留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NHFO@蜂巢石的制备及其吸附氨氮机制

黄健 孙运运 张华 奚姗姗 王金花 张佳妹 何春华 罗涛 余韵韩

黄健, 孙运运, 张华, 等. NHFO@蜂巢石的制备及其吸附氨氮机制[J]. 复合材料学报, 2023, 40(11): 6130-6138. doi: 10.13801/j.cnki.fhclxb.20230222.010
引用本文: 黄健, 孙运运, 张华, 等. NHFO@蜂巢石的制备及其吸附氨氮机制[J]. 复合材料学报, 2023, 40(11): 6130-6138. doi: 10.13801/j.cnki.fhclxb.20230222.010
HUANG Jian, SUN Yunyun, ZHANG Hua, et al. Preparation and adsorption mechanism of NHFO@pumice for ammonia nitrogen[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6130-6138. doi: 10.13801/j.cnki.fhclxb.20230222.010
Citation: HUANG Jian, SUN Yunyun, ZHANG Hua, et al. Preparation and adsorption mechanism of NHFO@pumice for ammonia nitrogen[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6130-6138. doi: 10.13801/j.cnki.fhclxb.20230222.010

NHFO@蜂巢石的制备及其吸附氨氮机制

doi: 10.13801/j.cnki.fhclxb.20230222.010
基金项目: 国家重点研发计划专项项目(2019YFC0408504);安徽省高校省级自然科学研究项目(KJ2019ZD52;KJ2020A0466;KJ2021A0619);安徽建筑大学引进人才及博士启动基金项目(2019QDZ64;2019QDZ60)
详细信息
    通讯作者:

    张华,博士,教授,硕士生导师,研究方向为水处理理论与技术 E-mail: zhanghuapaper@163.com

  • 中图分类号: X703;TB33

Preparation and adsorption mechanism of NHFO@pumice for ammonia nitrogen

Funds: National Key Research and Development Program (2019YFC0408504); Provincial Natural Science Research Project of Higher Education in Anhui Province (KJ2019ZD52; KJ2020A0466; KJ2021A0619); Introduction of Talents and Doctoral Program of Anhui Jianzhu University (2019QDZ64; 2019QDZ60)
  • 摘要: 蜂巢石与纳米水合氧化铁(NHFO)是水处理中常用的吸附剂,研究采用共沉淀法将NHFO负载到蜂巢石上,探究其对氨氮的吸附性能及机制。实验探究了初始氨氮浓度、初始pH值及共存阳离子(H+、Na+、K+、Mg2+)对NHFO@蜂巢石吸附氨氮的影响。采用SEM-EDS、XRD等手段表征NHFO@蜂巢石的形貌及结构。结果显示:氨氮初始浓度为20 mg/L,pH值7左右时具有较好的吸附能力;共存离子对氨氮的吸附有抑制作用,抑制强度为H+>Na+>K+>Mg2+。SEM-EDS、XRD、FTIR等表征手段证实了NHFO成功负载在蜂巢石上,吸附过程符合Langmuir吸附等温线(R2=0.9886)和准二级动力学模型(R2=0.9969)。研究表明:氨氮主要通过羟基和NH4+的静电作用、离子交换和孔隙吸附共同实现的。该研究为吸附法处理氨氮废水提供了理论依据。

     

  • 图  1  ((a), (b))天然蜂巢石SEM图像;((c), (d)) 纳米水合氧化铁(NHFO)@蜂巢石SEM图像;(e) NHFO@蜂巢石EDS分析C、N、O、Fe元素分布图

    Figure  1.  ((a), (b)) SEM images of pumice; ((c), (d)) SEM images of nano hydrous iron oxide (NHFO)@pumice; (e) EDS images of NHFO@pumice distribution of C, N, O and Fe elements

    图  2  蜂巢石、NHFO@蜂巢石XRD图谱

    Figure  2.  XRD patterns of natural pumice and NHFO@pumice

    图  3  pH对NHFO@蜂巢石吸附氨氮的影响

    Figure  3.  Effect of pH on NHFO@pumice adsorption of ammonia nitrogen

    图  4  氨氮初始浓度对NHFO@蜂巢石吸附氨氮的影响

    Figure  4.  Effect of initial ammonia nitrogen concentration on NHFO@pumice adsorption of ammonia nitrogen

    图  5  共存离子对NHFO@蜂巢石吸附氨氮的影响

    Figure  5.  Influence of coexisting ions on NHFO@pumice adsorption of ammonia nitrogen

    图  6  NHFO@蜂巢石吸附等温线模型

    Figure  6.  Adsorption isotherm model of NHFO@pumice

    qt—Instantaneous adsorption capacity; CeConcentration

    图  7  NHFO@蜂巢石吸附动力学模型

    Figure  7.  Adsorption kinetics model of NHFO@pumice

    图  8  NHFO@蜂巢石傅里叶变换红外图谱

    Figure  8.  FTIR spectra of NHFO@pumice

    图  9  (a) NHFO@蜂巢石吸附前后XPS全谱图;(b) NHFO@蜂巢石吸附前后Na1s图谱

    Figure  9.  (a) XPS spectra before and after NHFO@pumice adsorption; (b) Na1s spectra before and after NHFO@pumice adsorption

