留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位自生TiB2/7050铝基复合材料高周疲劳特性

段敏鸽 李晨 李彪 李亚智

段敏鸽, 李晨, 李彪, 等. 原位自生TiB2/7050铝基复合材料高周疲劳特性[J]. 复合材料学报, 2023, 40(11): 6430-6438. doi: 10.13801/j.cnki.fhclxb.20230112.001
引用本文: 段敏鸽, 李晨, 李彪, 等. 原位自生TiB2/7050铝基复合材料高周疲劳特性[J]. 复合材料学报, 2023, 40(11): 6430-6438. doi: 10.13801/j.cnki.fhclxb.20230112.001
DUAN Minge, LI Chen, LI Biao, et al. Study on the high cycle fatigue properties of in-situ TiB2/7050 composite[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6430-6438. doi: 10.13801/j.cnki.fhclxb.20230112.001
Citation: DUAN Minge, LI Chen, LI Biao, et al. Study on the high cycle fatigue properties of in-situ TiB2/7050 composite[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6430-6438. doi: 10.13801/j.cnki.fhclxb.20230112.001

原位自生TiB2/7050铝基复合材料高周疲劳特性

doi: 10.13801/j.cnki.fhclxb.20230112.001
基金项目: 国家科技重大专项(J2019-I-0016-0015);中国航空发动机集团产学研合作项目(HFZL2019 CXY015)
详细信息
    通讯作者:

    李亚智,博士,教授,博士生导师,研究方向为复合材料及其结构力学性能、结构疲劳与断裂、飞机结构耐久性/损伤容限E-mail: yazhi.li@nwpu.edu.cn

  • 中图分类号: TB331

Study on the high cycle fatigue properties of in-situ TiB2/7050 composite

Funds: National Science and Technology Major Project (J2019-I-0016-0015); Aero Engine Corporation of China Industry-University-Research Cooperation Project (HFZL2019 CXY015)
  • 摘要: 原位自生TiB2/Al复合材料是一类新型铝基复合材料,结合了陶瓷材料高硬度、耐高温、耐腐蚀等和铝合金材料良好的韧性和塑性加工特性等的性能特点,具有高比强度、高比刚度、广泛的合金基体选择范围、原材料成本低、制造和热处理工艺多样化等优势。然而,目前原位自生TiB2/Al复合材料的疲劳研究多侧重于微观机制研究,疲劳特性鲜有涉及应力比和缺口敏感性的讨论。以体积分数为3.67vol%的原位自生TiB2颗粒增强7050铝基复合材料(in-situ TiB2/7050-Al)为研究对象,开展了其高周疲劳特性试验研究,并与不含颗粒的7050铝合金进行对比。试验结果表明:在相同的疲劳载荷下,in-situ TiB2/7050-Al的疲劳强度明显大于7050铝合金;应力比为0.1和0.5时,该复合材料的疲劳极限较7050铝合金分别提高了24.59%和13.56%。进行了不同应力集中系数下的疲劳寿命对比,结果表明颗粒引入后一定程度上限制了复合材料基体的塑性变形,提高了其缺口敏感性。尽管如此,in-situ TiB2/7050-Al在存在缺口情况下的疲劳寿命仍高于7050铝合金。in-situ TiB2/7050-Al作为一种新型轻量化结构材料,有望代替传统铝合金,实现结构静强度和疲劳性能的共同提升。

     

  • 图  1  高周疲劳试样形状及尺寸

    $\phi $—Diameter; R—Radius

    Figure  1.  Geometry of high cycle fatigue specimen

    图  2  环槽缺口试件形式和尺寸:(a) V型缺口;(b) 圆弧缺口

    Figure  2.  Geometry of notched specimens: (a) V-type notch; (b) Arc notch

    图  3  环槽缺口试样最小截面沿径向由中心至缺口应力分布变化

    Figure  3.  Tensile stress distributions of notched bar specimens from center to notch edge of the minimum section

    图  4  高周疲劳典型断口形貌,疲劳裂纹萌生位置: (a) in-situ TiB2/7050-Al近表面夹杂处;(b) in-situ TiB2/7050-Al 表面处;(c) 7050-Al 表面处

    Figure  4.  Typical high cycle fatigue fractography of cracks initiation sites: (a) From near surface for in-situ TiB2/7050-Al; (b) Surface for in-situ TiB2/7050-Al; (c) Surface for 7050-Al

