Influence of short steel fiber on mechanical properties of carbon textile reinforced concrete under low-cycle fatigue loading
-
摘要: 为了研究低次数疲劳加载下短切钢纤维对碳纤维织物增强混凝土(C-TRC)力学性能的影响,通过万能试验机对不同短切钢纤维掺量(0vol%、0.5vol%、1.0vol%)的试件进行低次数疲劳加载实验和疲劳加载前后的准静态拉伸试验,并结合数字图像相关分析得到拉伸状态下裂纹与应变分布。结果表明:添加短切钢纤维能够增大C-TRC的拉伸强度、杨氏模量和韧性,降低试件的能量耗散以及剩余累积应变,增加裂纹条数和裂纹宽度。疲劳荷载能够降低C-TRC的刚度、极限强度、峰值应变以及韧性,加快C-TRC的破坏。添加短切纤维能够降低疲劳加载造成的性能损耗,且0.5vol%掺量的增强效果最佳。基于现有的剩余强度-剩余刚度关联模型和实验数据,改进了强度退化模型,对实验数据进行拟合并与现有模型进行对比,其结果与实验数据吻合更好。该成果对于TRC疲劳性能的评价具有指导意义。Abstract: In order to study the influence of the short steel fiber on the mechanical properties of carbon textile reinforced concrete (C-TRC) under low-cycle fatigue loading, low-cycle fatigue loading test and quasi-static tensile tests before and after fatigue loading were conducted on specimens with various contents of short steel fiber (0vol%, 0.5vol% and 1.0vol%) by a universal testing machine, and distributions of crack and strain were obtained by digital image correlation (DIC) method. The results show that the addition of short steel fiber can increase the tensile strength, the Young’s modulus and toughness of C-TRC, reduce the energy dissipation and residual accumulated strain and increase the crack number and crack width. Fatigue load can reduce the rigidity, tensile strength, peak strain, and toughness, and accelerate the destruction of C-TRC. The addition of short steel fiber can reduce the property degradation caused by fatigue loading, and the 0.5vol% addition has the best enhancement effect. The strength degradation model was modified based on the existing residual strength-residual stiffness coupled model and experimental data, fit the experimental data, and was compared with the existing model, which shows better consistency with the experimental data. The findings will be available for the fatigue performance evaluation of TRC.
-
Key words:
- carbon textile /
- short steel fiber /
- tensile test /
- fatigue loading /
- TRC
-
表 1 基体配合比设计
Table 1. Mix design of the matrix
kg/m3 Cement
(P.O 42.5)Fly ash Silica fume Sand
(0-0.6 mm)Sand
(0.6-1.2 mm)Superplasticizer Water Defoamer 712 303 65 450 901 4.4 330 2.6 表 3 短切钢纤维性能参数
Table 3. Performance parameters of short steel fiber
Diameter/mm Length/
mmTensile strength
/MPaYoung’s modulus
/GPaDensity
/
(g·cm−3)0.20 6-8 3015 200 7.8 表 2 碳纤维织物性能参数
Table 2. Performance parameters of carbon textile
Model Textile
sizeTex/
(g·(1000 m)−1)Grammage>/
(g·cm−2)Coating Section area of
single yarn/mm2Tensile strength of
single yarn/MPaYoung’s modulus of
single yarn/GPaWarp Weft Warp Weft Warp Weft TC33-3 K 5×5 mm 270-320 1.8 Epoxy resin 0.18 0.16 3450 3100 238 216 表 4 C-TRC拉伸实验分组
Table 4. Experimental grouping for tensile tests of C-TRC
Specimen ID Textile Layers of textile ${V_{\text{f}}}$ /vol% Q0%CT/C Carbon 2 0 Q0.5%CT/C Carbon 2 0.5 Q1.0%CT/C Carbon 2 1 Notes: Q represents the quasi-static tensile tests; 0%, 0.5%, 1.0% represent that the contents of short steel fiber are 0 vol%, 0.5 vol% and 1.0 vol%; CT represents the carbon textile; C represents the concrete; ${V_{\text{f}}}$is the volume fraction of carbon textile. 表 5 C-TRC低次数疲劳加载试验分组
Table 5. Experimental grouping for low-cycle fatigue loading tests of C-TRC
Specimen ID Textile Layers of textile ${V_{\text{f}}}$
/vol%Cycles Stress level
/%L0%CT/C Carbon 2 0 100 5-60 L0.5%CT/C Carbon 2 0.5 100 5-60 L1.0%CT/C Carbon 2 1 100 5-60 Notes: L represents the low-cycle fatigue loading test. 表 6 不同短切钢纤维掺量的C-TRC的疲劳性能参数(第100次循环)
