Preparation and electrocatalytic oxygen evolution performance of CoWO4/NC composites
-
摘要: 作为高效析氧反应(OER)贵金属基电催化剂的潜在替代品,储量丰富、成本低廉的过渡金属基电催化剂已经受到广泛研究,但仍存在活性低和导电性较差的问题。本文设计了一种利用Co-MOF(ZIF-67)为前驱体,通过吸附氯化钨(WCl6)后进一步的高温热解制备了富含氧空位的以氮掺杂碳(NC)为基底的CoWO4 (CoWO4/NC)催化剂,对催化剂的投料比及煅烧温度进行了探索,测试了在碱性介质中的OER性能。测试结果表明,投料比为1∶1且煅烧温度为550℃时所制备的催化剂表现出较低的过电位(346 mV, J = 10 mA·cm−2),较低的塔菲尔斜率(65 mV·dec−1)以及较高的导电性,采用计时电位法测试了在碱性条件下的稳定性,在22小时内性能没有明显衰减。该工作对过渡金属基催化剂的研究提供了新思路,对之后催化剂的设计具有一定指导意义。Abstract: Transition metal-based electrocatalysts with abundant reserves and low cost have been widely studied as potential substitutes for efficient oxygen evolution reaction (OER) precious metal electrocatalysts, but there are still problems of poor activity and conductivity. Here, a Co-MOF (ZIF-67) as precursor was designed to prepare a nitrogen-doped carbon (NC) based CoWO4 (CoWO4/NC) catalyst was reported with abundant oxygen vacancy through pyrolysis after adoption Tungsten chloride (WCl6). The feeding ratio and calcination temperature of the catalyst were explored. OER performance in alkaline medium was tested. The test results showed that the catalyst prepared at a feeding ratio of 1∶1 and a calcination temperature of 550℃ exhibited a lower overpotential (346 mV, J=10 mA·cm−2), a lower Tafel slope (65 mV·dec−1) and a higher conductivity. The stability of the catalyst under alkaline conditions was tested by the timing potential method. The performance did not degrade significantly within 22 hours. This work provides a new idea for the research of transition metal-based catalyst and has certain guiding significance for the design of catalyst.
-
Key words:
- Nitrogen-doped carbon /
- ZIF /
- Electrocatalysis /
- Oxygen evolution reaction /
- Synergy /
- Transition metal
-
图 3 CoWO4/NC的XPS光谱图:(a) CoWO4/NC的全谱图;(b) Co 2 p高分辨光电子能谱;(c) O 1 s高分辨光电子能谱;(d) W 4 f高分辨光电子能谱;(e) N 1 s高分辨光电子能谱和(f) C 1 s高分辨光电子能谱
Figure 3. XPS spectra of CoWO4/NC: (a) Survey spectrum of CoWO4/NC; (b) The XPS spectra of Co 2 p; (c) The XPS spectra of O 1 s; (d) The XPS spectra of W 4 f; (e) The XPS spectra of N 1 s and (f) C 1 s
图 4 CoWO4/NC和对比样CoOx/NC在1 mol·L−1 KOH介质中的OER性能对比:(a) 线性扫描伏安曲线;(b) 塔菲尔斜率;(c) 电流密度为10 mA·cm−2时OER的过电位;(d) 在10 mA·cm−2的基准下计时电位法测试
Figure 4. OER performance of CoWO4/NC and CoOx/NC in 1 mol·L−1 KOH: (a) Linear sweep voltammetry curves; (b) Tafel slopes; (c) OER overpotential when the current density is 10 mA·cm−2; (d) Chronopotentiometric measurement at the benchmark of 10 mA·cm−2
图 5 CoWO4/NC在1 mol·L−1 KOH中:(a) 不同质量比的线性扫描伏安曲线和(b) 不同质量比的Tafel斜率;不同煅烧温度下的(c) 线性伏安曲线,(d) Tafel斜率,(e) 双电层电容值,(f) 奈奎斯特图
Figure 5. CoWO4/NC in 1 mol·L−1 KOH: (a) Linear sweep voltammetry curves at different mass ratios and (b) Tafel slopes at different mass ratios; (c) Linear sweep voltammetry curves, (d) Tafel slopes, (e) Cdl, (f) Nyquist diagram at different calcination temperatures
-
[1] . TURNER J A, Sustainable hydrogen production [J]. Science, 2004, 305 (5686): 972-974. [2] CHEN X, SHEN S, GUO L, et al. Semiconductor-based Photocatalytic Hydrogen Generation[J]. Chemical Reviews,2010,110(11):6503-6570. doi: 10.1021/cr1001645 [3] JIN H, GUO C, LIU X, et al. Emerging Two-Dimensional Nanomaterials for Electrocatalysis[J]. Chemical Reviews,2018,118(13):6337-6408. doi: 10.1021/acs.chemrev.7b00689 [4] 姚素薇, 李贺, 张卫国, 等. AC/ Ni-Co 复合电极材料的制备及其催化析氢性能[J]. 