Failure study of gradient bimaterial negative Poisson's ratio honeycomb sandwich panels subjected to local impact
-
摘要: 夹芯板结构具有轻质、高抗弯刚度和良好的抗冲击等特性,将负泊松比材料作为夹芯板芯层,可以设计出具有优良动力学特征的防护结构。本文基于提出的双材料曲边内凹负泊松比胞元,通过改变胞元内纵横向材料,构建了正梯度、负梯度、对称正梯度及对称负梯度四种排列的负泊松比多胞蜂窝夹芯板。实验与仿真结果比较说明了本文数值方法的可行性。数值研究了不同排列方式时蜂窝夹芯板在受局部冲击作用下的失效力学性能,考察了冲头冲击速度和芯层梯度排列模式对夹芯板破坏模式、冲头接触力与能量吸收效果的影响。研究表明:芯层排列模式显著影响夹芯板的冲击破坏模式和冲击动力学性能;梯度双材料设计可以显著增强夹芯板的吸能效果。Abstract: The sandwich panel structure, known for its lightweight nature, high bending stiffness, and exceptional impact resistance, can be tailored with a core layer of negative Poisson's ratio materials. This design approach yields protective structures with outstanding dynamic characteristics. In this paper, a negative Poisson's ratio biomaterial cellular sandwich plate with positive gradient, negative gradient, symmetric positive gradient and symmetric negative gradient was constructed by changing the vertical and horizontal materials in the cell based on the proposed curved edge concave negative Poisson's ratio biomaterial cell. The comparison between experimental results and simulation results demonstrates the feasibility of the numerical method proposed in this paper. The effects of punch impact velocity and gradient arrangement on the failure mode of sandwich plate, punch contact force and energy absorption were investigated. The results show that the impact failure mode and impact dynamic performance of the sandwich panels are significantly affected by the arrangement mode of core layers. This design can significantly enhance the energy absorption effect of sandwich panels.
-
表 1 材料性能
Table 1. Material properties
Materials Density/
(g·cm−3)Young's
modulus /GPaPoisson's
ratio2024 Aluminum 2.7 73 0.33 Cast-iron 7.2 150 0.3 4340 Steel 7.85 207 0.29 A/MPa B/MPa n C 369 684 0.73 0.0083 525 650 0.6 0.0205 910 586 0.26 0.014 m D1 D2 1 0.112 0.123 1 0.029 0.44 1.03 −0.8 2.1 D3 D4 D5 −1.5 0.007 0 −1.5 0 0 −0.5 0.002 0.61 Notes: A−Initial yield stress at reference strain rate and reference temperature;B, n−Strain hardening modulus and hardening index of the material;C−Material strain rate strengthening parameter;m−Thermal softening index of material;D1, D2, D3, D4, D5−Failure parameters in the damage formula. 表 2 纵横向材料组合方式
Table 2. Vertical and horizontal material combination
Modulus ratio E1/E2 Vertical/transverse materials 1.38 4340 Steel/Cast-iron 1 Cast-iron /Cast-iron 0.48 2024 Aluminum / Cast-iron -
[1] Xue ZY, Hutchinson JW. A comparative study of impulse-resistant metal sandwich plates[J]. International Journal of Impact Engineering, 2004, 30(10): 1283-1305. doi: 10.1016/j.ijimpeng.2003.08.007 [2] Wang H D, Li X X, Li P, et al. Delta-Phosphorene: a two dimensional material with a highly negative Poisson's ratio[J]. Nanoscale, 2017, 9(2): 850-855. doi: 10.1039/C6NR08550D [3] Gibson L J, Ashby M F, Schajer G S, et al. The mechanics of two-dimensional cellular materials[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1982, 382(1782): 25. doi: 10.1098/rspa.1982.0087 [4] Ren X, Das R, Tran P, et al. Auxetic metamaterials and structures: A review[J]. Smart Materials and Structures, 2018, 27(2): 023001. doi: 10.1088/1361-665X/aaa61c [5] 吴文旺, 肖登宝, 孟嘉旭, 等. 