碳纤维复合材料损伤的超声检测与成像方法研究进展

杨红娟, 杨正岩, 杨雷, 单一男, 林奎旭, 武湛君

杨红娟, 杨正岩, 杨雷, 等. 碳纤维复合材料损伤的超声检测与成像方法研究进展[J]. 复合材料学报, 2023, 40(8): 4295-4317. DOI: 10.13801/j.cnki.fhclxb.20230318.001
引用本文: 杨红娟, 杨正岩, 杨雷, 等. 碳纤维复合材料损伤的超声检测与成像方法研究进展[J]. 复合材料学报, 2023, 40(8): 4295-4317. DOI: 10.13801/j.cnki.fhclxb.20230318.001
YANG Hongjuan, YANG Zhengyan, YANG Lei, et al. Progress in ultrasonic testing and imaging method for damage of carbon fiber composites[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4295-4317. DOI: 10.13801/j.cnki.fhclxb.20230318.001
Citation: YANG Hongjuan, YANG Zhengyan, YANG Lei, et al. Progress in ultrasonic testing and imaging method for damage of carbon fiber composites[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4295-4317. DOI: 10.13801/j.cnki.fhclxb.20230318.001

碳纤维复合材料损伤的超声检测与成像方法研究进展

基金项目: 国家重点研发计划(2018YFA0702800;2022YFB3402500);国家自然科学基金(12102075)
详细信息
    通讯作者:

    武湛君,博士,教授,研究方向为复合材料与结构、结构健康监测、智能/纳米材料与结构 E-mail: wuzhj@dlut.edu.cn

  • 中图分类号: TB55;TB332

Progress in ultrasonic testing and imaging method for damage of carbon fiber composites

Funds: National Key Research and Development Program of China (2018YFA0702800; 2022YFB3402500); National Natural Science Foundation of China (12102075)
  • 摘要: 碳纤维复合材料具有密度小、弹性高和韧性好等特点,被广泛应用于航空航天和汽车工业等领域。由于碳纤维复合材料制作工艺的复杂性和不稳定性及服役期间易受环境的影响,易产生分层、孔隙、纤维褶皱等各种类型的损伤。介绍了基于体波或导波的C扫描、相控阵、空气耦合、激光超声、光纤超声检测技术的原理、特点及用于碳纤维复合材料损伤检测的研究现状。综述了最具有代表性的损伤诊断成像算法,包括全聚焦成像、三维可视化成像、层析成像、逆时偏移成像和概率成像方法,这些成像方法能够有效地实现碳纤维复合材料各种类型的损伤形貌图像。从建立复杂构件的碳纤维复合材料层合板的阵列声场模型、优化损伤成像算法、构建智能/高效/实时化的结构健康监测成像系统、建立损伤定量评估标准、结合机器学习和数字孪生技术实施损伤诊断评估和寿命预测等方面进行了展望。

     

    Abstract: Carbon fiber composites are widely used in aerospace and automotive industries due to the characteris-tics of low density, high elasticity, and better toughness. Due to the complexity and instability of the manufacturing process of carbon fiber composites and their vulnerability to environmental impact during service, it is likely to generate delamination, porosity, fiber wrinkle, and other types of damage. In this paper, the principles and characteristics of C-scan, phased array, air-coupled, optical fiber-ultrasound, and laser-ultrasonic testing based on body or guided waves, as well as the research status of these technologies for damage detection of carbon fiber compo-sites, are introduced respectively. The most representative imaging algorithms for damage diagnosis are shown, including total-focus imaging, 3D visualization imaging, tomography, reverse time migration imaging, and probability imaging method, these imaging methods can effectively realize various types of damage morphology in carbon fiber composites. The prospect is made from the following aspects: The establishment of an array acoustic field model of carbon fiber composite laminates, the optimization of damage imaging method, the construction of intelligent/efficient/real-time structural health monitoring imaging system, the establishment of damage quantitative evaluation criteria, and combination of machine learning and digital twin technology for damage diagnosis assessment and life prediction.