Table 6. Fatigue properties parameters of C-TRC with various contents of short steel fiber (100th cycle)
Specimen ID $ {E}_{+} $
/GPa$ {E}_{-} $
/GPa$ {E}_{\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{s}} $
/10-4J$ {B}_{i} $
/%L0%CT/C 2.04 2.04 590 0.533 L0.5%CT/C 2.18 2.18 453 0.493 L1.0%CT/C 2.10 2.11 475 0.513 Notes: $ {E}_{+} $ and $ {E}_{-} $ are the upward Young’s modulus and downward Young’s modulus; $ {E}_{\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{s}} $ is the dissipated energy; $ {B}_{i} $ is the accumulated strain. 表 7 不同短切钢纤维掺量的C-TRC的主裂纹出现时间和出现位置
Table 7. Occurrence time and location of major crack of C-TRC with various contents of short steel fiber
Specimen ID NO.1 NO.2 NO.3 Occurrence time Location
/mmOccurrence time Location
/mmOccurrence time Location
/mmL0%CT/C Before fatigue loading 43 Before fatigue loading 36 Before fatigue loading 42 L0.5%CT/C Before fatigue loading 43 8 th cycle 44 Before fatigue loading 44 L1.0%CT/C Before fatigue loading 36 Before fatigue loading 15 16 th cycle 18 表 8 疲劳加载前后的C-TRC的拉伸力学性能试验结果
Table 8. Test results of the tensile mechanical properties of C-TRC before and after fatigue loading
Specimen
IDRigidity/
GPaReduction rate/% Tensile strength/MPa Tensileload/
kNReduction rate/% Ultimate strain/% Reduction rate/% Toughness/
(kJ·m−3)Reduction rate/% Q0%CT/C 24.4 11.2 5.04 1.23 87.78 Q0.5%CT/C 24.6 12.9 5.81 1.40 106.89 Q1.0%CT/C 22.3 14.2 6.39 1.37 110.67 L0%CT/C 1.07 95.6 9.15 4.12 18.2 0.84 32.0 38 56.8 L0.5%CT/C 1.75 92.9 11.4 5.13 11.8 1.13 19.3 66.67 37.7 L1.0%CT/C 1.14 94.9 11.3 5.09 20.5 0.99 28.0 51.56 53.4 表 9 未添加短切钢纤维时TRC的剩余刚度-剩余强度关联模型参数与拟合结果
Table 9. Parameters of the residual strength-residual stiffness coupled model of C-TRC without short steel fiber and fitted results
Cycles Eq. (8) R2 Eq. (9) R2 $ q $ $ w $ $ r $ $ a $ $ H $ 100 0.0012 12.4 0.93 0.61 0.04 0.68 0.94 200 0.0014 14.1 0.95 0.74 0.07 0.54 0.93 Average value 0.0013 13.3 0.68 0.06 0.61 表 10 不同加载次数下的C-TRC的剩余强度和剩余刚度
Table 10. Residual strength and residual rigidity of C-TRC subjected to various loading cycles
Stress level
(%)Cycles NO.1 NO.2 NO.3 Sr/ S0
/%Er/E0
/%Sr/S0
/%Er/E0
/%Sr/S0
/%Er/E0
/%5-60 100 82.4 3.1 86.6 4.1 85.3 4.1 200 81.7 4.7 88.4 4.1 79.6 4.4 300 82.3 5.4 79.4 4.5 81.7 4.9 500 79.4 4.2 77.6 3.6 78.3 4.2 Notes: Sr and S0 are the residual strength and initial strength; Er and E0 are the residual stiffness and initial stiffness. -
[1] Naaman A. Textile reinforced cement composites: competitive status and research directions// Wolfgang Brameshuber[J]. Proceedings of the international RILEM conference on material science. France:RILEM Publications,2010:3-22. [2] W B. Report 36: Textile Reinforced Concrete - State-of-the-Art Report of RILEM TC 201-TRC[M]. RILEM publications, 2006. [3] 刘赛, 朱德举, 李安令. 织物增强混凝土的研究与应用进展[J]. 建筑科学与工程学报, 2017, 34(5):134-146. doi: 10.3969/j.issn.1673-2049.2017.05.015LIU Sai, ZHU De-ju, LI An-ling. Research and Application Progress of Textile Reinforced Concrete[J]. Journal of Architecture and Civil Engineering,2017,34(5):134-146(in Chinese). doi: 10.3969/j.issn.1673-2049.2017.05.015 [4] YAN L, KASAL B, HUANG L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering[J]. Composites Part B:Engineering,2016,92:94-132. doi: 10.1016/j.compositesb.2016.02.002 [5] ZASTRAU B, LEPENIES I G, RICHTER M. On the Multi Scale Modeling of Textile