留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CoWO4/NC复合材料制备及其电催化析氧性能

王田田 王宇 梁文进 秦清 刘希恩

王田田, 王宇, 梁文进, 等. CoWO4/NC复合材料制备及其电催化析氧性能[J]. 复合材料学报, 2023, 40(11): 6194-6201. doi: 10.13801/j.cnki.fhclxb.20230120.001
引用本文: 王田田, 王宇, 梁文进, 等. CoWO4/NC复合材料制备及其电催化析氧性能[J]. 复合材料学报, 2023, 40(11): 6194-6201. doi: 10.13801/j.cnki.fhclxb.20230120.001
WANG Tiantian, WANG Yu, LIANG Wenjin, et al. Preparation and electrocatalytic oxygen evolution performance of CoWO4/NC composites[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6194-6201. doi: 10.13801/j.cnki.fhclxb.20230120.001
Citation: WANG Tiantian, WANG Yu, LIANG Wenjin, et al. Preparation and electrocatalytic oxygen evolution performance of CoWO4/NC composites[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6194-6201. doi: 10.13801/j.cnki.fhclxb.20230120.001

CoWO4/NC复合材料制备及其电催化析氧性能

doi: 10.13801/j.cnki.fhclxb.20230120.001
基金项目: 山东省泰山学者基金项目 (ts201712045)
详细信息
    通讯作者:

    秦清,博士,教授,博士生导师,研究方向为电催化 Email: qinqing@qust.edu.cn

    刘希恩,博士,教授,博士生导师,研究方向为电催化 Email: liuxien@qust.edu.cn

  • 中图分类号: TB331

Preparation and electrocatalytic oxygen evolution performance of CoWO4/NC composites

Funds: Taishan Scholar Program of Shandong Province (ts201712045)
  • 摘要: 作为高效析氧反应(OER)贵金属基电催化剂的潜在替代品,储量丰富、成本低廉的过渡金属基电催化剂已经受到广泛研究,但仍存在活性低和导电性较差的问题。本文设计了一种利用Co-MOF(ZIF-67)为前驱体,通过吸附氯化钨(WCl6)后进一步的高温热解制备了富含氧空位的以氮掺杂碳(NC)为基底的CoWO4 (CoWO4/NC)催化剂,对催化剂的投料比及煅烧温度进行了探索,测试了在碱性介质中的OER性能。测试结果表明:投料比为1∶1且煅烧温度为550℃时所制备的催化剂表现出较低的过电位(电流密度10 mA·cm−2对应的过电位为346 mV)、较低的塔菲尔斜率(65 mV·dec−1)及较高的导电性,采用计时电位法测试了在碱性条件下的稳定性,在22 h内性能没有明显衰减。该工作对过渡金属基催化剂的研究提供了新思路,对之后催化剂的设计具有一定指导意义。

     

  • 图  1  ZIF-67的XRD图谱(a)和SEM图像(b);(c) CoWO4/氮掺杂碳(NC)的XRD图谱

    Figure  1.  XRD patterns (a) and SEM image (b) of ZIF-67; (c) XRD patterns of CoWO4/nitrogen-doped carbon (NC)

    图  2  CoWO4/NC的物理表征:(a) 扫描电镜图像;((b), (c)) 透射电镜图像;(d) 高分辨率透射电镜图像

    d—Distance

    Figure  2.  Characterization of CoWO4/NC: (a) SEM image; ((b), (c)) TEM images; (d) HRTEM image

    图  3  CoWO4/NC的XPS图谱:(a)全谱图;(b) Co2p;(c) O1s;(d) W4f;(e) N1s;(f) C1s

    Sat.—Satellite peak

    Figure  3.  XPS spectra of CoWO4/NC: (a) Survey spectrum; (b) Co2p; (c) O1s; (d) W4f; (e) N1s; (f) C1s

