留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WO3@PANI复合纳米纤维的制备及其室温下对三乙胺的传感性能

赵庆璐 赵伟光 闫爽

赵庆璐, 赵伟光, 闫爽. WO3@PANI复合纳米纤维的制备及其室温下对三乙胺的传感性能[J]. 复合材料学报, 2023, 40(11): 6154-6162. doi: 10.13801/j.cnki.fhclxb.20230217.003
引用本文: 赵庆璐, 赵伟光, 闫爽. WO3@PANI复合纳米纤维的制备及其室温下对三乙胺的传感性能[J]. 复合材料学报, 2023, 40(11): 6154-6162. doi: 10.13801/j.cnki.fhclxb.20230217.003
ZHAO Qinglu, ZHAO Weiguang, YAN Shuang. Preparation of WO3@PANI composite nanofibers and their sensing properties towards triethylamine at room temperature[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6154-6162. doi: 10.13801/j.cnki.fhclxb.20230217.003
Citation: ZHAO Qinglu, ZHAO Weiguang, YAN Shuang. Preparation of WO3@PANI composite nanofibers and their sensing properties towards triethylamine at room temperature[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6154-6162. doi: 10.13801/j.cnki.fhclxb.20230217.003

WO3@PANI复合纳米纤维的制备及其室温下对三乙胺的传感性能

doi: 10.13801/j.cnki.fhclxb.20230217.003
基金项目: 辽宁省教育厅基本科研项目(LJKMZ20220900)
详细信息
    通讯作者:

    闫爽,博士,讲师,硕士生导师,研究方向为气体传感材料 E-mail: yanye150@outlook.com

  • 中图分类号: TQ340.64;TP212;TB333

Preparation of WO3@PANI composite nanofibers and their sensing properties towards triethylamine at room temperature

Funds: Basic Research Project of Liaoning Provincial Department of Education (LJKMZ20220900)
  • 摘要: 随着工业生产的日益发展,对气体传感器的需求不断增长。鉴于三乙胺对人体容易造成危害,开发可以有效检测三乙胺的气体传感器具有重要意义。针对目前常见气体传感器存在工作温度高、耗能高的特性,本文制备了一种可以在室温条件下快速检测三乙胺的气体传感器材料。采用静电纺丝技术、高温热处理及原位化学氧化聚合相结合的方法,成功合成了组分含量可控的WO3@聚苯胺(PANI)无机有机复合纤维材料。利用扫描电子显微镜、X射线衍射仪、能量色散X射线光谱仪和傅里叶变换红外光谱对所制备的样品形貌结构、元素含量及官能团进行表征。所制备的复合材料整体呈现纤维形貌,PANI均匀分布在WO3纳米纤维表面,形成WO3@PANI核壳结构。WO3@PANI复合纳米纤维在室温工作条件下对三乙胺表现出良好的传感性能。此外,还实现了优异的三乙胺选择性、高湿度检测、高浓度检测范围(50~5000 μg/g三乙胺)及良好的响应恢复特性。相比于PANI和WO3纳米纤维纯相材料,WO3@PANI复合纳米纤维的传感性能增强主要归因于WO3和PANI之间形成的p-n异质结。

     

  • 图  1  WO3@聚苯胺(PANI)制备流程示意图

    Figure  1.  Schematic diagram of the WO3@polyaniline (PANI) preparation flow

    图  2  (a)静电纺丝后前驱体纳米纤维的SEM图像;500℃ (b)、600℃ (c)、700℃ (d)煅烧后的WO3纳米纤维的SEM图像;PANI (e)、WO3@PANI复合纳米纤维(f)的SEM图像;WO3纳米纤维(g)、WO3@PANI复合纳米纤维(h)的EDS图谱

    Figure  2.  (a) SEM image of electrospinning post-precursor nanofibers; SEM images of 500℃ (b), 600℃ (c), 700℃ (d) calcined WO3 nanofibers; SEM images of PANI (e), WO3@PANI composite nanofibers (f); EDS map of WO3 nanofibers (g), WO3@PANI composite nanofibers (h)

    图  3  PANI、WO3纳米纤维和WO3@PANI 复合纳米纤维的FTIR图谱

    Figure  3.  FTIR spectra of the PANI, WO3 nanofibers and WO3@PANI composite nanofibers