复合材料学报, 2006, 23(3):77-81. doi: 10.3321/j.issn:1000-3851.2006.03.015YAO Suwei, LI He, ZHANG Weiguo, et al. Preparation and property for hydrogen evolution of AC ( activated char) /Ni-Co composite electrode materials[J]. Acta Materiae Compositae Sinica,2006,23(3):77-81(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.03.015 [5] ZHENG M, DU J, HOU B, et al. Few-Layered Mo(1-x)WxS2 Hollow Nanospheres on Ni3S2 Nanorod Heterostructure as Robust Electrocatalysts for Overall Water Splitting[J]. ACS Applied Materials Interfaces,2017,9(31):26066-26076. doi: 10.1021/acsami.7b07465 [6] JIANG X L, JANG H S, LIU S G, et al. The Heterostructure of Ru2P/WO3/NPC Synergistically Promotes H2O Dissociation for Improved Hydrogen Evolution[J]. Angewandte Chemie. International Edition,2021,60(8):4110-4116. doi: 10.1002/anie.202014411 [7] SRIRAPU V K V P, KUMAR A, SRIVASTAVA P, et al. Nanosized CoWO4 and NiWO4 as efficient oxygen-evolving electrocatalysts[J]. Electrochimica Acta,2016,209:75-84. doi: 10.1016/j.electacta.2016.05.042 [8] ZHANG M, FAN H, ZHAO N, et al. P., 3 D hierarchical CoWO4/Co3O4 nanowire arrays for asymmetric supercapacitors with high energy density[J]. Chemical Engineering Journal,2018,347:291-300. doi: 10.1016/j.cej.2018.04.113 [9] ALSHEHRI S M, AHMED J, AHAMAD T, et al. Bifunctional electro-catalytic performances of CoWO4 nanocubes for water redox reactions (OER/ORR)[J]. RSC Advances,2017,7(72):45615-45623. doi: 10.1039/C7RA07256B [10] ZHANG B, ZHENG X, VOZNYY O, et al. Homogeneously dispersed multimetal oxygen-evolving catalysts[J]. Science,2016,352(6283):333-337. doi: 10.1126/science.aaf1525 [11] CHEN H, SONG L, OUYANG S, et al. Co and Fe Codoped WO2.72 as Alkaline-Solution-Available Oxygen Evolution Reaction Catalyst to Construct Photovoltaic Water Splitting System with Solar-To-Hydrogen Efficiency of 16.9%[J]. Advanced Science,2019,6(16):1900465. doi: 10.1002/advs.201900465 [12] QIN Q, JANG H, LI P, et al. A tannic acid-derived N-, P-codoped carbon-supported iron-based nanocomposite as an advanced trifunctional electrocatalyst for the overall water splitting cells and zinc-air batteries[J]. Advanced Energy Materials,2019,9(5):1803312. doi: 10.1002/aenm.201803312 [13] 李创, 王宇, 张亚男, 等. 氮掺杂碳负载表面部分暴露的 CoFe2O4 用于高性能催化析氧反应[J]. 复合材料学报, 2023:40.LI C, WANG Y, ZHANG Y N, et al. Partially surface exposed CoFe2O4 anchored on N-doped carbon endows its high performance for oxygen evolution reaction[J]. Acta Materiae Compositae Sinica,2023:40(in Chinese). [14] SONG Q, LI J, WANG S, et al. Enhanced Electrocatalytic Performance through Body Enrichment of Co-Based Bimetallic Nanoparticles In Situ Embedded Porous N-Doped Carbon Spheres[J]. Small,2019,15(44):1903395. doi: 10.1002/smll.201903395 [15] WU H, QIAN X, ZHU H, et al. Controlled synthesis of highly stable zeolitic imidazolate framework-67 dodecahedra and their use towards the templated formation of a hollow Co3O4 catalyst for CO oxidation[J]. RSC advances,2016,6(9):6915-6920. doi: 10.1039/C5RA18557B [16] LAI L S, YEONG Y F, LAU K K, et al. CO2 and CH4 permeation through zeolitic imidazolate framework (ZIF)-8 membrane synthesized via in situ layer-by-layer growth: an experimental and modeling study[J]. RSC Advances,2015,5(96):79098-79106. doi: 10.1039/C5RA12813G [17] WU R, WANG D P, RUI X, et al. In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries[J]. Advanced Materials,2015,27(19):3038-3044. doi: 10.1002/adma.201500783 [18] WU R, WANG D P, KUMAR V, et al. MOFs-derived copper sulfides embedded within porous carbon octahedra for electrochemical capacitor applications[J]. Chemical Communications,2015,51(15):3109-3112. doi: 10.1039/C4CC09065A [19] WU R, WANG D P, HAN J, et al. A general approach towards multi-faceted hollow oxide composites using zeolitic imidazolate frameworks[J]. Nanoscale,2015,7(3):965-974. doi: 10.1039/C4NR05135A [20] WU R, QIAN X, YU F, et al. MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials[J]. Journal of Materials Chemistry A,2013,1(37):11126-11129. doi: 10.1039/c3ta12621h [21] PAN Y, LIU Y, ZENG G, et al. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system[J]. Chemical Communications,2011,47(7):2071-2073. doi: 10.1039/c0cc05002d [22] FURUKAWA H, KO N, GO Y B, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science,2010,329(5990):424-428. doi: 10.1126/science.1192160 [23] ZHAO T, GAO J, WU J, et al. Highly active cobalt/tungsten carbide@ N-doped porous carbon nanomaterials derived from metal-organic frameworks as bifunctional catalysts for overall water splitting[J]. Energy Technology,2019,7(4):1800969. doi: 10.1002/ente.201800969 [24] WANG T S, LIU X, ZHAO X, et al. Regulating Uniform Li Plating/Stripping via Dual-Conductive Metal-Organic Frameworks for High-Rate Lithium Metal Batteries[J]. Advanced Functional Materials,2020,30(16):2000786. doi: 10.1002/adfm.202000786 [25] GONG H, WANG G, LI H, et al. Mn0.2Cd0.8S nanorods assembled with 0 D CoWO4 nanoparticles formed p-n heterojunction for efficient photocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy,2020,45(51):26733-26745. doi: 10.1016/j.ijhydene.2020.07.059 [26] CUI H, LI B, ZHANG Y, ZHENG X, et al. Constructing Z-scheme based CoWO4/CdS photocatalysts with enhanced dye degradation and H2 generation performance[J]. International Journal of Hydrogen Energy,2018,43(39):18242-18252. doi: 10.1016/j.ijhydene.2018.08.050 [27] ZHOU C, ZHANG Y, LI Y, et al. Construction of high-capacitance 3 D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor[J]. Nano Letters,2013,13(5):2078-2085. doi: 10.1021/nl400378j [28] NIE N, ZHANG L, FU J, et al. Self-assembled hierarchical direct Z-scheme g-C3N4/ZnO microspheres with enhanced photocatalytic CO2 reduction performance[J]. Applied Surface Science,2018,441:12-22. doi: 10.1016/j.apsusc.2018.01.193 [29] ZHU B, XIA P, LI Y, et al. Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst[J]. Applied Surface Science,2017,391:175-183. doi: 10.1016/j.apsusc.2016.07.104 [30] XU G, XU G C, BAN J, et al. Cobalt and cobalt oxides N-co doped porous carbon derived from metal-organic framework as bifunctional catalyst for oxygen reduction and oxygen evolution reactions[J]. Journal of Colloid and Interface Science,2018,521:141-149. doi: 10.1016/j.jcis.2018.03.036 [31] QIN Q, JANG H; CHEN L, et al. Low loading of RhxP and RuP on N, P co doped carbon as two trifunctional electrocatalysts for the oxygen and hydrogen electrode reactions[J]. Advanced Energy Materials,2018,8(29):1801478. doi: 10.1002/aenm.201801478 [32] AMIINU I. S; PU Z; LIU X; et al. Multifunctional Mo-N/C@MoS2 Electrocatalysts for HER, OER, ORR, and Zn-Air Batteries[J]. Advanced Functional Materials,2017,27(44):1702300. doi: 10.1002/adfm.201702300 [33] GU T; SA R; ZHANG L; et al. Engineering interfacial coupling between Mo2C nanosheets and Co@NC polyhedron for boosting electrocatalytic water splitting and zinc-air batteries[J]. Applied Catalysis B:Environmental,2021,296:120360. doi: 10.1016/j.apcatb.2021.120360 [34] MCCRORY C C, JUNG S; FERRER I M; et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices[J]. Journal of the American Chemical Society,2015,137(13):4347-4357. doi: 10.1021/ja510442p [35] JIN Y; WANG H; LI J; et al. Porous MoO2 Nanosheets as Non-noble Bi-functional Electrocatalysts for Overall Water Splitting[J]. Advanced Materials,2016,28(19):3785-3790. doi: 10.1002/adma.201506314 -

计量
- 文章访问数: 141
- HTML全文浏览量: 145
- 被引次数: 0