    图  10  NHFO@蜂巢石吸附氨氮机制

    Figure  10.  Adsorption mechanism of NHFO@pumice

    表  1  NHFO@蜂巢石复合材料吸附等温线模型参数

    Table  1.   Adsorption isotherm model parameters of NHFO@pumice stone composites

    LangmuirFreundich
    qm/(mg·g−1)KLR2KFnR2
    4.5393±0.06920.2277±0.01890.98861.7285±0.24010.2066±0.03410.8560
    Notes: qm—Maximal adsorption capacity; KL—Langmuir constant; KF—Freundlich constant; n—The constant of the adsorption model; R2—Variance.
    下载: 导出CSV

    表  2  NHFO@蜂巢石复合材料吸附动力学模型参数

    Table  2.   Adsorption kinetics model parameters of NHFO@pumice stone composites

    Pseudo-first-orderqmk1R2
    3.7459±0.09190.0137±0.00120.9678
    Pseudo-second-orderqmk2R2
    4.2650±0.04510.0039±0.00020.9969
    ElovichabR2
    0.0484±0.0267−0.6115±0.00830.8786
    Notes: k1—Pseudo-first-order kinetic constant; k2—Pseudo-second-order kinetic constant; a—Initial adsorption rate (mg/(g·min)); b—Desorption constant.
    下载: 导出CSV

    表  3  NHFO@蜂巢石吸附前后成分相对含量(XPS全谱)

    Table  3.   Relative contents of NHFO@pumice before and after adsorption (Full spectrum of XPS)

    SampleAtomic ratio/at%
    CNOFeAlSiNa
    NHFO@pumice-before adsorption39.300.4942.501.415.106.602.43
    NHFO@pumice-after adsorption36.822.7343.152.514.735.921.04
    下载: 导出CSV
  • [1] ZHAO J G, LI H B, LIU C Q, et al. Eutrop-hication evaluation of water body at Huailai section of the Yongding River[J]. Meteorological and Environmental Research,2018,9(6):66-72, 78.
    [2] 曾青云, 薛丽燕, 曾繁钢, 等. 氨氮废水处理技术的研究现状[J]. 有色金属科学与工程, 2018, 9(4):83-88. doi: 10.13264/j.cnki.ysjskx.2018.04.014

    ZENG Qingyun, XUE Liyan, ZENG Fangang, et al. Research progress of treatment technology for ammonia nitrogen wastewater[J]. Nonferrous Metals Science and Engineering,2018,9(4):83-88(in Chinese). doi: 10.13264/j.cnki.ysjskx.2018.04.014
    [3] YU R T, ZHOU J C, XIE Z P, et al. Mechanism of ammonium adsorption from wastewater by modified bentonite and optimization by response surface[J]. Bioremediation Journal, 2018, 22(1-2): 16-24.
    [4] 牛乙涛, 包国庆, 吴纯鑫, 等. 功能化纳米复合材料Fe3O4@SiO2-APTMS的制备及其对Pb(II)的吸附[J]. 复合材料学报, 2023, 40(6): 3350-3365.

    NIU Yitao, BAO Guoqing, WU Chunxin, et al. Preparation of functionalized nano composites Fe3O4@SiO2-APTMS and its adsorption to Pb(II)[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3350-3365(in Chinese).
    [5] REN Z J, JIA B, ZHANG G M, et al. Study on adsorption of ammonia nitrogen by iron-loaded activated carbon from low temperature wastewater[J]. Chemosphere, 2021, 262: 127895.
    [6] TURAL B, ERTAŞ E, GÜZEL M, et al. Effect of structural differences of pumice on synthesis of pumice-supported nFe0: Removal of Cr(VI) from water[J]. Applied Water Science, 2021, 11(7): 1-11.
    [7] ZHANG Y, XU G S, XU M D, et al. Preparation of MgO porous nanoplates modified pumice and its adsorption performance on fluoride removal[J]. Journal of Alloys and Compounds,2021,884:160953. doi: 10.1016/j.jallcom.2021.160953
    [8] ALAM M M, ALOTHMAN Z A, NAUSHAD M, et al. Evaluation of heavy metal kinetics through pyridine based Th(IV) phosphate composite cation exchanger using particle diffusion controlled ion exchange phenomenon[J]. Journal of Industrial and Engineering Chemistry,2014,20(2):705-709.
    [9] 徐宝龙, 周根陶, 郑永飞. 针铁矿-四方纤铁矿-水体系氧同位素分馏的实验研究[J]. 地球化学, 2002, 31(4):366-374. doi: 10.3321/j.issn:0379-1726.2002.04.009