    图  4  WO3纳米纤维和WO3@PANI复合纳米纤维的XRD图谱

    Figure  4.  XRD patterns of the WO3 nanofibers and WO3@PANI composite nanofibers

    图  5  室温条件下不同掺杂量WO3@PANI复合纳米纤维的气敏特性:(a)在空气中的电阻(Ra);(b)对三乙胺的响应灵敏度(气体浓度:100 μg/g)

    Rg—Resistance in target gas

    Figure  5.  Sensing property of WO3@PANI composite nanofiber with different WO3 doping amount at room temperature: (a) Resistance in air (Ra); (b) Response sensitivity to triethylamine (Gas concentration: 100 μg/g)

    图  6  室温条件下WO3@PANI-4复合纳米纤维对三乙胺的气体传感特性:(a)对不同测试气体的响应灵敏度(气体浓度:100 μg/g);(b)对不同浓度三乙胺气体的响应灵敏度;(c)对三乙胺气体的响应恢复曲线;(d)在不同湿度下对三乙胺气体的响应灵敏度(气体浓度:100 μg/g)

    TEA—Triethylamine

    Figure  6.  Gas sensing properties of WO3@PANI-4 composite nanofibers to triethylamine at room temperature: (a) Response sensitivity to different test gases (Gas concentration: 100 μg/g); (b) Response sensitivity to different concentrations of triethylamine gas; (c) Response recovery curve to triethylamine gas; (d) Response sensitivity to triethylamine gas at different humidity (Gas concentration: 100 μg/g)

    图  7  室温条件下WO3@PANI-4复合纳米纤维对三乙胺的重复性传感测试(a)和长期稳定性传感测试(b) (气体浓度:100 μg/g)

    Figure  7.  Repeatability sensing test (a) and long-term stability sensing test (b) of WO3@PANI-4 composite nanofibers on triethylamine at room temperature (Gas concentration: 100 μg/g)

    图  8  WO3@PANI异质结的能带结构示意图

    LUMO—Lowest unoccupied molecular orbital; HOMO—Highest occupied molecular orbital; EC—Bottom of conduction band; EF—Fermi level; EV—Top of valence band

    Figure  8.  Schematic diagram of the band structure of the WO3@PANI heterojunction

    表  1  WO3和WO3@PANI主要制备参数

    Table  1.   Preparation parameters of WO3 and WO3@PANI

    Fiber type Sample Calcination temperature/℃ Aniline dosage/μL WO3-600℃dosage/g
    WO3 nanofibers WO3-500℃ 500
    WO3-600℃ 600
    WO3-700℃ 700
    WO3@PANI composite nanofibers WO3@PANI-1 35 0.03
    WO3@PANI-2 35 0.10
    WO3@PANI-3 35 0.15
    WO3@PANI-4 35 0.20
    WO3@PANI-5 35 0.30
    下载: 导出CSV
  • [1] GUO L L, ZHANG B, YANG X L, et al. Sensing platform of PdO-ZnO-In2O3 nanofibers using MOF templated catalysts for triethylamine detection[J]. Sensors and Actuators B: Chemical,2021,343:130126. doi: 10.1016/j.snb.2021.130126
    [2] ZHENG L L, XIE J Y, LIU X H, et al. Unveiling the electronic interaction in ZnO/PtO/Pt nanoarrays for catalytic detection of triethylamine with ultrahigh sensitivity[J]. ACS Applied Materials & Interfaces,2020,12(41):46267-46276. doi: 10.1021/acsami.0c09130
    [3] MILLER M R, SHAW C A, LANGRISH J P. From particles to patients: Oxidative stress and the cardiovascular effects of air pollution[J]. Future Cardiology,2012,8(4):577-602. doi: 10.2217/fca.12.43
    [4] FAN Y R, XU Y Y, WANG Y X, et al. Fabrication and characterization of Co-doped ZnO nanodiscs for selective TEA sensor applications with high response, high selectivity and ppb-level detection limit[J]. Journal of Alloys and Compounds,2021,876:160170. doi: 10.1016/j.jallcom.2021.160170
    [5] RAHMAN N, YANG J, ZULFIQA R, et al. Insight into metallic oxide semiconductor (SnO2, ZnO, CuO, α-Fe2O3, WO3)-carbon nitride (g-C3N4) heterojunction for gas sensing application[J]. Sensors and Actuators A: Physical,2021,332:113128. doi: 10.1016/j.sna.2021.113128
    [6] ZHAI C B, LUO Z B, LIANG X, et al. A superior selective and anti-jamming performance triethylamine sensing sensor based on hierarchical WO3 nanoclusters[J]. Journal of Alloys and Compounds,2021,857:157545. doi: 10.1016/j.jallcom.2020.157545
    [7] WANG X, HAN W J, YANG J Q, et al. Conductometric ppb-level triethylamine sensor based on macroporous WO3-W18O49 heterostructures functionalized with carbon layers and PdO nanoparticles[J]. Sensors and Actuators B: Chemical,2022,361:131707. doi: 10.1016/j.snb.2022.131707
    [8] XU Y S, MA T T, ZHAO Y Q, et al. Multi-metal functionalized tungsten oxide nanowires enabling ultra-sensitive detection of triethylamine[J]. Sensors and Actuators B: Chemical,2019,300:127042. doi: 10.1016/j.snb.2019.127042
    [9] LIU S R, GUAN M Y, LI X Z, et al. Light irradiation enhanced triethylamine gas sensing materials based on ZnO/ZnFe2O4 composites[J]. Sensors and Actuators B: Chemical,2016,236:350-357. doi: 10.1016/j.snb.2016.05.130
    [10] ZENG J Y, RONG Q A, XIAO B, et al. Single-atom silver loaded on tungsten oxide with oxygen vacancies for high performance triethylamine gas sensors[J]. Journal of Materials Chemistry A,2021,9(13):8704-8710. doi: 10.1039/D1TA00694K
    [11] 王涛, 张博, 倪屹. 基于金担载氧化钨纳米线的高性能三乙胺气体传感器研究[J]. 传感技术学报, 2022, 35(9):1157-1166.