负泊松比结构力学设计, 抗冲击性能及在车辆工程应用与展望[J]. 力学学报, 2021, 53(3): 611-638. doi: 10.6052/0459-1879-20-333Wu Wenwang, Xiao Dengbao, Meng Jiaxu, et al. Mechanical design, impact energy absorption and applications of auxetic structures in automobile lightweight engineering[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 611-638(in Chinese). doi: 10.6052/0459-1879-20-333 [6] Li C L, Ma N F, Deng Q T, et al. Deformation and energy absorption of the laminated reentrant honeycomb structures under static and dynamic loadings[J]. Mechanics of Advanced Materials and Structures, Early Access. DOI: 10.1080/15376494. 2022.2158505. [7] Li X, Peng W T, Wu W W, et al. Auxetic mechanical metamaterials: from soft to stiff[J]. International Journal of Extreme Manufacturing, 2023, 5(4): 042003. doi: 10.1088/2631-7990/ace668 [8] 魏路路, 余强, 赵轩, 等. 内凹-反手性蜂窝结构的面内动态圧溃性能研究[J]. 振动与冲击, 2021, 40(4): 261-269.Wei Lulu, Yu Qiang, Zhao Xuan, et al. Research on the in-plane dynamic collapse performance of concave backhand honeycomb structures[J]. Journal of Vibration and Shock, 221, 40(4): 261-269. (in Chinese) [9] Jin Y T, Qie Y H, Li N N, et al. Study on elastic mechanical properties of novel 2D negative Poisson's ratio structure: re-entrant hexagon nested with star-shaped structure[J]. Composite Structures, 2022, 301: 116065. doi: 10.1016/j.compstruct.2022.116065 [10] 蒋伟, 马华, 王军, 等. 基于环形蜂窝芯结构的负泊松比机械超材料[J]. 科学通报, 2016, 61(13): 1421-1427. doi: 10.1360/N972015-01314Jiang Wei, Ma Hua, Wang Jun, et al. Mechanical metamaterial with negative Poisson’s ratio based on circular honeycomb core[J]. Chinese Science Bulletin, 2016, 61(13): 1421-1427(in Chinese). doi: 10.1360/N972015-01314 [11] 沈建邦, 肖俊华. 负泊松比可变弧角曲边内凹蜂窝结构的力学性能[J]. 中国机械工程, 2019, 30(17): 2135-2141. doi: 10.3969/j.issn.1004-132X.2019.17.017Shen Jianbang, Xiao Junhua. Mechanics properties of negative Poisson’s ratio honeycomb structures with variable arc angle curved concave sides[J]. China Mechanical Engineering, 2019, 30(17): 2135-2141(in Chinese). doi: 10.3969/j.issn.1004-132X.2019.17.017 [12] 张新春, 刘颖, 李娜. 具有负泊松比效应蜂窝材料的面内冲击动力学性能[J]. 爆炸与冲击, 2012, 32(5): 475-482. doi: 10.3969/j.issn.1001-1455.2012.05.005Zhang Xinchun, Liu Ying, Li Na. In-plane dynamic crushing of honeycombs with negative Poisson’s ratio effects[J]. Explosion and Shock Waves, 2012, 32(5): 475-482(in Chinese). doi: 10.3969/j.issn.1001-1455.2012.05.005 [13] Shen J B, Ge J R, Xiao J H, et al. In-plane impact dynamics of honeycomb structure containing curved reentrant sides with negative Poisson’s ratio effect[J]. Mechanics of Advanced Materials and Structures, 2022, 29(10): 1489-1497. doi: 10.1080/15376494.2020.1824285 [14] 尤泽华, 肖俊华. 弧边内凹蜂窝负泊松比结构的面内冲击动力学数值研究[J]. 