    图  5  in-situ TiB2/7050-Al近表面夹杂疲劳裂纹源扫描电镜图像: (a) 二次电子模式;(b) 背散模式;(c) 图5(b)中箭头所示部位EDS元素分析

    Figure  5.  SEM images of a fatigue crack initiated from a near-surface inclusion in the in-situ TiB2/7050-Al: (a) Secondary electron mode; (b) Backscattered electron mode; (c) EDS element analysis of the site in Fig.5(b) pointed by arrow

    图  6  in-situ TiB2/7050-Al高周疲劳(HCF)断口疲劳辉纹

    Figure  6.  Typical fatigue striation of in-situ TiB2/7050-Al in high-cycle fatigue (HCF) fracture surface

    图  7  in-situ TiB2/7050-Al和7050-Al的S-N曲线对比

    Figure  7.  Comparison of S-N curves for in-situ TiB2/7050-Al and 7050-Al

    图  8  不同应力比下S-N曲线对比

    Figure  8.  S-N curves comparison of different stress ratio

    图  9  缺口试样NRB-R3的典型疲劳断口(裂纹从表面起始):(a) in-situ TiB2/7050-Al;(b) 7050-Al

    Figure  9.  Typical fatigue fractography of NRB-R3 specimens (Initiated from surfaces): (a) in-situ TiB2/7050-Al; (b) 7050-Al

    图  10  不同应力集中系数下S-N曲线对比

    Figure  10.  S-N curves comparison at different stress concentration

    表  1  原位自生TiB2颗粒增强7050铝基复合材料(in-situ TiB2/7050-Al)和7050-Al拉伸性能

    Table  1.   Tensile properties of in-situ TiB2 particle reinforced 7050 aluminum alloy composite (in-situ TiB2/7050-Al) and 7050-Al

    MaterialE/GPaσy/MPaσb/MPaδ/%
    in-situ TiB2/7050-Al73.21657.53719.75 6.35
    7050-Al70.27500.43593.4810.93
    Notes: E—Elastic modulus; σy—Yield strength; σb—Ultimate strength; δ—Elongation.
    下载: 导出CSV

    表  2  环槽缺口圆棒试样分组信息

    Table  2.   Sets of the notched round bar specimens

    SpecimenR/mmD/mmKt
    NRB-R0.20.262.53
    NRB-R11.061.77
    NRB-R33.061.37
    Notes: NRB—Notched round bar; D—Diameter of minimum section; Kt—Stress concentration factor.
    下载: 导出CSV

    表  3  两种材料成组法疲劳试验结果分析(Rs=0.1)

    Table  3.   Statistics results of fatigue life for two materials by grouping method (Rs=0.1)

    Material${\sigma _{{\text{max}}}}$/MPaNet$\overline N $/cycleSCov/%
    in-situ TiB2/
    7050-Al
    530 4 19376 0.134 3.12
    500 4 34545 0.081 1.79
    470 5 40440 0.107 2.32
    440 4 95806 0.154 3.09
    7050-Al 400 3 23543 0.058 1.33
    370 6 98418 0.195 3.92
    340 4 175461 0.099 1.89
    320 3 1742584 0.133 2.14
    Notes: Rs—Stress ratio; Net—Number of effective specimens; $\overline N $—Logrithimic mean life; S—Standard deviation; Cov—Dispersion coefficients; σmax—Maximum level of a stress cycle.
    下载: 导出CSV

    表  4  两种材料成组法疲劳试验结果分析(Rs=0.5)

    Table  4.   Statistics results of fatigue life for two materials by grouping method (Rs=0.5)

    Material${\sigma _{{\text{max}}}}$/MPaNet$\overline N $/cycleSCov/%
    in-situ TiB2/
    7050-Al
    530 3 43931 0.040 0.86
    500 3 88728 0.058 1.18
    470 5 100643 0.159 3.17
    450 3 4075838 0.111 1.68
    7050-Al 500 4 34343 0.054 1.18
    450 3 62569 0.088 1.84
    430 3 94361 0.096 1.93
    410 3 795591 0.060 1.02
    下载: 导出CSV

    表  5  升降法疲劳极限结果分析

    Table  5.   Fatigue limit obtained by up-down method

    MaterialRsNepσf/MPaS/MPaCov/%
    in-situ TiB2/7050-Al0.16380.0010.952.88
    0.56446.6716.333.66
    7050-Al0.14305.0010.003.28
    0.56393.33 7.531.91
    Notes: Nep—Number of effective matched pairs; σf—Fatigue limit.
    下载: 导出CSV