    图  4  CoWO4/NC和CoOx/NC在1 mol·L−1 KOH介质中的析氧反应(OER)性能对比:(a) 线性扫描伏安曲线;(b) 塔菲尔斜率;(c) 电流密度为10 mA·cm−2时OER的过电位;(d) 在10 mA·cm−2的基准下计时电位法测试

    RHE—Reversible hydrogen electrode; η—Overpotential; J—Current density

    Figure  4.  Oxygen evolution reaction (OER) performance of CoWO4/NC and CoOx/NC in 1 mol·L−1 KOH: (a) Linear sweep voltammetry curves; (b) Tafel slopes; (c) OER overpotential when the current density is 10 mA·cm−2; (d) Chronopotentiometric measurement at the benchmark of 10 mA·cm−2

    图  5  CoWO4/NC在1 mol·L−1 KOH中:(a) 不同ZIF-67与WCl6质量比的线性扫描伏安曲线;(b) 不同ZIF-67与WCl6质量比的Tafel斜率;不同煅烧温度下:(c) 线性伏安曲线;(d) Tafel斜率;(e) 双电层电容值Cdl;(f) 奈奎斯特图

    Figure  5.  CoWO4/NC in 1 mol·L−1 KOH: (a) Linear sweep voltammetry curves at different mass ratios; (b) Tafel slopes at different mass ratios; At different calcination temperatures: (c) Linear sweep voltammetry curves; (d) Tafel slopes; (e) Double layer capacitance value Cdl; (f) Nyquist diagram

    图  6  不同煅烧温度下的CoWO4/NC-1∶1在1 mol·L−1 KOH中不同扫速(20~120 mV·s−1)时的循环伏安曲线

    Figure  6.  Cyclic voltammetry curves of CoWO4/NC-1∶1 at different calcination temperatures at different scan rates (20-120 mV·s−1) in 1 mol·L−1 KOH

  • [1] TURNER J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974.
    [2] CHEN X B, SHEN S H, GUO L J, et al. Semiconductor-based photocatalytic hydrogen generation[J]. Chemical Reviews,2010,110(11):6503-6570. doi: 10.1021/cr1001645
    [3] JIN H Y, GUO C X, LIU X, et al. Emerging two-dimensional nanomaterials for electrocatalysis[J]. Chemical Reviews,2018,118(13):6337-6408. doi: 10.1021/acs.chemrev.7b00689
    [4] 姚素薇, 李贺, 张卫国, 等. AC/Ni-Co 复合电极材料的制备及其催化析氢性能[J]. 复合材料学报, 2006, 23(3):77-81. doi: 10.3321/j.issn:1000-3851.2006.03.015