    XU Baolong, ZHOU Gentao, ZHENG Yongfei. Experimental study on oxygen isotope fractionation of goethite-tetracycline iron-water system[J]. Geochimica,2002, 31(4):366-374(in Chinese). doi: 10.3321/j.issn:0379-1726.2002.04.009
    [10] LIU Y Q, CHEN Z H, YIN X S, et al. Selective and efficient removal of As(V) and As(III) from water by resin-based hydrated iron oxide[J]. Journal of Molecular Structure,2023,1273:134361. doi: 10.1016/j.molstruc.2022.134361
    [11] DZYAZKO Y S, ROZHDESTVENSKA L M, KUDELKO K O, et al. Hydrated iron oxide embedded to natural zeolite: Effect of nanoparticles and microparticles on sorption properties of composites[J]. Water, Air, & Soil Pollution,2022,233(6):205. doi: 10.1007/s11270-022-05681-y
    [12] XU Q Y, LI W P, MA L, et al. Simultaneous removal of ammonia and phosphate using green synthesized iron oxide nanoparticles dispersed onto zeolite[J]. Science of the Total Environment,2020,703(C):135002.
    [13] ZHANG H L, ELSKENS M, CHEN G X, et al. Influence of seawater ions on phosphate adsorption at the surface of hydrous ferric oxide (HFO)[J]. Science of the Total Environment, 2020, 721: 137826.
    [14] 中华人民共和国生态环境部. 水质 氨氮的测定 纳氏试剂分光光度法: HJ 535—2009[S]. 北京: 中国环境科学出版社, 2009.

    Ministry of Ecology and Environment of the People's Republic of China. Water quality. Determination of ammonia nitrogen. Nessler's reagent spectrophotometry: HJ 535—2009[S]. Beijing: China Environmental Science Press, 2009(in Chinese).
    [15] LIN K N, ZHU Y, ZHANG Y B, et al. Determination of ammonia nitrogen in natural waters: Recent advances and applications[J]. Trends in Environmental Analytical Chemistry, 2019, 24: e00073.
    [16] HE Y H, LIN H, DONG Y B, et al. Zeolite supported Fe/Ni bimetallic nanoparticles for simultaneous removal of nitrate and phosphate: Synergistic effect and mechanism[J]. Chemical Engineering Journal,2018,347:669-681.
    [17] ZHOU H Y, QU L M. Adsorption of ammonia nitrogen in wastewater by tailing loaded manganese oxide material[J]. Inorganic Chemistry Communications,2022,144:109886. doi: 10.1016/j.inoche.2022.109886
    [18] CHENG H M, ZHU Q, XING Z P. Adsorption of ammonia nitrogen in low temperature domestic wastewater by modification bentonite[J]. Journal of Cleaner Production,2019,233:720-730. doi: 10.1016/j.jclepro.2019.06.079
    [19] REN S G, HUANG S Y, LIU B X. Enhanced removal of ammonia nitrogen from rare earth wastewater by NaCl modified vermiculite: Performance and mechanism[J]. Chemosphere, 2022, 302: 134742.
    [20] 孙健, 徐兆郢, 赵平歌, 等. 水合氧化铁负载量对丙烯酸树脂基复合吸附剂的结构及除磷影响[J]. 复合材料学报, 2021, 38(8): 2595-2604.

    SUN Jian, XU Zhaoying, ZHAO Pingge, et al. Effect of hydrated ferric oxide loadings on structure and phosphate adsorption of acrylic polymer supported composite adsorbents[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2595-2604(in Chinese).
    [21] ALSHAMERI A, HE H P, ZHU J X, et al. Adsorption of ammonium by different natural-clay minerals: Characterization, kinetics and adsorption isotherms[J]. Applied Clay Science,2018,159:83-93. doi: 10.1016/j.clay.2017.11.007
    [22] ZHANG Y, YU F, CHENG W P, et al. Adsorption equilibrium and kinetics of the removal of ammoniacal nitrogen by zeolite X/activated carbon composite synthesized from elutrilithe[J]. Journal of Chemistry, 2017, 481: 1936829.
    [23] POSSATO L G, ACEVEDO M D, PADRÓ C L, et al. Activation of Mo and V oxides supported on ZSM-5 zeolite catalysts followed by in situ XAS and XRD and their uses in oxydehydration of glycerol[J]. Molecular Catalysis,2020,481:110158. doi: 10.1016/j.mcat.2018.07.029
    [24] CHENG Y, HUANG T L, SHI X X, et al. Removal of ammonium ion from water by Na-rich birnessite: Performance and mechanisms[J]. Journal of Environmental Sciences,2016,57:402-410. doi: 10.1016/j.jes.2016.11.015
    [25] 贺银海. 沸石同步脱氮除磷功能调控及机理研究[D]. 北京: 北京科技大学, 2018.

    HE Yinhai. Study on the functional regulationand mechanism of simultaneous removal of nitrogen and phosphorus by natural zeolite[D]. Beijing: University of Science and Technology Beijing, 2018(in Chinese).
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  704
  • HTML全文浏览量:  309
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-10
  • 修回日期:  2022-12-15
  • 录用日期:  2023-02-15
  • 网络出版日期:  2023-02-23
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回