留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WO3@PANI复合纳米纤维的制备及其室温下对三乙胺的传感性能

赵庆璐 赵伟光 闫爽

赵庆璐, 赵伟光, 闫爽. WO3@PANI复合纳米纤维的制备及其室温下对三乙胺的传感性能[J]. 复合材料学报, 2023, 41(0): 1-9
引用本文: 赵庆璐, 赵伟光, 闫爽. WO3@PANI复合纳米纤维的制备及其室温下对三乙胺的传感性能[J]. 复合材料学报, 2023, 41(0): 1-9
Qinglu ZHAO, Weiguang ZHAO, Shuang YAN. Preparation of WO3@PANI composite nanofibers and their sensing properties towards triethylamine at room temperature[J]. Acta Materiae Compositae Sinica.
Citation: Qinglu ZHAO, Weiguang ZHAO, Shuang YAN. Preparation of WO3@PANI composite nanofibers and their sensing properties towards triethylamine at room temperature[J]. Acta Materiae Compositae Sinica.

WO3@PANI复合纳米纤维的制备及其室温下对三乙胺的传感性能

基金项目: 辽宁省教育厅基本科研项目(No. LJKMZ20220900)
详细信息
    通讯作者:

    闫爽,博士,讲师,硕士生导师,研究方向为气体传感材料 E-mail: yanye150@outlook.com

  • 中图分类号: TQ340.64;TP212

Preparation of WO3@PANI composite nanofibers and their sensing properties towards triethylamine at room temperature

Funds: Basic Research Project of Liaoning Provincial Department of Education (No. LJKMZ20220900)
  • 摘要: 三乙胺作为一种具有强烈刺激性气味的有机挥发性气体,广泛应用于工业生产并存在于日常生活中,开发能够有效且快速检测三乙胺的气体传感材料具有很大的实际应用价值。WO3对于三乙胺具有优异的敏感特性,但是由于其工作温度高、耗能高以及敏感特性易受环境湿度影响等原因,限制了它在气体传感材料方面的应用。本文采用导电高分子聚合物PANI对WO3进行功能化修饰,通过有机-无机杂化的方式制备具有优异三乙胺敏感性能的复合材料。采用静电纺丝技术、高温热处理以及原位化学氧化聚合相结合的方法,成功合成了组分含量可控的复合纤维材料,其中PANI均匀分布在WO3纳米纤维表面,形成WO3@PANI核壳结构。WO3@PANI复合纳米纤维在室温工作条件下对三乙胺表现出良好的传感性能,对体积分数为100×10-6的三乙胺的响应为3.12。实现了优异的三乙胺选择性、高湿度检测(在环境湿度为70% RH时,相比于最高响应值仅下降2.07%)、高浓度检测范围(50–5000 μg/g三乙胺)以及良好的响应恢复特性。室温条件下WO3@PANI复合纳米纤维对三乙胺的气体传感特性:(a)对不同测试气体的响应灵敏度(气体浓度:100 μg/g),(b)对不同浓度三乙胺气体的响应灵敏度,(c)对三乙胺气体的响应恢复曲线,(d)在不同湿度下对三乙胺气体的响应灵敏度(气体浓度:100 μg/g)

     

  • 图  1  WO3@聚苯胺(PANI)制备流程示意图

    Figure  1.  Schematic diagram of the WO3@ Polyaniline (PANI) preparation flow

    图  2  (a)静电纺丝后前驱体纳米纤维;500℃(b)、600℃(c)、700℃(d)煅烧后的WO3纳米纤维;PANI(e)、WO3@PANI(f)复合纳米纤维的SEM图像;(g)WO3纳米纤维;(h) WO3@PANI复合纳米纤维的EDS图谱

    Figure  2.  SEM images of electrospinning post-precursor nanofibers (a), 500℃(b), 600℃(c), 700℃(d) calcined WO3 nanofibers; PANI (e), WO3@PANI (f) composite nanofibers; EDS map of WO3 nanofibers (g), WO3@PANI (h) composite nanofibers