     

  • 基于金属卤化物钙钛矿吸光材料的钙钛矿太阳能电池(Perovskite solar cells,PSCs),经过十多年的发展,目前已经达到了25.5%的能量转换效率(Power conversion efficiency,PCE)[1-4],且具有理论上的低成本、易制备等优点,是当前材料、能源领域最为活跃的研究方向之一。根据钙钛矿太阳能电池中功能薄膜的沉积制备顺序,一般可以将其分为正置结构(透明导电基底/电子传输层/钙钛矿层/空穴传输层/顶电极)和倒置结构(透明导电基底/空穴传输层/钙钛矿层/电子传输层/顶电极)两大类。上述功能层之中,钙钛矿吸光层和电子、空穴传输层对PSCs性能的影响最为显著[5]。这些关键功能层的制备和优化可以通过低温溶液法实现。这一方面,有利于PSCs的低成本、简单制备;但另一方面,也意味着这些功能层材料,易于在溶剂环境或高温条件下被破坏。这就对器件制备过程中的最后一步—顶电极的沉积,提出了一些要求。

    自从2012年全固态的PSCs结构基本成形以来,大多数研究工作中,都是使用真空蒸镀的Au或Ag薄膜来作为标准的顶电极,以避免沉积过程中引入溶剂和高温环境[2-3]。但由于PSCs中的离子迁移会腐蚀蒸镀金属电极从而破坏器件的稳定性[6],以及真空设备尺寸放大后的成本、维护问题,研究者们一直关注并探索着适合于大面积制备和大规模应用的PSCs顶电极材料及其制备方法。

    电子产业领域,特别是柔性电子领域中的一些低温导电材料,可以为PSCs的顶电极制备提供一些非真空的技术方法。例如,基于弱极性、低沸点溶剂的导电碳浆料或纳米金属导电油墨,对下层功能薄膜的破坏程度较低,可以通过多种易于放大的涂布方式来制备顶电极。实际上,导电碳浆和纳米金属导电油墨分别在无空穴传输层的正置结构器件中和半透明器件中有较多的应用研究。

    除了涂布法之外,转移法也是制备顶电极的一种途径。具体而言,转移法制备顶电极是先将合适的材料预制成导电膜,再通过一定的工艺方法,将其转移到仅缺省顶电极层的PSCs半电池结构上,并使其与下层薄膜直接形成良好的界面欧姆接触,即可得到完整的电池器件。理论上,预制成的膜状电极,可以具有比原位沉积制备的顶电极更好的导电性。同时可以在较低的温度、无溶剂或极少量溶剂的条件下实现转移,从而避免制备过程对器件性能的负面影响。

    目前,已经有若干种属于不同体系的电极材料,被以多种不同的转移方式,制备成了PSCs的顶电极。将已报道的转移法顶电极技术,按照电极的厚度形态进行分类,可大致上归结为以下两种情况。

    其一是,当转移电极为薄膜状态的情况(厚度1微米以下)。此时,电极薄膜往往无法形成自支撑的结构,或者虽然可以实现自支撑,但是难以对其单独进行取样、裁剪、拉平、放置等操作。这种类型具体来说,包括超薄导电聚合物膜[7]、碳纳米管膜[8]、石墨烯膜[9]、金属薄膜[10]、超薄金属箔[11]等电极材料。其工艺流程一般是先将需要转移的电极材料制备或放置于特定的基底上,再利用转移电极与基底、转移电极与器件下层薄膜之间的表面结合力差异,实现从基底到电池上的转移。因此,选用的基底一般是聚四氟乙烯(PTFE)[12]、聚二甲基硅氧烷(PDMS)[7]等低表面能、具有脱模性的材料,或者滤膜这种粗糙多孔、与转移电极接触面积较少的材料[11],以减少电极与基底之间的结合力。而在转移的过程中,一般要通过基底向电极和器件的接触面施加一定的压力,以实现电极与器件的结合。有时还需要引入加热条件[10]或者少量溶剂的辅助作用[8],来促进电极/器件界面的形成。由于电极除去基底后自身厚度很小,电极材料与器件下层的界面结合力足以克服电极薄膜自身的起伏状态,使电极服帖。如图1(a)所示,薄膜的转移过程实际上类似于印刷工业中的转印技术。