工程力学, 2022, 39(12): 248-256. doi: 10.6052/j.issn.1000-4750.2021.07.0572You Zehua, Xiao Junhua. Numerical study on in-plane impact dynamics of concave honeycomb structure with negative Poisson’s ratio[J]. Engineering Mechanics, 2022, 39(12): 248-256(in Chinese). doi: 10.6052/j.issn.1000-4750.2021.07.0572 [15] 郭之熙, 肖俊华. 多弧段曲边内凹蜂窝可调泊松比结构的力学性能研究[J]. 工程力学, 2023, 40(10): 204-212. doi: 10.6052/j.issn.1000-4750.2022.01.0093Guo Zhixi, Xiao Junhua. Mechanical properties of multi-arc concave honeycomb structure with adjustable Poisson’s ratio[J]. Engineering Mechanics, 2023, 40(10): 204-212(in Chinese). doi: 10.6052/j.issn.1000-4750.2022.01.0093 [16] Li D, Ma J, Dong L, et al. A bi-material structure with Poisson's ratio tunable from positive to negative via temperature control[J]. Materials Letters, 2016, 181: 285-288. doi: 10.1016/j.matlet.2016.06.054 [17] He X B, Yu J J, Xie Y. Bi-Material re-entrant triangle cellular structures incorporating tailorable thermal expansion and tunable Poisson’s Ratio[J]. Journal of Mechanisms and Robotics, 2019, 11(6): 061003. doi: 10.1115/1.4044335 [18] 马芳武, 梁鸿宇, 王强, 等. 双材料负泊松比结构的面内冲击动力学性能[J]. 吉林大学学报(工学版), 2021, 51(1): 114-121.Ma Fangwu, Liang Hongyu, Wang Qiang, et al. In-plane impact dynamic performance of dual material negative Poisson’s ratio structure[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(1): 114-121(in Chinese). [19] Shao Y, Meng J, Ma G, et al. Insight into the negative Poisson’s ratio effect of the gradient auxetic reentrant honeycombs[J]. Composite Structures, 2021, 274: 114366. doi: 10.1016/j.compstruct.2021.114366 [20] Li S, Li X, Wang Z, et al. Finite element analysis of sandwich panels with stepwise graded aluminum honeycomb cores under blast loading[J]. Composites Part A: Applied Science and Manufacturing, 2016, 80: 1-12. doi: 10.1016/j.compositesa.2015.09.025 [21] Wu X, Su Y T, Shi J. In-plane impact resistance enhancement with a graded cell-wall angle design for auxetic metamaterials[J]. Composite Structures, 2020, 247(9): 112451. [22] 朱冬梅, 鲁光阳, 杜瑶, 等. 新型负泊松比梯度结构缓冲性能[J]. 湖南大学学报(自然科学版), 2023, 50(10): 203-211.Zhu Dongmei, Lu Yangguang, Du Yao, et al. Cushioning performance of a new negative Poisson’s ratio gradient structer[J]. Journal of Hunan University (Natural Sciences), 2023, 50(10): 203-211(in Chinese). [23] 张晓楠, 晏石林, 欧元勋, 等. 负泊松比内凹蜂窝结构梯度设计与动态冲击响应[J]. 振动与冲击, 2023, 42(3): 193-198.Zhang Xiaonan, Yan Shilin, Ou Yuanxun, et al. Gradient design and dynamic impact response of concave honeycomb structures with negative Poisson’s ratio[J]. Journal of Vibration and Shock, 2023, 42(3): 193-198(in Chinese). [24] 王堃, 孙勇, 彭明军, 等. 基于ANSYS的铝蜂窝夹芯板低速冲击仿真模拟研究[J]. 材料导报, 2012, 26(8): 157-160. doi: 10.3969/j.issn.1005-023X.2012.08.040Wang Kun, Sun Yong, Peng Mingjun, et al. Simulation of Low-velocity impact of aluminium honeycomb sandwich panels with ANSYS[J]. Materials Reports, 2012, 26(8): 157-160(in Chinese). doi: 10.3969/j.issn.1005-023X.2012.08.040 [25] 罗伟铭, 石少卿, 廖瑜, 等. 成层式铝蜂窝夹芯结构冲击响应试验研究[J]. 