of Aviation Industry of the People’s Republic of China. HB/Z 112, The statistical analysis method for material fatigue tests[S]. Beijing: Ministry of Aviation Industry, 1986 (in Chinese)
    [29] SUGIMURA Y, SURESH S, Effects of SiC content on fatigue crack growth in aluminum alloys reinforced with SiC particles[J]. Metallurgical Transactions A, 1992, 23(8): 2231-2242.
    [30] PARK BG, CROSKY AG, HELLIER AK. High cycle fatigue behaviour of microsphere Al2O3–Al particulate metal matrix composites[J]. Composites:Part B,2008,39:1257-1269. doi: 10.1016/j.compositesb.2008.01.006
    [31] DUAN M, LI Y, YANG X, et al. Mechanical responses of in-situ TiB2/7050 composite subjected to monotonic and cyclic loadings: A comparative study with 7050-Al,[J]. International Journal of Fatigue,2022,163:107102. doi: 10.1016/j.ijfatigue.2022.107102
    [32] CHAWLA N, HABEL U, SHEN YL, et al. The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix composites[J]. Metallurgical and Materials Transactions A,2000,31(2):531-540. doi: 10.1007/s11661-000-0288-7
    [33] MOHANTY PS, GRUZLESKI JE. Mechanism of grain refinement in aluminium[J]. Acta Metallurgica et Materialia,1995,43(5):2001-2012. doi: 10.1016/0956-7151(94)00405-7
    [34] WANG C, WANG M, YU B, et al. The grain refinement behavior of TiB2 particles prepared with in situ technology[J]. Materials Science and Engineering:A,2007,459(1-2):238-243. doi: 10.1016/j.msea.2007.01.013
    [35] ARMSTRONG RW. The influence of polycrystal grain size on several mechanical properties of materials[J]. Metallurgical and Materials Transactions B,1970,1(5):1169-1176. doi: 10.1007/BF02900227
    [36] THOMPSON AW, BACKOFEN WA. The effect of grain size on fatigue[J]. Acta Metallurgica,1971,19(7):597-606. doi: 10.1016/0001-6160(71)90012-5
    [37] TURNBULL A, DE LOS RIOS ER. The Effect of Grain Size on Fatigue Crack Growth in an Aluminium Magnesium Alloy[J]. Fatigue & Fracture of Engineering Materials and Structures,1995,18(11):1355-1366.
    [38] MA ZY, LI JH, LI SX, et al. Property-microstructure correlation in in situ formed Al2O3, TiB2 and Al3Ti mixture-reinforced aluminium composites[J]. Journal of Materials Science,1996,31(3):741-747. doi: 10.1007/BF00367894
    [39] LU L, LAI MO, CHEN FL. Al-4 wt% Cu Composite reinforced with in-situ TiB2 particles[J]. Acta Materialia,1997,45(10):4297-4309. doi: 10.1016/S1359-6454(97)00075-X
  • 加载中
计量
  • 文章访问数:  111
  • HTML全文浏览量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17
  • 修回日期:  2022-12-16
  • 录用日期:  2022-12-17
  • 网络出版日期:  2023-01-18

目录

    /

    返回文章
    返回