    表  6  in-situ TiB2/7050-Al和7050-Al的疲劳强度-寿命(S-N)曲线参数

    Table  6.   Equation parameters of the fitted fatigue strength-life (S-N) curves of in-situ TiB2/7050-Al and 7050-Al

    MaterialRsabc
    in-situ TiB2/7050-Al0.1380.284.6306×10−6−0.13448
    0.5446.431.0202×10−5−0.17071
    7050-Al0.1309.131.0565×10−6−0.06955
    0.5401.791.5637×10−5−0.24802
    Notes: a, b, c—Parameters in Equation (1).
    下载: 导出CSV

    表  7  成组法环槽缺口圆棒疲劳试验结果分析(Rs=0.1)

    Table  7.   Statistics analysis of fatigue life from notched round bar specimens by grouping method (Rs=0.1)

    MaterialKt$\mathop {\sigma }\nolimits_{{\text{net}}}^{{\text{max}}} $/MPaNet$\overline N $/cycleSCov
    /%
    in-situ
    TiB2/
    7050-Al
    1.37 340 4 73292 0.124 2.87
    360 3 43990 0.087 1.88
    380 4 22079 0.152 3.13
    1.77 220 4 29680 0.088 2.33
    260 4 17564 0.105 2.47
    320 3 5820 0.030 0.68
    2.53 120 4 128424 0.132 2.90
    160 4 34241 0.138 2.70
    7050-Al 1.37 320 8 31409 0.242 5.38
    360 3 25044 0.087 1.98
    400 4 9902 0.116 2.90
    1.77 220 3 32184 0.043 1.07
    280 3 9793 0.039 0.87
    2.53 120 3 74996 0.026 0.58
    170 3 34097 0.090 1.84
    Note: $\mathop {\sigma }\nolimits_{{\text{net}}}^{{\text{max}}} $—Maximum net section stress of a stress cycle.
    下载: 导出CSV
  • [1] LLOYD D J. Particle reinforced aluminium and magnesium matrix composites[J]. International Materials Reviews,1994,39(1):1-23. doi: 10.1179/imr.1994.39.1.1
    [2] 侯丽丽, 尹志新, 樊新波. 铝基复合材料的研究现状及发展[J]. 热加工工艺, 2008, 37(10):84-88.

    HOU Lili, YIN Zhixin, FAN Xinbo. Study status and progress of aluminum matrix composite[J]. Hot Working Technology,2008,37(10):84-88(in Chinese).
    [3] 王宇鑫, 张瑜, 严鹏飞, 等. 铝基复合材料的研究[J]. 上海有色金属, 2010, 31(4):194-198.

    WANG Yuxin, ZHANG Yu, YAN Pengfei, et al. Development of aluminum matrix composites[J]. Shanghai Nonferrous Metals,2010,31(4):194-198(in Chinese).
    [4] 武高辉, 匡泽洋. 装备升级换代背景下金属基复合材料的发展机遇和挑战[J]. 中国工程科学, 2020, 22(2):79-90.

    WU Gaohui, KUANG Zeyang. Opportunities and challenges for metal matrix composites in the context of equipment upgrading[J]. Strategic Study of Chinese Academy of Engineering,2020,22(2):79-90(in Chinese).
    [5] MATIN M A, LU L, GUPTA M. Investigation of the reactions between boron and titanium compounds with magnesium[J]. Scripta Materialia,2001,45(4):479-486. doi: 10.1016/S1359-6462(01)01059-4
    [6] 曹鹏, 曲选辉. 金属基复合材料的原位反应合成技术[J]. 上海有色金属, 1995, 16(4):235-239.