    YAO Suwei, LI He, ZHANG Weiguo, et al. Preparation and property for hydrogen evolution of AC (activated char)/Ni-Co composite electrode materials[J]. Acta Materiae Compositae Sinica,2006,23(3):77-81(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.03.015
    [5] ZHENG M Y, DU J, HOU B P, et al. Few-layered Mo(1-x)WxS2 hollow nanospheres on Ni3S2 nanorod heterostructure as robust electrocatalysts for overall water splitting[J]. ACS Applied Materials & Interfaces,2017,9(31):26066-26076. doi: 10.1021/acsami.7b07465
    [6] JIANG X L, JANG H, LIU S G, et al. The heterostructure of Ru2P/WO3/NPC synergistically promotes H2O dissociation for improved hydrogen evolution[J]. Angewandte Chemie International Edition,2021,60(8):4110-4116. doi: 10.1002/anie.202014411
    [7] SRIRAPU V K V P, KUMAR A, SRIVASTAVA P, et al. Nanosized CoWO4 and NiWO4 as efficient oxygen-evolving electrocatalysts[J]. Electrochimica Acta,2016,209:75-84. doi: 10.1016/j.electacta.2016.05.042
    [8] ZHANG M C, FAN H Q, ZHAO N, et al. 3D hierarchical CoWO4/Co3O4 nanowire arrays for asymmetric supercapacitors with high energy density[J]. Chemical Engineering Journal,2018,347:291-300. doi: 10.1016/j.cej.2018.04.113
    [9] ALSHEHRI S M, AHMED J, AHAMAD T, et al. Bifunctional electro-catalytic performances of CoWO4 nanocubes for water redox reactions (OER/ORR)[J]. RSC Advances,2017,7(72):45615-45623. doi: 10.1039/C7RA07256B
    [10] ZHANG B, ZHENG X L, VOZNYY O, et al. Homogeneously dispersed multimetal oxygen-evolving catalysts[J]. Science,2016,352(6283):333-337. doi: 10.1126/science.aaf1525
    [11] CHEN H Y, SONG L Z, OUYANG S X, et al. Co and Fe codoped WO2.72 as alkaline-solution-available oxygen evolution reaction catalyst to construct photovoltaic water splitting system with solar-to-hydrogen efficiency of 16.9%[J]. Advanced Science,2019,6(16):1900465. doi: 10.1002/advs.201900465
    [12] QIN Q, JANG H, LI P, et al. A tannic acid-derived N-, P-codoped carbon-supported iron-based nanocomposite as an advanced trifunctional electrocatalyst for the overall water splitting cells and zinc-air batteries[J]. Advanced Energy Materials,2019,9(5):1803312. doi: 10.1002/aenm.201803312
    [13] 李创, 王宇, 张亚男, 等. 氮掺杂碳负载表面部分暴露的CoFe2O4用于高性能催化析氧反应[J]. 复合材料学报, 2023, 40(3):1552-1559.

