留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CoWO4/NC复合材料制备及其电催化析氧性能

王田田 王宇 梁文进 秦清 刘希恩

王田田, 王宇, 梁文进, 等. CoWO4/NC复合材料制备及其电催化析氧性能[J]. 复合材料学报, 2023, 41(0): 1-8
引用本文: 王田田, 王宇, 梁文进, 等. CoWO4/NC复合材料制备及其电催化析氧性能[J]. 复合材料学报, 2023, 41(0): 1-8
Tiantian WANG, Yu WANG, Wenjin LIANG, Qing QIN, Xien LIU. Preparation and electrocatalytic oxygen evolution performance of CoWO4/NC composites[J]. Acta Materiae Compositae Sinica.
Citation: Tiantian WANG, Yu WANG, Wenjin LIANG, Qing QIN, Xien LIU. Preparation and electrocatalytic oxygen evolution performance of CoWO4/NC composites[J]. Acta Materiae Compositae Sinica.

CoWO4/NC复合材料制备及其电催化析氧性能

基金项目: 山东省泰山学者基金项目 (ts201712045);
详细信息
    作者简介:

    刘希恩,博士,教授,博士生导师,研究方向为电催化 Email: liuxien@qust.edu.cn

    通讯作者:

    秦清,博士,教授,博士生导师,研究方向为电催化 Email: qinqing@qust.edu.cn

  • 中图分类号: TB331

Preparation and electrocatalytic oxygen evolution performance of CoWO4/NC composites

Funds: Taishan Scholar Program of Shandong Province, China (ts201712045);
  • 摘要: 作为高效析氧反应(OER)贵金属基电催化剂的潜在替代品,储量丰富、成本低廉的过渡金属基电催化剂已经受到广泛研究,但仍存在活性低和导电性较差的问题。本文设计了一种利用Co-MOF(ZIF-67)为前驱体,通过吸附氯化钨(WCl6)后进一步的高温热解制备了富含氧空位的以氮掺杂碳(NC)为基底的CoWO4 (CoWO4/NC)催化剂,对催化剂的投料比及煅烧温度进行了探索,测试了在碱性介质中的OER性能。测试结果表明,投料比为1∶1且煅烧温度为550℃时所制备的催化剂表现出较低的过电位(346 mV, J = 10 mA·cm−2),较低的塔菲尔斜率(65 mV·dec−1)以及较高的导电性,采用计时电位法测试了在碱性条件下的稳定性,在22小时内性能没有明显衰减。该工作对过渡金属基催化剂的研究提供了新思路,对之后催化剂的设计具有一定指导意义。

     

  • 图  1  (a) ZIF-67 XRD图谱;(b) ZIF-67 SEM图像;(c) CoWO4/氮掺杂碳(NC) XRD图谱

    Figure  1.  (a) ZIF-67 XRD pattern; (b) ZIF-67 SEM; (c) CoWO4/ nitrogen-doped carbon (NC) XRD pattern

    图  2  CoWO4/NC 的物理表征:(a) 扫描电镜图像;(b)和(c) 透射电镜图像;(d) 高分辨率透射电镜图像

    Figure  2.  Characterization of CoWO4/NC: (a) SEM image; (b) and (c) TEM images; (d) HRTEM image

    图  3  CoWO4/NC的XPS光谱图:(a) CoWO4/NC的全谱图;(b) Co 2 p高分辨光电子能谱;(c) O 1 s高分辨光电子能谱;(d) W 4 f高分辨光电子能谱;(e) N 1 s高分辨光电子能谱和(f) C 1 s高分辨光电子能谱

    Figure  3.  XPS spectra of CoWO4/NC: (a) Survey spectrum of CoWO4/NC; (b) The XPS spectra of Co 2 p; (c) The XPS spectra of O 1 s; (d) The XPS spectra of W 4 f; (e) The XPS spectra of N 1 s and (f) C 1 s