    CAO Peng, QU Xuanhui. In-situ reactive synthesis technique of metal-base composite[J]. Shanghai Nonferrous Metals,1995,16(4):235-239(in Chinese).
    [7] DAS K, BANDYOPADHYAY T K, DAS S. A review on the various synthesis routes of TiC reinforced ferrous based composites[J]. Journal of Materials Science,2002,37(18):3881-3892. doi: 10.1023/A:1019699205003
    [8] KURUVILLA A K, PRASAD K S, BHANUPRASAD V V, et al. Microstructure-property correlation in AlTiB2 (XD) composites[J]. Scripta Metallurgica et Materialia,1990,24(5):873-878. doi: 10.1016/0956-716X(90)90128-4
    [9] CARACOSTAS C A, CHIOU W A, FINE M E, et al. Wear mechanisms during lubricated sliding of XD™ 2024-Al TiB2 metal matrix composites against steel[J]. Scripta Metallurgica et Materialia,1992,27(2):167-172. doi: 10.1016/0956-716X(92)90107-P
    [10] GOTMAN I, KOCZAK M J, SHTESSEL E. Fabrication of Al matrix in situ composites via self-propagating synthesis[J]. Materials Science and Engineering A,1994,187(2):189-199. doi: 10.1016/0921-5093(94)90347-6
    [11] CARACOSTAS C A, CHIOU W A, FINE M E, et al. Tribological properties of aluminum alloy matrix TiB2 composite prepared by in situ processing[J]. Metallurgical and Materials Transactions A,1997,28(2):491-502. doi: 10.1007/s11661-997-0150-2
    [12] WANG M L, CHEN D, CHEN Z, et al. Mechanical properties of in-situ TiB2/A356 composites[J]. Materials Science and Engineering A,2014,590:246-254.
    [13] GENG J W, LIU G, WANG F F, et al. Microstructural and mechanical anisotropy of extruded in-situ TiB2/2024 composite plate[J]. Materials Science and Engineering A,2017,687:131-140.
    [14] 谭志刚, 赵兴东, 唐军, 等. TiB2/7050铝基复合材料风扇叶片锻件的研制[J]. 热加工工艺, 2018, 47(11):114-116, 119.

    TAN Zhigang, ZHAO Xingdong, TANG Jun, et al. Development of TiB2/7050 aluminium matrix composite Fan blade forgings[J]. Hot Working Technology,2018,47(11):114-116, 119(in Chinese).
    [15] 周超羡, 李迪, 廖连芳, 等. TiB2增强铝基复合材料低压压气机静子叶片高循环疲劳试验研究[J]. 航空制造技术, 2018, 61(16):85-90, 95.

    ZHOU Chaoxian, LI Di, LIAO Lianfang, et al. Study on high cycle fatigue experiment of low pressure compressor stator vanes of TiB2 reinforced aluminum metal matrix compo-site[J]. Aeronautical Manufacturing Technology,2018,61(16):85-90, 95(in Chinese).
    [16] PANDEY A B, MISHRA R S, MAHAJAN Y R. High-tempera-ture creep of Al/TiB2 particulate composites[J]. Materials Science and Engineering A,1994,189(1):95-104.
    [17] WANG F F, XU J M, LI J G, et al. Fatigue crack initiation and propagation in A356 alloy reinforced with in situ TiB2 particles[J]. Materials & Design,2012,33:236-241.
    [18] KARBALAEI A M, BAHARVANDI H R, SHIRVANIMOGHADDAM K. Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy compo-sites[J]. Materials & Design,2015,66:150-161.
    [19] MA Y, CHEN Z, WANG M L, et al. High cycle fatigue behavior of the in-situ TiB2/7050 composite[J]. Materials Science and Engineering A,2015,640:350-356.
    [20] GENG J W, LIU G, WANG F F, et al. Microstructural correlated damage mechanisms of the high-cycle fatigued in-situ TiB2/Al-Cu-Mg composite[J]. Materials & Design,2017,135:423-438.
    [21] MA Y, GENG J W, CHEN Z, et al. Experimental study of the mechanisms of nanoparticle influencing the fatigue crack growth in an in-situ TiB2/Al-Zn-Mg-Cu composite[J]. Engineering Fracture Mechanics,2019,207:23-35. doi: 10.1016/j.engfracmech.2018.12.011
    [22] XIONG Y F, WANG W H, SHI Y Y, et al. Fatigue behavior of in-situ TiB2/7050 Al metal matrix composites: Fracture mechanisms and fatigue life modeling after milling[J]. International Journal of Fatigue,2020,138:105698. doi: 10.1016/j.ijfatigue.2020.105698
    [23] GENG J W, LI Y G, XIAO H Y, et al. Study fatigue crack initiation in TiB2/Al-Cu-Mg composite by in-situ SEM and X-ray microtomography[J]. International Journal of Fatigue,2021,142:105976. doi: 10.1016/j.ijfatigue.2020.105976
    [24] LIU K, LI Y Z, DUAN M G, et al. Fatigue life prediction of in-situ TiB2/2024 aluminum matrix composite[J]. International Journal of Fatigue,2021,145:106128. doi: 10.1016/j.ijfatigue.2020.106128
    [25] XIONG Y F, WANG W H, SHI Y Y, et al. Investigation on surface roughness, residual stress and fatigue property of milling in-situ TiB2/7050Al metal matrix composites[J]. Chinese Journal of Aeronautics,2021,34(4):451-464. doi: 10.1016/j.cja.2020.08.046
    [26] American Society for Testing and Materials. Standard practice for conducting force controlled constant amplitude axial fatigue tests of metallic materials: ASTM E466[S]. West Conshohocken: ASTM international, 2015.
    [27] 中国国家标准化管理委员会. 金属材料 疲劳试验 轴向力控制方法: GB/T 3075[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Metallic materials: Fatigue testing: Axial-force controlled method: GB/T 3075[S]. Beijing: China Standards Press, 2008(in Chinese).
    [28] 中华人民共和国航空工业部. 材料疲劳试验统计分析方法: HB/Z 112[S]. 北京: 航空工业部, 1986.

