留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

富Bi型Bi4O5Br2/TiO2复合纤维的高效光催化CO2还原

李跃军 曹铁平 孙大伟

李跃军, 曹铁平, 孙大伟. 富Bi型Bi4O5Br2/TiO2复合纤维的高效光催化CO2还原[J]. 复合材料学报, 2023, 40(11): 6251-6259. doi: 10.13801/j.cnki.fhclxb.20230222.004
引用本文: 李跃军, 曹铁平, 孙大伟. 富Bi型Bi4O5Br2/TiO2复合纤维的高效光催化CO2还原[J]. 复合材料学报, 2023, 40(11): 6251-6259. doi: 10.13801/j.cnki.fhclxb.20230222.004
LI Yuejun, CAO Tieping, SUN Dawei. A bismuth-rich Bi4O5Br2/TiO2 composites fibers photocatalyst enables dramatic CO2 reduction activity[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6251-6259. doi: 10.13801/j.cnki.fhclxb.20230222.004
Citation: LI Yuejun, CAO Tieping, SUN Dawei. A bismuth-rich Bi4O5Br2/TiO2 composites fibers photocatalyst enables dramatic CO2 reduction activity[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6251-6259. doi: 10.13801/j.cnki.fhclxb.20230222.004

富Bi型Bi4O5Br2/TiO2复合纤维的高效光催化CO2还原

doi: 10.13801/j.cnki.fhclxb.20230222.004
基金项目: 国家自然科学基金项目(21573003);吉林省自然科学基金项目(20140101118JC)
详细信息
    通讯作者:

    曹铁平,博士,教授,硕士生导师,研究方向为功能纳米材料 E-mail: bcctp2008@163.com

  • 中图分类号: O614.32;TB33

A bismuth-rich Bi4O5Br2/TiO2 composites fibers photocatalyst enables dramatic CO2 reduction activity

Funds: National Natural Science Foundation of China (21573003); Natural Science Foundation of Jilin Province (20140101118JC)
  • 摘要: 光催化CO2还原技术既能实现节能减排,又能缓解能源短缺,符合当今绿色可持续发展的理念。本工作以静电纺丝技术制备的TiO2纳米纤维为基质,结合水热还原法制备Bi@Bi4O5Br2/TiO2复合纤维。利用XRD、SEM、HRTEM、XPS、UV-Vis和碳吸附等方法对其微观结构、形貌和光学性能进行表征。结果表明:TiO2 纳米纤维经Bi4O5Br2复合后,光谱响应范围拓展到可见光区,光生电子还原能力增强,可以将CO2还原成CH4和CO;金属Bi的富集不仅能提高催化剂对酸性CO2分子的吸附能力,增强CO2转化效率,而且能改变光催化反应路径,并有醇类物质(CH3OH)的生成。模拟太阳光照射3 h,Bi@Bi4O5Br2/TiO2光催化CO2还原生成CH4、CO和CH3OH的速率分别达到3.87、1.06和0.32 μmol·h−1·g−1。本文为探索高效二氧化碳光还原催化剂提供了新的机会。

     

  • 图  1  样品TiO2、Bi4O5Br2、Bi4O5Br2/TiO2和Bi@Bi4O5Br2/TiO2的XRD图谱 (a) 和局部放大XRD图谱 (b)

    Figure  1.  XRD patterns (a) and the expanded view of XRD patterns (b) of TiO2, Bi4O5Br2, Bi4O5Br2/TiO2 and Bi@Bi4O5Br2/TiO2 samples

    图  2  样品TiO2 (a)、Bi4O5Br2 (b)、Bi4O5Br2/TiO2 (c)Bi@Bi4O5Br2/TiO2 (d)的SEM图像和Bi@Bi4O5Br2/TiO2 ((e), (f)) 的HRTEM图像

    Figure  2.  SEM images of samples TiO2 (a), Bi4O5Br2 (b), Bi4O5Br2/TiO2 (c), Bi@Bi4O5Br2/TiO2 (d) and HRTEM images of Bi@Bi4O5Br2/TiO2 ((e), (f))

    图  3  不同样品的N2吸附-脱附等温线和孔径分布曲线

    dV/dD—Differential pore volume versus diameter

    Figure  3.  N2 adsorption-desorption isotherms and pore-size of different samples

    图  4  不同样品的CO2吸附等温线 (a) 和CO2程序升温脱附 (b)

    Figure  4.  CO2 adsorption isotherms (a) and temperature programmed desorption spectrum of CO2 (b) for the different samples

    图  5  样品Bi@Bi4O5Br2/TiO2的XPS图谱:(a) 全谱;(b) Ti2p;(c) Bi4f;(d) Br3d;(e) O1s

    Figure  5.  XPS spectra of the Bi@Bi4O5Br2/TiO2 sample: (a) Full spectrum; (b) Ti2p; (c) Bi4f; (d) Br3d; (e) O1s