    图  4  CoWO4/NC和对比样CoOx/NC在1 mol·L−1 KOH介质中的OER性能对比:(a) 线性扫描伏安曲线;(b) 塔菲尔斜率;(c) 电流密度为10 mA·cm−2时OER的过电位;(d) 在10 mA·cm−2的基准下计时电位法测试

    Figure  4.  OER performance of CoWO4/NC and CoOx/NC in 1 mol·L−1 KOH: (a) Linear sweep voltammetry curves; (b) Tafel slopes; (c) OER overpotential when the current density is 10 mA·cm−2; (d) Chronopotentiometric measurement at the benchmark of 10 mA·cm−2

    图  5  CoWO4/NC在1 mol·L−1 KOH中:(a) 不同质量比的线性扫描伏安曲线和(b) 不同质量比的Tafel斜率;不同煅烧温度下的(c) 线性伏安曲线,(d) Tafel斜率,(e) 双电层电容值,(f) 奈奎斯特图

    Figure  5.  CoWO4/NC in 1 mol·L−1 KOH: (a) Linear sweep voltammetry curves at different mass ratios and (b) Tafel slopes at different mass ratios; (c) Linear sweep voltammetry curves, (d) Tafel slopes, (e) Cdl, (f) Nyquist diagram at different calcination temperatures

    图  6  (a-c) 不同煅烧温度下的CoWO4/NC-1∶1在1 mol·L−1 KOH中不同扫速(20−120 mV·s 1)时的循环伏安曲线

    Figure  6.  (a-c) Cyclic voltammetry curves of CoWO4/NC-1∶1 at different calcination temperatures at different scan rates (20−120 mV·s−1) in 1 mol·L−1 KOH

  • [1] . TURNER J A, Sustainable hydrogen production [J]. Science, 2004, 305 (5686): 972-974.
    [2] CHEN X, SHEN S, GUO L, et al. Semiconductor-based Photocatalytic Hydrogen Generation[J]. Chemical Reviews,2010,110(11):6503-6570. doi: 10.1021/cr1001645
    [3] JIN H, GUO C, LIU X, et al. Emerging Two-Dimensional Nanomaterials for Electrocatalysis[J]. Chemical Reviews,2018,118(13):6337-6408. doi: 10.1021/acs.chemrev.7b00689
    [4] 姚素薇, 李贺, 张卫国, 等. AC/ Ni-Co 复合电极材料的制备及其催化析氢性能[J]. 复合材料学报, 2006, 23(3):77-81. doi: 10.3321/j.issn:1000-3851.2006.03.015