材料导报, 2018, 32(8): 1328-1332. doi: 10.11896/j.issn.1005-023X.2018.08.023Luo Weiming, Shi Shaoqing, Liao Yu, et al. An experimental investigation upon the impact response of the layered aluminum honeycomb sandwich structure[J]. Materials Reports, 2018, 32(8): 1328-1332(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.08.023 [26] Luo Y, Yuan K, Shen L, et al. Sandwich panel with in-plane honeycombs in different Poisson's ratio under low to medium impact loads[J]. Reviews on Advanced Materials Science, 2021, 60(1): 145-157. doi: 10.1515/rams-2021-0020 [27] 邓云飞, 张伟岐, 吴华鹏, 等. 泡沫填充的S型褶皱复合材料夹芯板低速冲击响应特性[J]. 复合材料学报, 2021, 38(8): 2605-2615.Deng Yunfei, Zhang Weiqi, Wu Huapeng, et al. Low-speed impact response of the composite sandwich panels with S-type foldcore filled by foam[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2605-2615(in Chinese). [28] 陈鹏宇. 内凹弧形蜂窝夹芯板抗弹性能试验与数值仿真[D]. 大连: 大连理工大学, 2022.Chen Pengyu. Test and numerical simulation on ballistic impact resistance of re-entrant Circular honeycomb sandwich panel [D]. Dalian: Dalian University of Technology, 2022. (in Chinese) [29] 辛亚军, 孙帅, 杨硕, 等. 铝蜂窝夹芯板面外剪切性能试验研究与数值模拟[J]. 复合材料学报, 2022, 39(12): 11.Xin Yajun, Sun Shuai, Yang Shuo, et al. Experiment and numerical simulation of out-plane shear performance of aluminum honeycomb sandwich panel[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6119-6129. (in Chinese) [30] Bohara R P, Linforth S, Ghazlan A, et al. Performance of an auxetic honeycomb-core sandwich panel under close-in and far-field detonations of high explosive[J]. Composite Structures, 2022, 280: 114907. doi: 10.1016/j.compstruct.2021.114907 [31] 杨姝, 陈鹏宇, 江峰, 等. 内凹弧形蜂窝夹芯板低速弹道冲击试验与数值仿真[J]. 振动与冲击, 2023, 42(6): 255-262+297.Yang Shu, Chen Pengyu, Jiang Feng, et al. Low-speed ballistic impact test and numerical simulation on re-entrant circular honeycomb sandwich panels[J]. Journal of Vibration and Shock, 2023, 42(6): 255-262+297(in Chinese). [32] 蒋舟顺, 徐峰祥, 邹震, 等. 爆炸载荷下正弦曲边三维负泊松比夹芯板的动态响应和吸能特性[J]. 爆炸与冲击, 2024, 44(2): 3-20. doi: 10.11883/bzycj-2023-0214Jiang Zhoushun, Xu Fengxiang, Zhou Zhen, et al. Dynamic response and energy absorption properties of sinusoidally curved three-dimensional negative Poisson’s ratio sandwich panels subjected to blast loading[J]. Explosion and Shock Waves, 2024, 44(2): 3-20(in Chinese). doi: 10.11883/bzycj-2023-0214 [33] 郭之熙. 梯度负泊松比弧边蜂窝结构力学性能研究[D]. 秦皇岛: 燕山大学, 2023.Guo Zhixi. Study on mechanical properties of gradient negative Poisson’s ratio arc-edge honeycomb structure[D]. qinhuangdao: Yanshan University, 2023. (in Chinese) [34] 万武举, 肖俊华, 郭之熙. 双材料曲边内凹负泊松比多胞结构的力学性能研究[J]. 工程力学, DOI: 10.6052/j.issn.1000-4750.2023.06.0455.Wan Wuju, Xiao Junhua, Guo Zhixi. Mechanical properties of arc concave multicell structures of bimaterials with negative Poisson's ratio[J]. Engineering Mechanics, DOI: 10.6052/j.issn.1000 -4750.2023.06.0455. (in Chinese) [35] 辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册[M]. 北京: 机械工业出版社, 2021.Xin Chunliang, Xue Zaiqing, Tu Jian, et al. Handbook of common material parameters for finite element analysis [M]. Beijing: China Machine Press, 2021. (in Chinese)
计量
- 文章访问数: 40
- HTML全文浏览量: 25
- 被引次数: 0