    图  6  样品TiO2、Bi4O5Br2、Bi4O5Br2/TiO2和Bi@Bi4O5Br2/TiO2:(a) 紫外-可见漫反射;(b) 光致发光;(c) 瞬态光电流;(d) Bi4O5Br2/TiO2和Bi@Bi4O5Br2/TiO2的瞬态荧光衰减寿命;(e) TiO2和Bi4O5Br2的莫特肖特基曲线

    τ—Fitting life; A—Corresponding proportion; C—Capacitance

    Figure  6.  TiO2, Bi4O5Br2, Bi4O5Br2/TiO2 and Bi@Bi4O5Br2/TiO2 samples: (a) UV-Vis DRS; (b) PL spectra; (c) Transient photocurrent responses; (d) Transient fluorescence decay lifetime of Bi4O5Br2/TiO2 and Bi@Bi4O5Br2/TiO2 samples; (e) Mott-Schottky curves of TiO2 and Bi4O5Br2 samples

    图  7  样品TiO2、Bi4O5Br2、Bi4O5Br2/TiO2和Bi@Bi4O5Br2/TiO2光催化CO2还原3 h后CH4、CO和CH3OH的生成速率 (a) 及样品Bi@Bi4O5Br2/TiO2光催化产物的生成量随时间变化 (b)

    Figure  7.  Yields of CH4, CO and CH3OH for photocatalytic CO2 reduction over TiO2, Bi4O5Br2, Bi4O5Br2/TiO2 and Bi@Bi4O5Br2/TiO2 samples after 3 hours irradiation (a) and time course of the products in the photocatalytic conversion of CO2 over Bi@Bi4O5Br2/TiO2 sample (b)

    图  8  Bi@Bi4O5Br2/TiO2光催化CO2还原反应机制示意图

    CB—Conduction band; VB—Valence band; Eg—Band gap; E—Energy

    Figure  8.  Schematic mechanism of photocatalytic CO2 reduction of Bi@Bi4O5Br2/TiO2 sample

    表  1  不同样品的比表面积、孔径和孔容大小

    Table  1.   Specific surface area, pore size, pore volume size of different samples

    SampleSpecific
    surface area/
    (m2·g−1)
    Average pore
    diameter/nm
    Total pore
    volume/
    (cm2·g−1)
    TiO2 3014.60.15
    Bi4O5Br212820.40.24
    Bi4O5Br2/TiO214424.90.26
    Bi@Bi4O5Br2/TiO213221.60.25
    下载: 导出CSV

    表  2  CO2光催化还原产物生成速率比较

    Table  2.   Comparison of products generation rate for CO2 photocatalytic reduction

    PhotocatalystIllumination
    period/h
    Reaction
    condition
    ProductYield/
    (μmol·g−1·h−1)
    Reference
    Pt/D-TiO2–x 5 300 W Xe lamp
    120℃, water
    CH4 0.34
    [29]
    Fe-TiO2 12 Visible light
    (λ>400 nm)
    CH4 7.73
    [30]
    TiO2-G 5 300 W Xe lamp
    NaHCO3+H2SO4
    CO
    CH4
    5.20
    26.70

    [31]
    Fe/TiO2/rGO 5 300 W Xe lamp
    (λ>420 nm)
    CH4
    O2
    4.08
    4.32

    [32]
    Bi2Al4O9/β-Bi2O3 10 300 W Xe lamp
    H2O
    CO 13.50
    [33]
    Bi/Bi4O5Br2 2 300 W high pressure Xenon lamp CO
    CH4
    3.16
    0.50

    [18]
    g-C3N4/α-Fe2O3 300 W Xenon lamp CH3OH 5.63
    [34]
    TiO2/Ni(OH)2 3 300 W Xe lamp
    40 mW·cm−2
    CO
    CH4
    CH3OH
    CH3CH2OH
    0.71
    2.20
    0.58
    0.37