    图  1  钙钛矿太阳能电池中基于转移法的薄膜顶电极(a)和厚膜顶电极(b)制备流程示意图
    Figure  1.  Schematic diagrams of the transfer process for thin film (a) and thick film (b) top electrode for PSCs

    其二是,当转移电极为厚膜状态的情况。此时,电极可以自支撑独立存在,并保持原本的状态整体转移到器件上。不同于薄膜电极天然的服帖性,厚膜电极往往需要依赖于自带的、具有压敏性的胶类物质参与电极界面的结合。具体来说,商品导电胶带[13]和一些自制的导电胶膜[14]可以通过这种形式用作顶电极。如图1(b)所示,厚膜的转移过程实际上类似于电子设备生产中的贴合技术。

    近年来已有多种不同的电极材料被用于转移法顶电极,综合考虑电极的结构、电极的主体材料和电极与器件界面处的材料,将其分为导电聚合物电极、碳材料电极、金属电极和复合电极这4种类型,依次进行介绍。

    聚3,4-乙烯二氧噻吩(PEDOT)是性能最好的导电聚合物材料之一,并常以水分散的聚苯乙烯磺酸盐(PEDOT:PSS)形式,应用在有机太阳能电池(Organic photovoltaics,OPV)和PSCs中作为空穴传输材料和透明电极材料。用于顶电极时,PEDOT:PSS仍然具有透明的效果,可以实现电池的双面光照工作状态,甚至半透明的器件效果。

    2015年,华中科技大学的周印华团队将一种OPV中使用的转移法PEDOT:PSS应用于PSCs中。他们将PEDOT:PSS分散液旋涂在PDMS、保鲜膜等基底上成膜,然后转移到OPV[15-16]或者PSCs[7,17]上,最后再剥离基底得到PEDOT:PSS顶电极。在正置结构的钙钛矿太阳能电池中,电极转移前需要对空穴传输层进行等离子体处理[7]或者滴加少量的异丙醇[17],用来促进PEDOT:PSS薄膜与有机空穴传输材料Spiro-OMeTAD(2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴)的界面结合。不过由于这种PEDOT:PSS薄膜的方阻较大,当器件的有效面积从0.06 cm2增大到1 cm2时,PCE会从10.1%显著下降到2.9%。这种基于PEDOT:PSS顶电极的器件不仅可以从顶电极方向透光,还可以通过对电极薄膜厚度的调控和选用不同的空穴传输材料,改变薄膜的光学反射特性。由此可实现如图2所示的彩色PSCs,根据颜色的不同,器件PCE在11%到15%的范围内变化[18]

    图  2  (a)基于转移法聚苯乙烯磺酸盐(PEDOT:PSS)顶电极的钙钛矿太阳能电池结构示意图;(b)彩色钙钛矿太阳能电池照片[18]
    Figure  2.  (a) Device structure of transferred polystyrene sulfonate (PEDOT:PSS) electrode based PSCs; (b) Photographs of colorful PSCs[18]
    TCO—Transparent conductive oxide; ETL—Electron transporting layer; HTL—Hole transporting layer; PEDOT:PSST—Transferred PEDOT:PSS

    韩国科学技术院的Park团队[19]也发展了一种干法转移PEDOT:PSS顶电极的技术,并将其应用于柔性的半透明PSCs中。如图3(a)中所示,他们使用带有聚氨酯丙烯酸酯(PUA)涂层的聚碳酸酯(PC)膜作为旋涂制备PEDOT:PSS薄膜的基底,并利用聚乙烯亚胺(PEI)溶液来调控PEDOT:PSS电极的功函数,使其与倒置结构器件相匹配。经过100℃下的压印处理并剥离PUA/PC基底,如图3(b)中照片所示,PEDOT:PSS薄膜就可以转印到器件中,与电子传输材料PCBM(碳60衍生物)之间形成良好的结合。最终得到图3(c)中的柔性半透明倒置PSCs,在1 cm2的较大有效面积上获得超过13%的有效PCE。另外值得一提的是,在这种方法中,PEDOT:PSS薄膜在转移之前已经进行了充分的真空干燥,有利于钙钛矿器件的稳定。

