Preparation and adsorption mechanism of NHFO@pumice for ammonia nitrogen
-
摘要:
氨氮是引发水体富营养化的主要因素之一,吸附法因其来源广、价格低且可循环使用的特点引得诸多学者对吸附法去除氨氮做了大量的研究。蜂巢石作为吸附剂对水中污染物的吸附能力较低,纳米水合氧化铁(NHFO)作为吸附剂存在粒径小、易流失等问题。为提高蜂巢石的吸附容量和解决NHFO的易流失问题,负载到多孔材料上是最有效的方法之一。本实验采用共沉淀法制备NHFO@蜂巢石复合材料,采用SEM-EDS、XRD手段表征NHFO@蜂巢石形貌特征、元素分布及晶体结构;探究环境因子(氨氮溶液pH、共存离子、氨氮初始浓度)对NHFO@蜂巢石吸附氨氮的影响;采用吸附等温线、吸附动力学对数据进行拟合;采用XPS、FT-IR表征探究NHFO@蜂巢石对氨氮的吸附机制。形貌特征、元素分布及晶体结构结果表明NHFO成功负载到蜂巢石表面;吸附等温线、吸附动力学结构表明NHFO@蜂巢石吸附氨氮符合Langmuir模型,属于化学吸附行为;微观结构和官能团变化结果表明,NHFO@蜂巢石对氨氮吸附机制主要为静电作用和离子交换。 (a)8 NHFO@蜂巢石傅里叶变换红外光谱图;(b)NHFO@蜂巢石吸附前、后XPS全谱图; (a)FT-IR diagram of NHFO@ pumice;(b) XPS spectra before and after NHFO@pumice adsorption Abstract: Both pumice and Nano hydrous iron oxide (NHFO) are commonly used adsorbents in water treatment. In this study, NHFO was loaded onto pumice by co-precipitation method to explore its adsorption performance and mechanism of ammonia nitrogen. The effects of initial ammonia concentration, initial pH value and co-existing ions (H+, Na+, K+, Mg2+) on NHFO@pumice adsorption of ammonia nitrogen were investigated. SEM-EDS and XRD were used to characterize the morphology and structure of NHFO@honeycomb. The results showed that the initial concentration of ammonia nitrogen was 20 mg/L and the pH value was around 7. The co-existing ions had an inhibitory effect on the adsorption of ammonia nitrogen, and the inhibitory strength was H+>Na+>K+>Mg2+. SEM-EDS, XRD, FT-IR and other characterization methods confirmed that NHFO was successfully loaded on the honeycomb, and the adsorption process was consistent with Langmuir adsorption isotherm (R2=0.9886) and quasi second-order kinetic model (R2=0.9969). The mechanism of ammonia nitrogen adsorption mainly includes electrostatic interaction of hydroxyl group and NH4+, ion exchange and pore adsorption. This study provides a theoretical basis for the treatment of ammonia-nitrogen water by adsorption.-
Key words:
- Pumice /
- Nano hydrous iron oxide /
- adsorption /
- ammonia nitrogen /
- mechanisms
-
表 1 NHFO@蜂巢石复合材料吸附等温线模型参数
Table 1. Adsorption isotherm model parameters of NHFO@ Pumice stone composites
Langmuir Freundich qm/(mg·g−1) KL R2 Kf n R2 4.5393±0.0692 0.2277±0.0189 0.9886 1.7285±0.2401 0.2066±0.0341 0.8560 Notes: qe— Equilibrium adsorption capacity; qm—Maximal adsorption capacity;KL—Langmuir constant; Kf— Freundlich constant; n—The constant of the adsorption model; R2—Variance. 表 2 NHFO@蜂巢石复合材料吸附动力学模型参数
Table 2. Adsorption kinetics model parameters of NHFO@ pumice stone composites
Pseudo-first - order qm k1 R2 3.7459±0.0919 0.0137±0.0012 0.9678 Pseudo-second -order qm k2 R2 4.2650±0.0451 0.0039±0.0002 0.9969 Elovich a b R2 0.0484±0.0267 −0.6115±0.0083 0.8786 Notes: qe— Equilibrium adsorption capacity; qt— Instantaneous adsorption capacity; k1—Pseudo-first-order kinetic constant; k2— Pseudo-second-order kinetic constant; a— Initial adsorption rate (mg/(g·min); b—Desorption constant;R2—Variance. 表 3 NHFO@蜂巢石吸附前、后成份相对含量(XPS全谱)