    YAO Suwei, LI He, ZHANG Weiguo, et al. Preparation and property for hydrogen evolution of AC ( activated char) /Ni-Co composite electrode materials[J]. Acta Materiae Compositae Sinica,2006,23(3):77-81(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.03.015
    [5] ZHENG M, DU J, HOU B, et al. Few-Layered Mo(1-x)WxS2 Hollow Nanospheres on Ni3S2 Nanorod Heterostructure as Robust Electrocatalysts for Overall Water Splitting[J]. ACS Applied Materials Interfaces,2017,9(31):26066-26076. doi: 10.1021/acsami.7b07465
    [6] JIANG X L, JANG H S, LIU S G, et al. The Heterostructure of Ru2P/WO3/NPC Synergistically Promotes H2O Dissociation for Improved Hydrogen Evolution[J]. Angewandte Chemie. International Edition,2021,60(8):4110-4116. doi: 10.1002/anie.202014411
    [7] SRIRAPU V K V P, KUMAR A, SRIVASTAVA P, et al. Nanosized CoWO4 and NiWO4 as efficient oxygen-evolving electrocatalysts[J]. Electrochimica Acta,2016,209:75-84. doi: 10.1016/j.electacta.2016.05.042
    [8] ZHANG M, FAN H, ZHAO N, et al. P., 3 D hierarchical CoWO4/Co3O4 nanowire arrays for asymmetric supercapacitors with high energy density[J]. Chemical Engineering Journal,2018,347:291-300. doi: 10.1016/j.cej.2018.04.113
    [9] ALSHEHRI S M, AHMED J, AHAMAD T, et al. Bifunctional electro-catalytic performances of CoWO4 nanocubes for water redox reactions (OER/ORR)[J]. RSC Advances,2017,7(72):45615-45623. doi: 10.1039/C7RA07256B
    [10] ZHANG B, ZHENG X, VOZNYY O, et al. Homogeneously dispersed multimetal oxygen-evolving catalysts[J]. Science,2016,352(6283):333-337. doi: 10.1126/science.aaf1525
    [11] CHEN H, SONG L, OUYANG S, et al. Co and Fe Codoped WO2.72 as Alkaline-Solution-Available Oxygen Evolution Reaction Catalyst to Construct Photovoltaic Water Splitting System with Solar-To-Hydrogen Efficiency of 16.9%[J]. Advanced Science,2019,6(16):1900465. doi: 10.1002/advs.201900465
    [12] QIN Q, JANG H, LI P, et al. A tannic acid-derived N-, P-codoped carbon-supported iron-based nanocomposite as an advanced trifunctional electrocatalyst for the overall water splitting cells and zinc-air batteries[J]. Advanced Energy Materials,2019,9(5):1803312. doi: 10.1002/aenm.201803312
    [13] 李创, 王宇, 张亚男, 等. 氮掺杂碳负载表面部分暴露的 CoFe2O4 用于高性能催化析氧反应[J]. 复合材料学报, 2023:40.