    图  3  PANI (a), WO纳米纤维(b)和WO3@PANI (c)复合纳米维的FTIR图

    Figure  3.  FTIR plots of the PANI (a), WO3 nanofibers (b), and WO3@PANI (c) composite nanofibers

    图  4  WO3纳米纤维(a)和WO3@PANI(b)复合纳米纤维的XRD图谱

    Figure  4.  XRD patterns of the WO3 (a) nanofibers and WO3@PANI(b) composite nanofibers

    图  5  室温条件下不同掺杂量WO3@PANI复合纳米纤维(a)初始电阻值(Ra),(b)对三乙胺的响应灵敏度(气体浓度:100 μg/g)

    Figure  5.  WO3@PANI composite nanofiber (a) initial resistance value (Ra), (b) response sensitivity to triethylamine (gas concentration: 100 μg/g)

    图  6  室温条件下WO3@PANI-4复合纳米纤维对三乙胺的气体传感特性:(a)对不同测试气体的响应灵敏度(气体浓度:100 μg/g),(b)对不同浓度三乙胺气体的响应灵敏度,(c)对三乙胺气体的响应恢复曲线,(d)在不同湿度下对三乙胺气体的响应灵敏度(气体浓度:100 μg/g)

    Figure  6.  Gas sensing properties of WO3@PANI-4 composite nanofibers to triethylamine at room temperature: (a) response sensitivity to different test gases (gas concentration: 100 μg/g), (b) response sensitivity to different concentrations of triethylamine gas, (c) response recovery curve to triethylamine gas, and (d) response sensitivity to triethylamine gas at different humidity

    图  7  室温条件下WO3@PANI-4复合纳米纤维对三乙胺的(a)重复性传感测试和(b)长期稳定性传感测试(气体浓度:100 μg/g)

    Figure  7.  At room temperature WO3@PANI-4 (a) Repeatability sensing test and (b) long-term stability sensing test of composite nanofibers on triethylamine (gas concentration: 100 μg/g)

    图  8  WO3@PANI异质结的能带结构示意图

    Figure  8.  Schematic diagram of the band structure of the WO3@PANI heterojunction

  • [1] GUO L, ZHANG B, YANG X, et al. Sensing platform of PdO-ZnO-In2O3 nanofibers using MOF templated catalysts for triethylamine detection[J]. Sensors and Actuators B:Chemical,2021,343:130126. doi: 10.1016/j.snb.2021.130126
    [2] ZHENG L, XIE J, LIU X, et al. Unveiling the Electronic Interaction in ZnO/PtO/Pt Nanoarrays for Catalytic Detection of Triethylamine with Ultrahigh Sensitivity[J]. ACS Appl Mater Interfaces,2020,12(41):46267-46276. doi: 10.1021/acsami.0c09130
    [3] MARK R MILLER, CATHERINE A SHAW, JEREMY P LANGRISH. From particles to patients: Oxidative stress and the cardiovascular effects of air pollution[J]. Future Cardiol,2012,8(4):577-602. doi: 10.2217/fca.12.43
    [4] FAN Y, XU Y, WANG Y, et al. Fabrication and characterization of Co-doped ZnO nanodiscs for selective TEA sensor applications with high response, high selectivity and ppb-level detection limit[J]. Journal of Alloys and Compounds,2021,876:160170. doi: 10.1016/j.jallcom.2021.160170
    [5] RAHMAN N, YANG J, ZULFIQAR, et al. Insight into metallic oxide semiconductor (SnO2, ZnO, CuO, α-Fe2O3, WO3)-carbon nitride (g-C3N4) heterojunction for gas sensing application[J]. Sensors and Actuators A:Physical,2021,332:113128. doi: 10.1016/j.sna.2021.113128
    [6] ZHAI C, LUO Z, LIANG X, et al. A superior selective and anti-jamming performance triethylamine sensing sensor based on hierarchical WO3 nanoclusters[J]. Journal of Alloys and Compounds,2021,857:157545. doi: 10.1016/j.jallcom.2020.157545
    [7] WANG X, HAN W, YANG J, et al. Conductometric ppb-level triethylamine sensor based on macroporous WO3-W18O49 heterostructures functionalized with carbon layers and PdO nanoparticles[J]. Sensors and Actuators B:Chemical,2022,361:131707. doi: 10.1016/j.snb.2022.131707
    [8] XU Y, MA T, ZHAO Y, et al. Multi-metal functionalized tungsten oxide nanowires enabling ultra-sensitive detection of triethylamine[J]. Sensors and Actuators B:Chemical,2019,300:127042. doi: 10.1016/j.snb.2019.127042
    [9] LIU S-R, GUAN M-Y, LI X-Z, et al. Light irradiation enhanced triethylamine gas sensing materials based on ZnO/ZnFe2O4 composites[J]. Sensors and Actuators B:Chemical,2016,236:350-357. doi: 10.1016/j.snb.2016.05.130
    [10] ZENG J, RONG Q, XIAO B, et al. Single-atom silver loaded on tungsten oxide with oxygen vacancies for high performance triethylamine gas sensors[J]. Journal of Materials Chemistry A,2021,9(13):8704-8710. doi: 10.1039/D1TA00694K
    [11] 王涛, 张博, 倪屹. 基于金担载氧化钨纳米线的高性能三乙胺气体传感器研究[J]. 传感技术学报, 2022, 35,(9):1157-1166.