Reinforced Concrete[J]. TECHNISCHE MECHANIK,2008,1:53-63. [6] ZHANG Y, YANG W, LIU H, et al. Effect of interfacial strength on the flexural behavior of glass fiber reinforced polymer (GFRP) reinforced concrete beam[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed.,2015,30(5):1001-1007. doi: 10.1007/s11595-015-1264-9 [7] NANNI A. FRCM strengthening - A new tool in the concrete and masonry repair toolbox, concrete international[J]. Des Construct,2012,34:43-49. [8] GHIASSI B, MARCARI G, OLIVEIRA D V, et al. Numerical analysis of bond behavior between masonry bricks and composite materials[J]. Engineering Structures,2012,43:210-220. doi: 10.1016/j.engstruct.2012.05.022 [9] BIELAK J, ADAM V, HEGGER J, et al. Shear Capacity of Textile-Reinforced Concrete Slabs without Shear Reinforcement[J]. Applied Sciences,2019,9(7):1382. doi: 10.3390/app9071382 [10] HÄUSSLER-COMBE U, HARTIG J. Bond and failure mechanisms of textile reinforced concrete (TRC) under uniaxial tensile loading[J]. Cement and Concrete Composites,2007,29(4):279-289. doi: 10.1016/j.cemconcomp.2006.12.012 [11] CAROZZI F G, MILANI G, POGGI C. Mechanical properties and numerical modeling of Fabric Reinforced Cementitious Matrix (FR CM) systems for strengthening of masonry structures[J]. Composite Structures,2014,107:711-725. doi: 10.1016/j.compstruct.2013.08.026 [12] TELLO N, ALHOUBI Y, ABED F, et al. Circular and square columns strengthened with FRCM under concentric load[J]. Composite Structures,2021,255:113000. doi: 10.1016/j.compstruct.2020.113000 [13] FURTADO A, RODRIGUES H, AREDE A, et al. The use of textile-reinforced mortar as a strengthening technique for the infill walls out-of-plane behaviour[J]. Composite Structures,2021,255:113029. doi: 10.1016/j.compstruct.2020.113029 [14] SHAMS A, HEGGER J, HORSTMANN M. An analytical model for sandwich panels made of textile-reinforced concrete[J]. Construction and Building Materials,2014,64:451-459. doi: 10.1016/j.conbuildmat.2014.04.025 [15] CURBACH M, GRAF W, JESSE D, et al. Segmental textile reinrorced concrete bridge design, manufacturing and numerical simulation[J]. Beton- Und Stahlbetonbau,2007,102(6):342-352. doi: 10.1002/best.200700550 [16] REMPEL S, KULAS C, WILL N, et al. Extremely Light and Slender Precast Pedestrian-Bridge Made Out of Textile-Reinforced Concrete (TRC)[M]//HORDIJK D A, LUKOVIC M. High Tech Concrete: Where Technology and Engineering Meet. 2018: 2530-2537. [17] MESTICOU Z, BUI L, JUNES A, et al. Experimental investigation of tensile fatigue behaviour of Textile-Reinforced Concrete (TRC): Effect of fatigue load and strain rate[J]. Composite Structures,2017,160:1136-1146. doi: 10.1016/j.compstruct.2016.11.009 [18] DE MUNCK M, TYSMANS T, WASTIELS J, et al. Fatigue Behaviour of Textile Reinforced Cementitious Composites and Their Application in Sandwich Elements[J]. Applied Sciences-Basel,2019,9(7):1293. doi: 10.3390/app9071293 [19] CONTAMINE R, SI LARBI A, HAMELIN P. Contribution to direct tensile testing of textile reinforced concrete (TRC) composites[J]. Materials Science and Engineering:A,2011,528(29):8589-8598. [20] MASHIMA M, HANNANT D J, KEER J G. Tensile Properties of Polypropylene Reinforced Cement with Different Fiber Orientations[J]. Materials Journal,1990,87(2):172-178. [21] HEGGER J, WILL N, VOSS S. Textile reinforced concrete - Load-bearing behavior and design[J]. 2007: 23-36. [22] 朱德举, 李新亮, 李安令. 经纬向纤维体积分数对耐碱玻璃纤维织物增强混凝土拉伸力学性能的影响[J]. 