Table 3. Relative Contents of NHFO@pumice before and after adsorption (Full spectrum of XPS)
Atomic ratio/at% C N O Fe Al Si Na NHFO@pumice-Before adsorption 39.3 0.49 42.5 1.41 5.10 6.60 2.43 NHFO@pumice-After adsorption 36.82 2.73 43.15 2.51 4.73 5.92 1.04 -
[1] ZHAO J G, LI H B, LIU C Q, et al. Eutrop-hication Evaluation of Water Body at Huaila-i Section of the Yongding River[J]. Meteorological and Environmental Research,2018,9(6):66-72+78. [2] 曾青云, 薛丽燕, 曾繁钢, 郭守金, 黎永康. 氨氮废水处理技术的研究现状[J]. 有色金属科学与工程, 2018, 9(4):83-88. doi: 10.13264/j.cnki.ysjskx.2018.04.014ZENG Q Y, XUE L Y, ZENG F G, et al. R-esearch progress of treatment technology fora-mmonia nitrogen wastewater[J]. Nonferrous Metals Science and Engineering,2018,9(4):83-88(in Chinese). doi: 10.13264/j.cnki.ysjskx.2018.04.014 [3] ZHOU H Y, QU L M, Adsorption of ammon ia nitrogen in wastewater by tailing loaded manganese oxide material[J]. Inorganic Chemistry Communications, 2022, 144: 109886. [4] 牛乙涛, 包国庆, 吴纯鑫, 等. 功能化纳米复合材料Fe3O4@SiO2-APTMS的制备及其对Pb(Ⅱ)的吸附[J]. 复合材料学报, 2022, 40(0): 1-16.NIU Y T, BAO G Q, WU C X, et al. Prep- aration of Functionalized Nano composites Fe 3O4@SiO2-APTMS and its adsorption to Pb (Ⅱ)[J]. Acta Materiae Compositae Sinica, 202 2, 40(0): 1-16(in Chinese). [5] REN Z J, JIA B, ZHANG G M, et al, Stud-y on adsorption of ammonia nitrogen by iro -nloaded activated carbon from low temperat -ure wastewater[J]. Chemosphere, 2021, 262: 127895. [6] Tural, B, Ertaş, E, Güzel, M. et al. Effect of structural differences of pumice on synthesis of pumice-supported nFe0: removal of Cr (VI) from water[J]. Applied Water Science , 20 21, 128. [7] ZHANG Y, XU G S, XU M D, et al. Preparation of MgO porous nanoplates modified pumice and its adsorption performance on fluori-de removal[J]. Journal of Alloys and Compo-unds,2021,884:160953. doi: 10.1016/j.jallcom.2021.160953 [8] Alam MM, Alothman ZA, Naushad M, Aoua-T(2014). Evaluation of heavy metal kinetics t-hrough pyridine based Th(IV) phosphate com-posite cation exchanger using particle diffusi-on controlled ion exchange phenomenon[J]. I-nd Eng Chem,2014,20(2):705-709. [9] 徐宝龙, 周根陶, 郑永飞. 针铁矿-四方纤铁矿-水体系氧同位素分馏的实验研究[J]. 地球化学, 2002(4):366-374. doi: 10.3321/j.issn:0379-1726.2002.04.009XU B L, ZHOU G T, ZHENG Y F. Experimental study on oxygen isotope fractionation of goethite-tetracycline iron-water system[J]. Geochimica,2002(4):366-374(in Chinese). doi: 10.3321/j.issn:0379-1726.2002.04.009 [10] LIU Y Q, CHEN Z H, YIN X S, et al. Selective and efficient removal of As(V) and As(III) from water by resin-based hydrated ironoxide[J]. Journal of Molecular Structure,2023,1273:134361. doi: 10.1016/j.molstruc.2022.134361 [11] DZYAZKO, Y. S ROZHDESTVENSKA, L. M., KUDELK-O, K. O. et al. Hydrated Iron Oxide Embeddedt-o Natural Zeolite: Effect of Nanoparticles an-d Microparticles on Sorption