    WANG Tao, ZHANG Bo, NI Yi. Research on High-Performance Triethylamine Gas Sensor Based on Au-Loaded WO3 Nanowires[J]. Journal of Sensing Technongy,2022,35,(9):1157-1166(in Chinese).
    [12] HAN Y, LIU Y, SU C, et al. Sonochemical synthesis of hierarchical WO3 flower-like spheres for highly efficient triethylamine detection[J]. Sensors and Actuators B:Chemical,2020,306:127536. doi: 10.1016/j.snb.2019.127536
    [13] HU Q, HE J, CHANG J, et al. Needle-Shaped WO3 Nanorods for Triethylamine Gas Sensing[J]. ACS Applied Nano Materials,2020,3(9):9046-9054. doi: 10.1021/acsanm.0c01731
    [14] 桂阳海, 钱琳琳, 田宽, 等. ZIF-67修饰WO3纳米片的制备及其气敏性能[J]. 复合材料学报, 2023:40.

    GUI Yanghai, QIAN Linlin, TIAN Kuan, et al. Gas sensing performance and preparation of WO3 nanosheets decorated by ZIF-67[J]. Journal of Composite Materials,2023:40(in Chinese).
    [15] PARK E J, CHO Y K, KIM D H, et al. Hydrophobic polydimethylsiloxane (PDMS) coating of mesoporous silica and its use as a preconcentrating agent of gas analytes[J]. Langmuir,2014,30(34):10256-10262. doi: 10.1021/la502915r
    [16] BAI S, SUN C, WAN P, et al. Transparent conducting films of hierarchically nanostructured polyaniline networks on flexible substrates for high-performance gas sensors[J]. Small,2015,11(3):306-310. doi: 10.1002/smll.201401865
    [17] BANDGAR D K, NAVALE S T, NAVALE Y H, et al. Flexible camphor sulfonic acid-doped PANI/α-Fe2O3 nanocomposite films and their room temperature ammonia sensing activity[J]. Materials Chemistry and Physics,2017,189:191-197. doi: 10.1016/j.matchemphys.2016.12.050
    [18] JIANG S, CHEN J, TANG J, et al. Au nanoparticles-functionalized two-dimensional patterned conducting PANI nanobowl monolayer for gas sensor[J]. Sensors and Actuators B:Chemical,2009,140(2):520-524. doi: 10.1016/j.snb.2009.04.060
    [19] KUMAR R, YADAV B C. Fabrication of Polyaniline (PANI)—Tungsten oxide (WO3) Composite for Humidity Sensing Application[J]. Journal of Inorganic and Organometallic Polymers and Materials,2016,26(6):1421-1427. doi: 10.1007/s10904-016-0412-9
    [20] MISTUTOSHI HIRATA, LIANGYAN SUN. Characteristics of an organic semiconductor polyaniline film as a sensor for NH3 gas [J]. Sensors and Actuatora A, 40(1994)159-163.
    [21] KUMAR L, RAWAL I, KAUR A, et al. Flexible room temperature ammonia sensor based on polyaniline[J]. Sensors and Actuators B:Chemical,2017,240:408-416. doi: 10.1016/j.snb.2016.08.173
    [22] LI S, LIU A, YANG Z, et al. Design and preparation of the WO3 hollow spheres@ PANI conducting films for room temperature flexible NH3 sensing device[J]. Sensors and Actuators B:Chemical,2019,289:252-259. doi: 10.1016/j.snb.2019.03.073
    [23] 谢骥, 谢祯芳, 胡校兵, 等. 基于纳米WO3半导体材料NO2气体传感器的研究进展[J]. 陶瓷学报, 2016, 37(6):593-602.