    WANG Tao, ZHANG Bo, NI Yi. Research on high-performance triethylamine gas sensor based on Au-loaded WO3 nanowires[J]. Journal of Sensing Technongy,2022,35(9):1157-1166(in Chinese).
    [12] HAN Y T, LIU Y, SU C, et al. Sonochemical synthesis of hierarchical WO3 flower-like spheres for highly efficient triethylamine detection[J]. Sensors and Actuators B: Chemical,2020,306:127536. doi: 10.1016/j.snb.2019.127536
    [13] HU Q, HE J Q, CHANG J Y, et al. Needle-shaped WO3 nanorods for triethylamine gas sensing[J]. ACS Applied Nano Materials,2020,3(9):9046-9054. doi: 10.1021/acsanm.0c01731
    [14] 桂阳海, 钱琳琳, 田宽, 等. ZIF-67修饰WO3纳米片的制备及其气敏性能[J]. 复合材料学报, 2023, 40(2):940-949.

    GUI Yanghai, QIAN Linlin, TIAN Kuan, et al. Gas sensing performance and preparation of WO3 nanosheets decorated by ZIF-67[J]. Acta Materiae Compositae Sinica,2023,40(2):940-949(in Chinese).
    [15] PARK E J, CHO Y K, KIM D H, et al. Hydrophobic polydimethylsiloxane (PDMS) coating of mesoporous silica and its use as a preconcentrating agent of gas analytes[J]. Langmuir,2014,30(34):10256-10262. doi: 10.1021/la502915r
    [16] BAI S L, SUN C Z, WAN P B, et al. Transparent conducting films of hierarchically nanostructured polyaniline networks on flexible substrates for high-performance gas sensors[J]. Small,2015,11(3):306-310. doi: 10.1002/smll.201401865
    [17] BANDGAR D K, NAVALE S T, NAVALE Y H, et al. Flexible camphor sulfonic acid-doped PANI/α-Fe2O3 nanocompo-site films and their room temperature ammonia sensing activity[J]. Materials Chemistry and Physics,2017,189:191-197. doi: 10.1016/j.matchemphys.2016.12.050
    [18] JIANG S, CHEN J Y, TANG J, et al. Au nanoparticles-functionalized two-dimensional patterned conducting PANI nanobowl monolayer for gas sensor[J]. Sensors and Actuators B: Chemical,2009,140(2):520-524. doi: 10.1016/j.snb.2009.04.060
    [19] KUMAR R, YADAV B C. Fabrication of polyaniline (PANI)—Tungsten oxide (WO3) composite for humidity sensing application[J]. Journal of Inorganic and Organometallic Polymers and Materials,2016,26(6):1421-1427. doi: 10.1007/s10904-016-0412-9
    [20] HIRATA M, SUN L Y. Characteristics of an organic semiconductor polyaniline film as a sensor for NH3 gas[J]. Sensors and Actuators A: Physical, 1994, 40(2): 159-163.
    [21] KUMAR L, RAWAL I, KAUR A, et al. Flexible room temperature ammonia sensor based on polyaniline[J]. Sensors and Actuators B: Chemical,2017,240:408-416. doi: 10.1016/j.snb.2016.08.173
    [22] LI S Q, LIU A, YANG Z J, et al. Design and preparation of the WO3 hollow spheres@PANI conducting films for room temperature flexible NH3 sensing device[J]. Sensors and Actuators B: Chemical,2019,289:252-259. doi: 10.1016/j.snb.2019.03.073
    [23] 谢骥, 谢祯芳, 胡校兵, 等. 基于纳米WO3半导体材料的NO2气体传感器的研究进展[J]. 陶瓷学报, 2016, 37(6):593-602.