复合材料学报, 2022, 39(1):322-334.Deju ZHU, Xinliang LI, Anling LI. Influence of warp and weft fiber volume fractions on tensile mechanical properties of alkali-resistant glass textile reinforced concrete[J]. Acta Materiae Compositae Sinica,2022,39(1):322-334(in Chinese). [23] ZHU D, LIU S, YAO Y, et al. Effects of short fiber and pre-tension on the tensile behavior of basalt textile reinforced concrete[J]. Cement and Concrete Composites,2019,96:33-45. doi: 10.1016/j.cemconcomp.2018.11.015 [24] WANG W, ZHANG X, CHOUW N, et al. Strain rate effect on the dynamic tensile behaviour of flax fibre reinforced polymer[J]. Composite Structures,2018,200:135-143. doi: 10.1016/j.compstruct.2018.05.109 [25] 朱德举, 李高升. 短切纤维及预应力对玄武岩织物增强水泥基复合材料拉伸力学性能的影响[J]. 复合材料学报, 2017, 34(11):2631-2641. doi: 10.13801/j.cnki.fhclxb.20170301.003ZHU Deju, LI Gaosheng. Effect of short fibers and prestress on the tensile mechanical properties of basalt textile reinforced cementitious matrix composite[J]. Acta Materiae Compositae Sinica,2017,34(11):2631-2641(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170301.003 [26] SILVA F de A, BUTLER M, MECHTCHERINE V, et al. Strain rate effect on the tensile behaviour of textile-reinforced concrete under static and dynamic loading[J]. Materials Science and Engineering:A,2011,528(3):1727-1734. doi: 10.1016/j.msea.2010.11.014 [27] JUN P, MECHTCHERINE V. Behaviour of Strain-hardening Cement-based Composites (SHCC) under monotonic and cyclic tensile loading: Part 1 – Experimental investigations[J]. Cement and Concrete Composites,2010,32(10):801-809. doi: 10.1016/j.cemconcomp.2010.07.019 [28] 刘赛, 朱德举, 李安令, 等. 应变率和温度对耐碱玻璃纤维织物增强水泥基复合材料弯曲力学行为的影响[J]. 复合材料学报, 2017, 34(3):675-683. doi: 10.13801/j.cnki.fhclxb.20160531.001LIU Sai, ZHU Deju, LI Anling, et al. Effects of strain rate and temperature on the flexural mechanical properties of alkali-resistant glass fabric reinforced cementitious matrix composite[J]. Acta Materiae Compositae Sinica,2017,34(3):675-683(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160531.001 [29] BARHUM R, MECHTCHERINE V. Effect of short, dispersed glass and carbon fibres on the behaviour of textile-reinforced concrete under tensile loading[J]. Engineering Fracture Mechanics,2012,92:56-71. doi: 10.1016/j.engfracmech.2012.06.001 [30] BARHUM R, MECHTCHERINE V. Influence of short dispersed and short integral glass fibres on the mechanical behaviour of textile-reinforced concrete[J]. Materials and Structures,2013,46(4):557-572. doi: 10.1617/s11527-012-9913-3 [31] CAROZZI F G, POGGI C. Mechanical properties and debonding strength of Fabric Reinforced Cementitious Matrix (FRCM) systems for masonry strengthening[J]. Composites Part B:Engineering,2015,70:215-230. doi: 10.1016/j.compositesb.2014.10.056 [32] LEPENIES I, MEYER C, SCHORN H, et al. Modeling of Load Transfer Behavior of AR-Glass-Rovings in Textile Reinforced Concrete[J]. Thin Fibre and Textile Reinforced Cemetitious Systems SP 224,2007:109-124. [33] 宗俊达, 姚卫星. FRP复合材料剩余刚度退化复合模型[J]. 复合材料学报, 2016, 33(2):280-286.ZONG Junda, YAO Weixing. Compound model of residual stiffness degradation for FRP composites[J]. Acta Materiae Compositae Sinica,2016,33(2):280-286(in Chinese). [34] WHITWORTH H A. Modeling Stiffness Reduction of Graphite/Epoxy Composite Laminates[J]. Journal of Composite Materials,1987,21(4):362-372. doi: 10.1177/002199838702100405 -

计量
- 文章访问数: 85
- HTML全文浏览量: 53
- 被引次数: 0