    LI C, WANG Y, ZHANG Y N, et al. Partially surface exposed CoFe2O4 anchored on N-doped carbon endows its high performance for oxygen evolution reaction[J]. Acta Materiae Compositae Sinica,2023:40(in Chinese).
    [14] SONG Q, LI J, WANG S, et al. Enhanced Electrocatalytic Performance through Body Enrichment of Co-Based Bimetallic Nanoparticles In Situ Embedded Porous N-Doped Carbon Spheres[J]. Small,2019,15(44):1903395. doi: 10.1002/smll.201903395
    [15] WU H, QIAN X, ZHU H, et al. Controlled synthesis of highly stable zeolitic imidazolate framework-67 dodecahedra and their use towards the templated formation of a hollow Co3O4 catalyst for CO oxidation[J]. RSC advances,2016,6(9):6915-6920. doi: 10.1039/C5RA18557B
    [16] LAI L S, YEONG Y F, LAU K K, et al. CO­2 and CH4 permeation through zeolitic imidazolate framework (ZIF)-8 membrane synthesized via in situ layer-by-layer growth: an experimental and modeling study[J]. RSC Advances,2015,5(96):79098-79106. doi: 10.1039/C5RA12813G
    [17] WU R, WANG D P, RUI X, et al. In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries[J]. Advanced Materials,2015,27(19):3038-3044. doi: 10.1002/adma.201500783
    [18] WU R, WANG D P, KUMAR V, et al. MOFs-derived copper sulfides embedded within porous carbon octahedra for electrochemical capacitor applications[J]. Chemical Communications,2015,51(15):3109-3112. doi: 10.1039/C4CC09065A
    [19] WU R, WANG D P, HAN J, et al. A general approach towards multi-faceted hollow oxide composites using zeolitic imidazolate frameworks[J]. Nanoscale,2015,7(3):965-974. doi: 10.1039/C4NR05135A
    [20] WU R, QIAN X, YU F, et al. MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials[J]. Journal of Materials Chemistry A,2013,1(37):11126-11129. doi: 10.1039/c3ta12621h
    [21] PAN Y, LIU Y, ZENG G, et al. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system[J]. Chemical Communications,2011,47(7):2071-2073. doi: 10.1039/c0cc05002d
    [22] FURUKAWA H, KO N, GO Y B, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science,2010,329(5990):424-428. doi: 10.1126/science.1192160
    [23] ZHAO T, GAO J, WU J, et al. Highly active cobalt/tungsten carbide@ N-doped porous carbon nanomaterials derived from metal-organic frameworks as bifunctional catalysts for overall water splitting[J]. Energy Technology,2019,7(4):1800969. doi: 10.1002/ente.201800969
    [24] WANG T S, LIU X, ZHAO X, et al. Regulating Uniform Li Plating/Stripping via Dual-Conductive Metal-Organic Frameworks for High-Rate Lithium Metal Batteries[J]. Advanced Functional Materials,2020,30(16):2000786. doi: 10.1002/adfm.202000786
    [25] GONG H, WANG G, LI H, et al. Mn0.2Cd0.8S nanorods assembled with 0 D CoWO4 nanoparticles formed p-n heterojunction for efficient photocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy,2020,45(51):26733-26745. doi: 10.1016/j.ijhydene.2020.07.059
    [26] CUI H, LI B, ZHANG Y, ZHENG X, et al. Constructing Z-scheme based CoWO4/CdS photocatalysts with enhanced dye degradation and H2 generation performance[J]. International Journal of Hydrogen Energy,2018,43(39):18242-18252. doi: 10.1016/j.ijhydene.2018.08.050
    [27] ZHOU C, ZHANG Y, LI Y, et al. Construction of high-capacitance 3 D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor[J]. Nano Letters,2013,13(5):2078-2085. doi: 10.1021/nl400378j
    [28] NIE N, ZHANG L, FU J, et al. Self-assembled hierarchical direct Z-scheme g-C3N4/ZnO microspheres with enhanced photocatalytic CO2 reduction performance[J]. Applied Surface Science,2018,441:12-22. doi: 10.1016/j.apsusc.2018.01.193
    [29] ZHU B, XIA P, LI Y, et al. Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst[J]. Applied Surface Science,2017,391:175-183. doi: 10.1016/j.apsusc.2016.07.104
    [30] XU G, XU G C, BAN J, et al. Cobalt and cobalt oxides N-co doped porous carbon derived from metal-organic framework as bifunctional catalyst for oxygen reduction and oxygen evolution reactions[J]. Journal of Colloid and Interface Science,2018,521:141-149. doi: 10.1016/j.jcis.2018.03.036
    [31] QIN Q, JANG H; CHEN L, et al. Low loading of RhxP and RuP on N, P co doped carbon as two trifunctional electrocatalysts for the oxygen and hydrogen electrode reactions[J]. Advanced Energy Materials,2018,8(29):1801478. doi: 10.1002/aenm.201801478
    [32] AMIINU I. S; PU Z; LIU X; et al. Multifunctional Mo-N/C@MoS2 Electrocatalysts for HER, OER, ORR, and Zn-Air Batteries[J]. Advanced Functional Materials,2017,27(44):1702300. doi: 10.1002/adfm.201702300
    [33] GU T; SA R; ZHANG L; et al. Engineering interfacial coupling between Mo2C nanosheets and Co@NC polyhedron for boosting electrocatalytic water splitting and zinc-air batteries[J]. Applied Catalysis B:Environmental,2021,296:120360. doi: 10.1016/j.apcatb.2021.120360
    [34] MCCRORY C C, JUNG S; FERRER I M; et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices[J]. Journal of the American Chemical Society,2015,137(13):4347-4357. doi: 10.1021/ja510442p
    [35] JIN Y; WANG H; LI J; et al. Porous MoO2 Nanosheets as Non-noble Bi-functional Electrocatalysts for Overall Water Splitting[J]. Advanced Materials,2016,28(19):3785-3790. doi: 10.1002/adma.201506314
  • 加载中
计量
  • 文章访问数:  141
  • HTML全文浏览量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-20
  • 修回日期:  2023-01-09
  • 录用日期:  2023-01-13
  • 网络出版日期:  2023-02-06

目录

    /

    返回文章
    返回