    [8]
    Notes: D—Diameter; G—Graphene; rGO—Reduced graphene oxide; λ—Wavelength.
    下载: 导出CSV
  • [1] HUANG H N, SHI R, LI Z H, et al. Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas-water boundary[J]. Angewandte Chemie,2022,61(17):202200802.
    [2] CHENG L, YUE X Y, FAN J J, et al. Site-specific electron-driving observations of CO2-to-CH4 photoreduction on Co-doped CeO2/crystalline carbon nitride S-scheme heterojunctions[J]. Advanced Materials,2022,34(27):2200929. doi: 10.1002/adma.202200929
    [3] FENG X H, PAN F P, TRAN B Z, et al. Photocatalytic CO2 reduction on porous TiO2 synergistically promoted by atomic layer deposited MgO overcoating and photodeposited silver nanoparticles[J]. Catalysis Today,2020,339:328-336. doi: 10.1016/j.cattod.2019.03.012
    [4] LOW J X, CHENG B, YU J G. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review[J]. Applied Surface Science,2017,392:658-686. doi: 10.1016/j.apsusc.2016.09.093
    [5] JIANG Z, XU X H, MA Y H, et al. Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction[J]. Nature,2020,586(7830):549-554. doi: 10.1038/s41586-020-2738-2
    [6] MA Y J, YI X X, WANG S L, et al. Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2[J]. Nature Communications,2022,13(1):1400. doi: 10.1038/s41467-021-27699-2
    [7] LI C G, ZHAO J G, XIONG Z, et al. Selective photocatalytic reduction of CO2 into CH4 by Pt and Cu co-modified TiO2[J]. Clean Coal Technology,2020,26(4):162-167.
    [8] MENG A Y, WU S, CHENG B, et al. Hierarchical TiO2/Ni(OH)2 composite fibers with enhanced photocatalytic CO2 reduction performance[J]. Journal of Materials Chemistry A,2018,6(11):4729-4736. doi: 10.1039/C7TA10073F
    [9] LI Y X, HUI D P, SUN Y Q, et al. Boosting thermo-photocatalytic CO2 conversion activity by using photosynthesis-inspired electron-proton-transfer mediators[J]. Nature Communications,2021,12(1):123. doi: 10.1038/s41467-020-20444-1
    [10] PAN F P, XIANG X M, DU Z C, et al. Integrating photocatalysis and thermocatalysis to enable efficient CO2 reforming of methane on Pt supported CeO2 with Zn doping and atomic layer deposited MgO overcoating[J]. Applied Catalysis B: Environmental, 2020, 260: 118189.
    [11] 陈子尚, 梁小平, 樊小伟, 等. Ce-La-Ag 共掺杂TiO2/玄武岩纤维复合光催化剂的制备和性能[J]. 材料研究学报, 2019, 33(7):515-522.

    CHEN Z S, LIANG X P, FAN X W, et al. Fabrication and photocatalytic properties of Ce-La-Ag Co-doped TiO2/basalt fiber composite photocatalyst[J]. Chinese Journal of Materials Research,2019,33(7):515-522(in Chinese).
    [12] ZHOU C X, JIANG C P, WANG R L, et al. SPR-effect enhanced semimetallic Bi0/p-BiOI/n-CdS photocatalyst with spatially isolated active sites and improved carrier transfer kinetics for H2 evolution[J]. Industrial & Engineering Chemistry Research,2020,59(17):8183-8194.
    [13] WEI Z D, LIU J Y, FANG W J, et al. Photocatalytic hydrogen energy evolution from antibiotic wastewater via metallic Bi nanosphere doped g-C3N4: Performances and mechanisms[J]. Catalysis Science & Technology,2019,9(19):5279-5291.
    [14] SHI X, DONG X A, HE Y, et al. Photoswitchable chlorine vacancies in ultrathin Bi4O5Cl2 for selective CO2 photoreduction[J]. ACS Catalysis,2022,12(7):3965-3973. doi: 10.1021/acscatal.2c00157
    [15] ZHANG L L, YUE X P, LIU J X, et al. Facile synthesis of Bi5O7Br/BiOBr 2D/3D heterojunction as efficient visible-light-driven photocatalyst for pharmaceutical organic degradation[J]. Separation and Purification Technology,2020,231:115917. doi: 10.1016/j.seppur.2019.115917
    [16] DONG X A, CUI Z H, SHI X, et al. Insights into dynamic surface bromide sites in Bi4O5Br2 for sustainable N2 photofixation[J]. Angewandte Chemie International Edition,2022,61(19):202200937.
    [17] LI D S, ZHU B C, SUN Z G, et al. Construction of UiO-66/Bi4O5Br2 type-II heterojunction to boost charge transfer for promoting photocatalytic CO2 reduction performance[J]. Frontiers in Chemistry,2021,9:804204. doi: 10.3389/fchem.2021.804204
    [18] JIN X L, LYU C D, ZHOU X, et al. A bismuth rich hollow Bi4O5Br2 photocatalyst enables dramatic CO2 reduction activity[J]. Nano Energy,2019,64:103955. doi: 10.1016/j.nanoen.2019.103955
    [19] LI Y J, CAO T P, MEI Z M, et al. Development of double heterojunction of Pr2Sn2O7@Bi2Sn2O7/TiO2 for hydrogen production[J]. Journal of Physics and Chemistry of Solids,2020,142:109457. doi: 10.1016/j.jpcs.2020.109457
    [20] 申久英, 刘碧雯, 赵宇翔, 等. CuS-Bi2WO6/活性纳米碳纤维的制备及其光催化性能[J]. 复合材料学报, 2022, 39(3):1163-1172.