    XIE Ji, XIE Zhenfang, HU Xiaobing, et al. The Research Progress of NO2 Gas Sensor Based on the Nano-WO3 Semiconductor Material[J]. Journal of Ceramics,2016,37(6):593-602(in Chinese).
    [24] 吕露, 刘斌, 刘慧, 等. 微纳结构三氧化钨气敏材料的研究进展 [J/OL]. 现代化工. 2022, 42(12): 40-43+49

    LV Lu, LIU Bin, LIU Hui, et al. Research progress of micro-nano structural trioxide gas sensitive materials [J/OL]. Modern Chemical Industry. (in Chinese)
    [25] 谭依玲, 李诗纯, 杨希, 等. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8):1784-1795.

    TAN Yiling, LI Shichun, YANG Xi, et al. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials[J]. Chemical progress,2022,34(8):1784-1795(in Chinese).
    [26] 熊乐艳, 唐鉴芬, 郑龙珍, 等. 三氧化钨薄膜的制备及其亲水/疏水性能转变研究[J]. 华东交通大学学报, 2011, 28(4):75-79. doi: 10.3969/j.issn.1005-0523.2011.04.015

    XIONG Leyan, TANG Jianfen, ZHENG Longzhen, et al. Preparation of Tungsten Oxide Thin Film and its Hydrophilic/Hydrophobic Conversion Mechanism[J]. Journal of East China Jiaotong University,2011,28(4):75-79(in Chinese). doi: 10.3969/j.issn.1005-0523.2011.04.015
    [27] JAIN S, CHAKANE S, SAMUI A B, et al. Humidity sensing with weak acid-doped polyaniline and its composites[J]. Sensors and Actuators B:Chemical,2003,96:124-129. doi: 10.1016/S0925-4005(03)00511-2
    [28] FAN H, ZHENG X, SHEN Q, et al. Hydrothermal synthesis and their ethanol gas sensing performance of 3-dimensional hierarchical nano Pt/SnO2[J]. Journal of Alloys and Compounds,2022,909:164693. doi: 10.1016/j.jallcom.2022.164693
    [29] MA J, FAN H, LI Z, et al. Multi-walled carbon nanotubes/polyaniline on the ethylenediamine modified polyethylene terephthalate fibers for a flexible room temperature ammonia gas sensor with high responses[J]. Sensors and Actuators B:Chemical,2021,334:129677. doi: 10.1016/j.snb.2021.129677
    [30] TIAN H, FAN H, LI M, et al. Zeolitic Imidazolate Framework Coated ZnO Nanorods as Molecular Sieving to Improve Selectivity of Formaldehyde Gas Sensor[J]. ACS Sensors,2015,1(3):243-250.
    [31] TIAN H, FAN H, MA J, et al. Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing[J]. J Hazard Mater,2018,341:102-111. doi: 10.1016/j.jhazmat.2017.07.056
  • 加载中
计量
  • 文章访问数:  94
  • HTML全文浏览量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-19
  • 修回日期:  2023-01-14
  • 录用日期:  2023-01-16
  • 网络出版日期:  2023-02-22

目录

    /

    返回文章
    返回