    XIE Ji, XIE Zhenfang, HU Xiaobing, et al. The research progress of NO2 gas sensor based on the nano-WO3 semiconductor materials[J]. Journal of Ceramics,2016,37(6):593-602(in Chinese).
    [24] 吕露, 刘斌, 刘慧, 等. 微纳结构三氧化钨气敏材料的研究进展[J]. 现代化工, 2022, 42(12): 40-43, 49

    LYU Lu, LIU Bin, LIU Hui, et al. Research progress of micro-nano structural trioxide gas sensitive materials[J]. Modern Chemical Industry, 2022, 42(12): 40-43, 49(in Chinese).
    [25] 谭依玲, 李诗纯, 杨希, 等. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8):1784-1795. doi: 10.7536/PC211033

    TAN Yiling, LI Shichun, YANG Xi, et al. Strategies of improving anti-humidity performance for metal oxide semiconductors gas-sensitive materials[J]. Progress in Chemistry,2022,34(8):1784-1795(in Chinese). doi: 10.7536/PC211033
    [26] 熊乐艳, 唐鉴芬, 郑龙珍, 等. 三氧化钨薄膜的制备及其亲水/疏水性能转变研究[J]. 华东交通大学学报, 2011, 28(4):75-79. doi: 10.3969/j.issn.1005-0523.2011.04.015

    XIONG Leyan, TANG Jianfen, ZHENG Longzhen, et al. Preparation of tungsten oxide thin film and its hydrophilic/hydrophobic conversion mechanism[J]. Journal of East China Jiaotong University,2011,28(4):75-79(in Chinese). doi: 10.3969/j.issn.1005-0523.2011.04.015
    [27] JAIN S, CHAKANE S, SAMUI A B, et al. Humidity sensing with weak acid-doped polyaniline and its composites[J]. Sensors and Actuators B: Chemical,2003,96(1):124-129. doi: 10.1016/S0925-4005(03)00511-2
    [28] FAN H Q, ZHENG X K, SHEN Q, et al. Hydrothermal synthesis and their ethanol gas sensing performance of 3-dimensional hierarchical nano Pt/SnO2[J]. Journal of Alloys and Compounds,2022,909:164693. doi: 10.1016/j.jallcom.2022.164693
    [29] MA J W, FAN H Q, LI Z X, et al. Multi-walled carbon nanotubes/polyaniline on the ethylenediamine modified polyethylene terephthalate fibers for a flexible room temperature ammonia gas sensor with high responses[J]. Sensors and Actuators B: Chemical,2021,334:129677. doi: 10.1016/j.snb.2021.129677
    [30] TIAN H L, FAN H Q, LI M M, et al. Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor[J]. ACS Sensors,2016,1(3):243-250.
    [31] TIAN H L, FAN H Q, MA J W, et al. Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing[J]. Journal of Hazardous Materials,2018,341:102-111. doi: 10.1016/j.jhazmat.2017.07.056
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  492
  • HTML全文浏览量:  340
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-19
  • 修回日期:  2023-01-14
  • 录用日期:  2023-01-16
  • 网络出版日期:  2023-02-20
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回