Properties of C-omposites[J]. Water Air Soil Pollut,2022,233:205-217. doi: 10.1007/s11270-022-05681-y [12] XU Q Y, LI W P, MA L, et al. Simultaneou-s removal of ammonia and phosphate usinggreen synthesized iron oxide nanoparticles dis-persed onto zeolite[J]. Science of The Total Environment,2020,703:1-8. [13] ZHANG H L, ELSKENS M, CHEN G X, e-t al. Influence of seawater ions on phosphat-e adsorption at the surface of hydrous ferric-oxide (HFO)[J]. Science of The Total Enviro-nment 2020, 721: 137826. [14] HE Y H, LIN H, DONG Y B, et al. Zeolitesupported Fe/Ni bimetallic nanoparticles for si-multaneous removal of nitrate and phosphate: synergistic effect and mechanism[J]. ChemicalEngineering Journal,2018,347:669-681. [15] ZHOU H Y, QU L M. Adsorption of ammonia nitrogen in wastewater by tailing loadedmanganese oxide material[J]. Inorganic Chemistry Communications,2022,144:109886. doi: 10.1016/j.inoche.2022.109886 [16] CHENG H M, ZHU Q, XING Z P. Adsorption of ammonia nitrogen in low temperaturedomestic wastewater by modification bentonite[J]. Journal of Cleaner Production,2019,233:720-730. doi: 10.1016/j.jclepro.2019.06.079 [17] REN S G, HUANG S Y, LIU B X. Enhanc-ed removal of ammonia nitrogen from rareea-rth wastewater by NaCl modified vermiculite: Performance and mechanism, Chemosphere, 2022, 302: 134742. [18] 孙健, 徐兆郢, 赵平歌, 等. 水合氧化铁负载量对丙烯酸树脂基复合吸附剂的结构及除磷影响[J]. 复合材料学报, 2021, 38(8): 2595-2604.SUN J, XU Z Y, ZHAO P G, ea tl. Effect of hydrated ferric oxide loadings on structure and phosphate adsorption of acrylic polymer supported composite adsorbents[J]. Acta Mate -riae Compositae Sinica, 2021, 38(8): 2595-26 04. [19] AREF ALSHAMERI, HE H P, ZHU J X, et al. Adsorption of ammonium by different natural-clay minerals: Characterization, kinetics andadsorption isotherms[J]. Applied Clay Science,2018,159:83-93. doi: 10.1016/j.clay.2017.11.007 [20] ZHANG Y, YU F, CHENG W P, et al. "Adsorption Equilibrium and Kinetics of the Removal of Ammoniacal Nitrogen by Zeolite X/Activated Carbon Composite Synthesized from Elutrilithe"[J]. Journal of Chemistry, 2017, Article ID 1936829, 9 pages, 2017. [21] LUIZ G. POSSATO, MAURO D. Acevedo, CristinaL. Padró, et al. Activation of Mo and V oxi-des supported on ZSM-5 zeolite catalysts foll-owed by in situ XAS and XRD and their u-ses in oxydehydration of glycerol[J]. Molecular Catalysis,2020,481:110158. doi: 10.1016/j.mcat.2018.07.029 [22] CEHNG Y, HUANG T L, SHI X X, et al. Removal of ammonium ion from water by N-a rich birnessite: Performance and mechanis-ms[J]. Journal of Environmental Sciences,2017,57:402-410. doi: 10.1016/j.jes.2016.11.015 [23] 贺银海. 沸石同步脱氮除磷功能调控及机研究[D]. 北京科技大学, 2018.HE Y H. Study on the functional regulationand mechanism of simultaneous removal of n-itrogen and phosphorus by natural zeolite[D]. University of Science and Technology Bejjing2018(in Chinese). -

计量
- 文章访问数: 164
- HTML全文浏览量: 91
- 被引次数: 0