    SHEN Jiuying, LIU Biwen, ZHAO Yuxiang, et al. Preparation and photocatalytic properties CuSBi2WO6/carbon nanofibers composites[J]. Acta Materiae Compositae Sinica,2022,39(3):1163-1172(in Chinese).
    [21] YAN J Q, WU G J, GUAN N J, et al. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: Anatase versus rutile[J]. Physical Chemistry Chemi-cal Physics,2013,15(26):10978-10988. doi: 10.1039/c3cp50927c
    [22] HE Q, NI Y H, YE S Y. Heterostructured Bi2O3/Bi2MoO6 nanocomposites: Simple construction and enhanced visible-light photocatalytic performance[J]. RSC Advances,2017,7(43):27089-27099. doi: 10.1039/C7RA02760E
    [23] XU H, YAN B, ZHANG K, et al. N-doped graphene-supported binary PdBi networks for formic acid oxidation[J]. Applied Surface Science,2017,416:191-199. doi: 10.1016/j.apsusc.2017.04.160
    [24] QIU F Z, LI W J, WANG F Z, et al. In-situ synthesis of novel Z-scheme SnS2/BiOBr photocatalysts with superior photocatalytic efficiency under visible light[J]. Journal of Colloid and Interface Science,2017,493:1-9. doi: 10.1016/j.jcis.2016.12.066
    [25] SU C Y, LIU L, ZHANG M Y, et al. Fabrication of Ag/TiO2 nanoheterostructures with visible light photocatalytic function via a solvothermal approach[J]. CrystEngComm,2012,14(11):3989-3999. doi: 10.1039/c2ce25161b
    [26] JI M X, DI J, GE Y P, et al. 2D-2D stacking of graphene-like g-C3N4/ultrathin Bi4O5Br2 with matched energy band structure towards antibiotic removal[J]. Applied Surface Science,2017,413:372-380. doi: 10.1016/j.apsusc.2017.03.287
    [27] CUI Z K, ZHANG Y G, LI S L, et al. Preparation and photocatalytic performance of Bi nanoparticles by microwave-assisted method using ascorbic acid as reducing agent[J]. Catalysis Communications,2015,72:97-100. doi: 10.1016/j.catcom.2015.09.024
    [28] WANG M, HAN Q T, ZHOU Y, et al. TiO2 nanosheet-anchoring Au nanoplates: High-energy facet and wide spectra surface plasmon-promoting photocatalytic efficiency and selectivity for CO2 reduction[J]. RSC Advances,2016,6(85):81510-81516. doi: 10.1039/C6RA14821B
    [29] YU F, WANG C H, MA H, et al. Revisiting Pt/TiO2 photocatalysts for thermally assisted photocatalytic reduction of CO2[J]. Nanoscale,2020,12(13):7000-7010. doi: 10.1039/C9NR09743K
    [30] XU M, WU H, TANG Y W, et al. One-step in situ synthesis of porous Fe3+-doped TiO2 octahedra toward visible-light photocatalytic conversion of CO2 into solar fuel[J]. Microporous and Mesoporous Materials,2020,309:110539. doi: 10.1016/j.micromeso.2020.110539
    [31] XU M, HU X T, WANG J Y, et al. Photothermal effect promoting CO2 conversion over composite photocatalyst with high graphene content[J]. Journal of Catalysis,2019,377:652-661. doi: 10.1016/j.jcat.2019.08.010
    [32] FENG W, WU J A. Photocatalytic reduction of CO2 under visible light over Fe/TiO2/rGO nanocomposites by one-step hydrothermal synthesis[J]. Earth and Environmental Science,2020,513:012012.
    [33] LIU Y, GUO J G, WANG Y, et al. One-step synthesis of defected Bi2Al4O9/β-Bi2O3 heterojunctions for photocatalytic reduction of CO2 to CO[J]. Green Energy & Environment,2021,6(2):244-252. doi: 10.1016/j.gee.2020.04.014
    [34] GUO H W, CHEN M Q, ZHONG Q, et al. Synthesis of Z-scheme α-Fe2O3/g-C3N4 composite with enhanced visible-light photocatalytic reduction of CO2 to CH3OH[J]. Jour-nal of CO2 Utilization,2019,33:233-241. doi: 10.1016/j.jcou.2019.05.016
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  562
  • HTML全文浏览量:  244
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-13
  • 修回日期:  2023-02-06
  • 录用日期:  2023-02-10
  • 网络出版日期:  2023-02-22
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回