Graphene oxide membranes intercalated with strong polyelectrolytes toward high-output osmotic energy harvesting
-
摘要: 二维纳米片有序组装形成的二维纳米通道薄膜由于其可控的通道高度和密集有序的孔道排列有望形成高性能盐差发电器件。然而,常规二维纳米通道薄膜受限于纳米片有限的极性基团密度,无法在通道内部有效富集反离子,导致其内部载流子浓度较低从而离子通量较差,严重限制了这类薄膜的盐差能输出功率密度。将氧化石墨烯(GO)纳米片与聚苯乙烯磺酸钠(PSS)充分混合,利用定向流场驱动两者自发有序堆叠构筑具有二维层状通道和高电荷密度的GO-PSS复合纳米通道薄膜。研究对比GO-PSS复合薄膜和常规GO薄膜的离子传输行为和盐差发电性能,考察离子强度、盐差度、PSS复合量、聚电解质类型等因素对薄膜离子传输行为和盐差发电性能的影响规律。研究表明,GO-PSS复合薄膜比常规GO薄膜具有更优异的离子选择性、离子通过量和盐差发电性能。在PSS含量为65wt%时,GO-PSS复合薄膜的输出功率密度高达11.27 W·m−2,远高于常规GO薄膜的3.37 W·m−2,说明复合强聚电解质是解决二维纳米通道薄膜功率密度低等问题的可行途径。Abstract: Two-dimensional nanochannel membranes offer great opportunities for developing efficient and robust devices for osmotic energy harvesting. However, low counterion concentration associated with the low charge density of nanosheets restricts their output performance. Herein, graphene oxide (GO) and poly(sodium 4-styrenesulfonate) (PSS) were assembled into composite nanochannel membranes featuring two-dimensional (2D) channels intercalated with abundant surface charges. The effect of ionic strength, salt concentration gradient, PSS content, and polyelectrolyte type on the transmembrane ionic transportation and osmotic energy harvesting of GO-PSS composite membranes was investigated. In contrast to pristine GO membranes, the incorporation of PSS simultaneously improves the ionic permeability and ion selectivity of GO-PSS composite membranes, thus leading to its higher output power density than that of pristine GO membranes. The GO-PSS composite membranes offer an output power density up to 11.27 W·m−2 by mixing seawater and river water, much higher than 3.37 W·m−2 of conventional GO membranes. This work highlights the significance of charge density and presents a general strategy for effectively improving ion transport through two-dimensional nanochannel membranes for high-output osmotic energy harvesting.
-
Key words:
- graphene oxide /
- nanochannels /
- polyelectrolyte /
- charge density /
- osmotic energy /
- layered structure
-
图 1 (a) 氧化石墨烯(GO)-聚苯乙烯磺酸钠(PSS)-55%薄膜的外观图像;(b) GO-PSS-55%薄膜的SEM断面图;(c) GO薄膜和GO-PSS复合薄膜的XRD图谱;(d) GO薄膜和GO-PSS复合薄膜的表面电位
Figure 1. (a) Photograph of graphene oxide (GO)- poly(sodium 4-styrenesulfonate) (PSS)-55% membrane; (b) SEM image of GO-PSS-55% membrane; (c) XRD patterns of pristine GO membrane and GO-PSS-55% membrane; (d) zeta potentials of GO-PSS composite membranes with different PSS contents
图 2 (a) GO薄膜和GO-PSS复合薄膜在浓度为1 mmol·L−1的KCl溶液中的电压扫描曲线;(b) GO薄膜和GO-PSS复合薄膜在不同KCl浓度中的跨膜电导
Figure 2. (a) Current−voltage curves of GO membrane and GO-PSS composite membranes recorded in 1 mmol·L−1 KCl solution; (b) ionic conductance of GO membrane and GO-PSS composite membranes as a function of KCl concentration
图 4 (a) GO薄膜和GO-PSS-65%薄膜在50倍盐度差条件下的I值和P值随着外加负载的变化;(b) GO薄膜和GO-PSS复合薄膜在50倍盐度差条件下的P值变化;(c) GO-PSS-65%薄膜在50倍盐度差条件下的持续功率输出情况
Figure 4. (a) Current density and power density of GO membrane and GO-PSS-65% membrane as a function of RL under a concentration gradient of 0.01/0.5 mol·L−1 NaCl; (b) power density of GO-PSS composite membranes with different PSS contents; (c) power output variation of GO-PSS-65% membrane over time at a 50-fold concentration gradient
图 5 (a) GO-PSS-55%、GO-PAA-55%和 GO-PVA-55%薄 膜在 50 倍盐度差条件下的 I 值随着外加负载的变化;(b) 三种薄膜在 50 倍盐度差条件下的 P 值随着外加负载的变 化;(c) GO-PSS-55%薄膜与已报道的二维纳米通道薄膜 之间的性能比较
Figure 5. (a) I values of GO-PSS-55%, GO-PAA-55%, and GO-PVA-55% membranes as a function of RL under a concentration gradient of 0.01/0.5 mol·L−1 NaCl; (b) P values of these three membranes calculated from the I values; (c) comparison of GO-PSS-55% with the state-of-art two-dimensional nanochannel membranes in terms of converting osmotic energy from a concentration gradient of 0.01/0.5 mol·L−1 NaCl