    LI Chuang, WANG Yu, ZHANG Yanan, et al. Partially surface exposed CoFe2O4 anchored on N-doped carbon endows its high performance for oxygen evolution reaction[J]. Acta Materiae Compositae Sinica,2023,40(3):1552-1559(in Chinese).
    [14] SONG Q Q, LI J Q, WANG S L, et al. Enhanced electrocatalytic performance through body enrichment of Co-based bimetallic nanoparticles in situ embedded porous N-doped carbon spheres[J]. Small,2019,15(44):1903395. doi: 10.1002/smll.201903395
    [15] WU H Y, QIAN X K, ZHU H P, et al. Controlled synthesis of highly stable zeolitic imidazolate framework-67 dodecahedra and their use towards the templated formation of a hollow Co3O4 catalyst for CO oxidation[J]. RSC Advances,2016,6(9):6915-6920. doi: 10.1039/C5RA18557B
    [16] LAI L S, YEONG Y F, LAU K K, et al. CO2 and CH4 permeation through zeolitic imidazolate framework (ZIF)-8 membrane synthesized via in situ layer-by-layer growth: An experimental and modeling study[J]. RSC Advances,2015,5(96):79098-79106. doi: 10.1039/C5RA12813G
    [17] WU R B, WANG D P, RUI X H, et al. In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries[J]. Advanced Materials,2015,27(19):3038-3044. doi: 10.1002/adma.201500783
    [18] WU R B, WANG D P, KUMAR V, et al. MOFs-derived copper sulfides embedded within porous carbon octahedra for electrochemical capacitor applications[J]. Chemical Communications,2015,51(15):3109-3112. doi: 10.1039/C4CC09065A
    [19] WU R B, WANG D P, HAN J Y, et al. A general approach towards multi-faceted hollow oxide composites using zeolitic imidazolate frameworks[J]. Nanoscale,2015,7(3):965-974. doi: 10.1039/C4NR05135A
    [20] WU R B, QIAN X K, YU F, et al. MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials[J]. Journal of Materials Chemistry A,2013,1(37):11126-11129. doi: 10.1039/c3ta12621h
    [21] PAN Y C, LIU Y Y, ZENG G F, et al. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system[J]. Chemical Communications,2011,47(7):2071-2073. doi: 10.1039/c0cc05002d
    [22] FURUKAWA H, KO N, GO Y B, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science,2010,329(5990):424-428. doi: 10.1126/science.1192160
    [23] ZHAO T, GAO J K, WU J, et al. Highly active cobalt/tungsten carbide@N-doped porous carbon nanomaterials derived from metal-organic frameworks as bifunctional catalysts for overall water splitting[J]. Energy Technology,2019,7(4):1800969. doi: 10.1002/ente.201800969
    [24] WANG T S, LIU X B, ZHAO X D, et al. Regulating uniform Li plating/stripping via dual-conductive metal-organic frameworks for high-rate lithium metal batteries[J]. Advanced Functional Materials,2020,30(16):2000786. doi: 10.1002/adfm.202000786
    [25] GONG H M, WANG G R, LI H Y, et al. Mn0.2Cd0.8S nanorods assembled with 0D CoWO4 nanoparticles formed p-n heterojunction for efficient photocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy,2020,45(51):26733-26745. doi: 10.1016/j.ijhydene.2020.07.059
    [26] CUI H J, LI B B, ZHANG Y Z, et al. Constructing Z-scheme based CoWO4/CdS photocatalysts with enhanced dye degradation and H2 generation performance[J]. International Journal of Hydrogen Energy,2018,43(39):18242-18252. doi: 10.1016/j.ijhydene.2018.08.050
    [27] ZHOU C, ZHANG Y W, LI Y Y, et al. Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor[J]. Nano Letters,2013,13(5):2078-2085. doi: 10.1021/nl400378j
    [28] NIE N, ZHANG L Y, FU J W, et al. Self-assembled hierarchical direct Z-scheme g-C3N4/ZnO microspheres with enhanced photocatalytic CO2 reduction performance[J]. Applied Surface Science,2018,441:12-22. doi: 10.1016/j.apsusc.2018.01.193
    [29] ZHU B C, XIA P F, LI Y, et al. Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst[J]. Applied Surface Science,2017,391:175-183. doi: 10.1016/j.apsusc.2016.07.104
    [30] XU G, XU G C, BAN J J, et al. Cobalt and cobalt oxides N-codoped porous carbon derived from metal-organic framework as bifunctional catalyst for oxygen reduction and oxygen evolution reactions[J]. Journal of Colloid and Interface Science,2018,521:141-149. doi: 10.1016/j.jcis.2018.03.036
    [31] QIN Q, JANG H, CHEN L L, et al. Low loading of RhxP and RuP on N, P codoped carbon as two trifunctional electrocatalysts for the oxygen and hydrogen electrode reactions[J]. Advanced Energy Materials,2018,8(29):1801478. doi: 10.1002/aenm.201801478
    [32] AMIINU I S, PU Z H, LIU X B, et al. Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-Air batteries[J]. Advanced Functional Materials,2017,27(44):1702300. doi: 10.1002/adfm.201702300
    [33] GU T T, SA R J, ZHANG L J, et al. Engineering interfacial coupling between Mo2C nanosheets and Co@NC polyhedron for boosting electrocatalytic water splitting and zinc-air batteries[J]. Applied Catalysis B: Environmental,2021,296:120360. doi: 10.1016/j.apcatb.2021.120360
    [34] MCCRORY C C L, JUNG S, FERRER I M, et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices[J]. Journal of the American Chemical Society,2015,137(13):4347-4357. doi: 10.1021/ja510442p
    [35] JIN Y S, WANG H T, LI J J, et al. Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting[J]. Advanced Materials,2016,28(19):3785-3790. doi: 10.1002/adma.201506314
  • 加载中
图(6)
计量
  • 文章访问数:  653
  • HTML全文浏览量:  442
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-20
  • 修回日期:  2023-01-09
  • 录用日期:  2023-01-13
  • 网络出版日期:  2023-01-30
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回