    Ministry of Aviation Industry of the People’s Republic of China. The statistical analysis method for material fatigue tests: HB/Z 112[S]. Beijing: Ministry of Aviation Industry, 1986(in Chinese).
    [29] SUGIMURA Y, SURESH S. Effects of SiC content on fatigue crack growth in aluminum alloys reinforced with SiC particles[J]. Metallurgical Transactions A, 1992, 23(8): 2231-2242.
    [30] PARK B G, CROSKY A G, HELLIER A K. High cycle fatigue behaviour of microsphere Al2O3-Al particulate metal matrix composites[J]. Composites Part B: Engineering,2008,39(7-8):1257-1269. doi: 10.1016/j.compositesb.2008.01.006
    [31] DUAN M G, LI Y Z, YANG X, et al. Mechanical responses of in-situ TiB2/7050 composite subjected to monotonic and cyclic loadings: A comparative study with 7050-Al[J]. International Journal of Fatigue,2022,163:107102. doi: 10.1016/j.ijfatigue.2022.107102
    [32] CHAWLA N, HABEL U, SHEN Y L, et al. The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix composites[J]. Metallurgical and Materials Transactions A,2000,31(2):531-540. doi: 10.1007/s11661-000-0288-7
    [33] MOHANTY P S, GRUZLESKI J E. Mechanism of grain refinement in aluminium[J]. Acta Metallurgica et Materialia,1995,43(5):2001-2012. doi: 10.1016/0956-7151(94)00405-7
    [34] WANG C L, WANG M X, YU B H, et al. The grain refinement behavior of TiB2 particles prepared with in situ technology[J]. Materials Science and Engineering: A,2007,459(1-2):238-243. doi: 10.1016/j.msea.2007.01.013
    [35] ARMSTRONG R W. The influence of polycrystal grain size on several mechanical properties of materials[J]. Metallurgical and Materials Transactions B,1970,1(5):1169-1176. doi: 10.1007/BF02900227
    [36] THOMPSON A W, BACKOFEN W A. The effect of grain size on fatigue[J]. Acta Metallurgica,1971,19(7):597-606. doi: 10.1016/0001-6160(71)90012-5
    [37] TURNBULL A, DE LOS RIOS E R. The effect of grain size on fatigue crack growth in an aluminium magnesium alloy[J]. Fatigue & Fracture of Engineering Materials and Structures,1995,18(11):1355-1366.
    [38] MA Z Y, LI J H, LI S X, et al. Property-microstructure correlation in in situ formed Al2O3, TiB2 and Al3Ti mixture-reinforced aluminium composites[J]. Journal of Materials Science,1996,31(3):741-747. doi: 10.1007/BF00367894
    [39] LU L, LAI M O, CHEN F L. Al-4wt%Cu composite reinforced with in-situ TiB2 particles[J]. Acta Materialia,1997,45(10):4297-4309. doi: 10.1016/S1359-6454(97)00075-X
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  585
  • HTML全文浏览量:  300
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17
  • 修回日期:  2022-12-16
  • 录用日期:  2022-12-17
  • 网络出版日期:  2023-01-12
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回