-
[1] HUANG Z, FANG M, TU B, et al. Essence of the enhanced osmotic energy conversion in a covalent organic framework monolayer[J]. ACS Nano 2022, 16(10): 17149-17156. [2] TONG X, LIU S, CRITTENDEN J, et al. Nanofluidic membranes to address the challenges of salinity gradient power harvesting[J]. ACS Nano 2021, 15(4): 5838-5860. [3] ZHANG Z, WEN L, JIANG L. Nanofluidics for osmotic energy conversion[J]. Nature Reviews Materials 2021, 6(7): 622-639. [4] EPSZTEIN R, DUCHANOIS R M, RITT C L, et al. Towards single-species selectivity of membranes with subnanometre pores[J]. Nature Nanotechnology 2020, 15(6): 426-436. [5] BOCQUET L. Nanofluidics coming of age[J]. Nature Materials 2020, 19(3): 254-256. [6] PAN S, LIU P, LI Q, et al. Toward scalable nanofluidic osmotic power generation from hypersaline water sources with a metal-organic framework membrane[J]. Angewandte Chemie International Edition 2023, 62(19): e202218129. [7] CHEN X-C, ZHANG H, LIU S-H, et al. Engineering polymeric nanofluidic membranes for efficient ionic transport: Biomimetic design, material construction, and advanced functionalities[J]. ACS Nano 2022, 16(11): 17613-17640. [8] FANG M, YAN Z, YING Y, et al. Boosting osmotic energy harvesting from organic solutions by ultrathin covalent organic framework membranes[J]. Nano Letters 2024, 24(15): 4618-4624. [9] MARBACH S, BOCQUET L. Osmosis, from molecular insights to large-scale applications[J]. Chemical Society Reviews 2019, 48(11): 3102-3144. [10] GAO J, FENG Y, GUO W, et al. Nanofluidics in two-dimensional layered materials: Inspirations from nature[J]. Chemical Society Reviews 2017, 46(17): 5400-5424. [11] YAN P P, CHEN X C, LIANG Z X, et al. Two-dimensional nanofluidic membranes with intercalated in-plane shortcuts for high-performance blue energy harvesting[J]. Small 2023, 19(4): 2205003. [12] LIU S H, ZHANG D, FANG Y P, et al. Topologically programmed graphene oxide membranes with bioinspired superstructures toward boosting osmotic energy harvesting[J]. Advanced Functional Materials 2023, 33(8): 2211532. [13] ANDREEVA D V, TRUSHIN M, NIKITINA A, et al. Two-dimensional adaptive membranes with programmable water and ionic channels[J]. Nature Nanotechnology 2021, 16(2): 174-180. [14] MACHA M, MARION S, NANDIGANA V V R, et al. 2D materials as an emerging platform for nanopore-based power generation[J]. Nature Reviews Materials 2019, 4(9): 588-605. [15] ZHANG X, TU B, CAO Z, et al. Anomalous mechanical and electrical interplay in a covalent organic framework monolayer membrane[J]. Journal of the American Chemical Society 2023, 145(32): 17786-17794. [16] ZHANG Z, YANG S, ZHANG P, et al. Mechanically strong mxene/kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators[J]. Nature Communications 2019, 10(1): 2920. [17] CHU C W, FAUZIAH A R, YEH L H. Optimizing membranes for osmotic power generation[J]. Angewandte Chemie International Edition 2023, 62(26): e202303582. [18] XIN W, JIANG L, WEN L. Two-dimensional nanofluidic membranes toward harvesting salinity gradient power[J]. Accounts of Chemical Research 2021, 54(22): 4154-4165. [19] MAN Z, SAFAEI J, ZHANG Z, et al. Serosa-mimetic nanoarchitecture membranes for highly efficient osmotic energy generation[J]. Journal of the American Chemical Society 2021, 143(39): 16206-16216. [20] WANG H, SU L, YAGMURCUKARDES M, et al. Blue energy conversion from holey-graphene-like membranes with a high density of subnanometer pores[J]. Nano Letters 2020, 20(12): 8634-8639. [21] LIU Y-C, YEH L-H, ZHENG M-J, et al. Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks[J]. Science Advances 2021, 7eabe9924. [22] YANG J, TU B, ZHANG G, et al. Advancing osmotic power generation by covalent organic framework monolayer[J]. Nature Nanotechnology 2022, 17(6): 622-628. [23] LIU X, HE M, CALVANI D, et al. Power generation by reverse electrodialysis in a single-layer nanoporous membrane made from core-rim polycyclic aromatic hydrocarbons[J]. Nature Nanotechnology 2020, 15(4): 307-312. [24] XIE L, TANG J, QIN R, et al. Surface charge modification on 2d nanofluidic membrane for regulating ion transport[J]. Advanced Functional Materials 2023, 33(4): 2208959. [25] PARK H B, KAMCEV J, ROBESON L M, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity[J]. Science 2017, 356(6343): eaab0530. [26] XIN W, XIAO H, KONG X Y, et al. Biomimetic Nacre-Like Silk-Crosslinked Membranes for Osmotic Energy Harvesting[J]. ACS Nano 2020, 14(8): 9701-9710. [27] SUN T, YANG L, TANG J, et al. Flocculating-Filtration-Processed Mesoporous Structure in Laminar Ion-Selective Membrane for Osmosis Energy Conversion and Desalination[J]. Chemical Engineering Journal 2022, 437(1): 135484. [28] WU Y, XIN W, KONG X Y, et al. Enhanced Ion Transport by Graphene Oxide/Cellulose Nanofibers Assembled Membranes for High-Performance Osmotic Energy Harvesting[J]. Materials Horizons 2020, 10(7): 2702- 2709. [29] CHEN J, XIN W, CHEN W, et al. Biomimetic Nanocomposite Membranes with Ultrahigh Ion Selectivity for Osmotic Power Conversion[J]. ACS Central Science 2021, 7(9): 1486-1492. [30] ZHANG Z, ZHANG P, YANG S, et al. Oxidation Promoted Osmotic Energy Conversion in Black Phosphorus Membranes[J]. Proceedings of the National Academy of Sciences of the United States of America 2020, 117(25): 13959-13966. [31] LING D, DAN X, ZI H Z, et al. Ultrathin and Ultrastrong Kevlar Aramid Nanofiber Membranes for Highly Stable Osmotic Energy Conversion[J]. Advanced Science 2022, 9(25): 2202869. [32] HAO J, NING Y, HOU Y, et al. Polydopamine functionalized graphene oxide membrane with the sandwich structure for osmotic energy conversion[J]. Journal of Colloid and Interface Science[J] 2023, 630: 795–803. [33] ZHANG Z, HE L, ZHU C, et al. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface[J]. Nature Communications 2020, 11: 875. [34] QIN R, TANG J, WU C, et al. Nanofiber-reinforced clay-based 2D nanofluidics for highly efficient osmotic energy harvesting[J]. Nano Energy 2022, 100: 107526 [35] CHEN C, LIU D, HE L, et al. Bio-inspired nanocomposite membranes for osmotic energy harvesting[J]. Joule 2020, 4(1): 247–261. [36] PAN J, XIN Y D, RUI Q C, et al. The Combination of 2D Layered Graphene Oxide and 3D Porous Cellulose Heterogeneous Membranes for Nanofluidic Osmotic Power Generation[J]. Molecules 2021, 26(17): 5343. [37] WEI N Z, YI W, MEI H, et al. Osmotic energy generation with mechanically robust and oppositely charged cellulose nanocrystal intercalating GO membranes[J]. Nano Energy 2022, 98: 107291. [38] YI J Q, DR D L, GUO L Y, et al. Two-Dimensional Membranes with Highly Charged Nanochannels for Osmotic Energy Conversion. ChemSusChem 2022, 15(19): e202200933. [39] XIA Z, RUI G, TENG H, et al. Highly permeable PA@GO loose nanofiltration membranes enabled by hierarchical transport channels for efficient dye removal. Chemical Engineering Journal 2023, 476(15): 146831. [40] XIN Z, MIN M L, FU S Z, et al. Robust Cellulose Nanocrystal-Based Self-Assembled Composite Membranes Doped with Polyvinyl Alcohol and Graphene Oxide for Osmotic Energy Harvesting[J]. Small 2023, 19(50): 2304603.
计量
- 文章访问数: 41
- HTML全文浏览量: 20
- 被引次数: 0