    图  3  干法转印PEDOT∶PSS顶电极的流程图(a)、PEDOT:PSS转印顶电极(b)和半透明钙钛矿电池(c)的照片[19]
    Figure  3.  Schematic diagrams of the dry stamping transfer process of the PEDOT:PSS layer for PSCs (a), photographs of transferred PEDOT:PSS top electrode layer onto the device (b) and semitransparent PSCs (c) [19]
    PUA—Polyurethane acrylate; PEI—Polyethyleneimine; ITO—Indium tin oxide

    导电碳材料,包括石墨、炭黑、碳纳米管(Carbon nanotube,CNT)、石墨烯等,都在PSCs顶电极领域得到了应用。碳材料固有的化学稳定性和疏水性,有利于实现钙钛矿器件的稳定。

    香港科技大学的杨世和团队[20]较早进行了转移法碳电极的研究。他们通过收集蜡烛烟灰得到了海绵状多孔的碳材料,然后将其直接干法转印到钙钛矿薄膜上。经过高温除杂处理蜡烛烟灰碳,并通过10 MPa压强下的辊压转移,可以在无空穴传输层结构的PSCs中得到最高5.4%的PCE。但是研究发现,这种把碳材料转移到钙钛矿表面方法获得的器件性能,劣于将碳材料嵌入钙钛矿层的器件性能,该技术缺少后续的研究报道。

    碳纳米管和石墨烯因其优异的力学性能和电学性能,而常用于透明导电基底,特别是柔性透明导电基底的制备。在PSCs领域,也可以将其预制成导电薄膜,并通过转移法制备成顶电极。例如利用化学气相沉积法(CVD)制备碳纳米管,并直接在反应器下游的滤膜上收集,就可以得到CNT薄膜。2014年,新加坡南洋理工大学的Wong和Mathews团队[8]首先将这种CNT薄膜用于PSCs中。他们将这种可自支撑的薄膜直接用镊子从滤膜基底上剥离(图4(a)),并借助甲苯的辅助,转移制备到钙钛矿吸光层上。这种可双面透光的无空穴传输层结构PSCs(图4(b)),可以达到6.3%的PCE。更重要的是,这种由1D材料形成的网络状薄膜,存在着大量的孔隙结构以供填充。他们进一步利用溶液旋涂工艺,将Spiro-OMeTAD填充进CNT薄膜中,得到空穴传输层和顶电极一体化的结构。空穴传输材料Spiro-OMeTAD的引入改善了钙钛矿器件的异质结特性,将器件PCE提升至9.9%。

    图  4  (a)自支撑碳纳米管薄膜的照片;(b)基于转移碳纳米管薄膜电极的钙钛矿器件结构示意图[8]
    Figure  4.  (a) Photograph of free-standing CNT film; (b) Device structure of PSC with transferred CNT film electrode[8]
    FTO—F-doped tin oxide; CNT—Carbon nanotube

    此后,这类CNT薄膜材料及其转移工艺,被清华大学、日本东京大学等部分国内外的研究团队继续发展,目前已经应用在了柔性器件、全碳电极器件等多种类型的PSCs中[21-22]。通过对器件的系统性优化,包括使用2D/3D结合的钙钛矿吸光层组分、利用三氟甲磺酸蒸汽对CNT薄膜进行掺杂等,目前这种电极可以实现最高17.6%的PCE[23]。此外,类似于PEDOT:PSS薄膜的情况,可以通过掺杂SnO2、PEI等来调控CNT薄膜的功函数,使其与倒置结构PSCs的电子传输层匹配,相应的倒置器件PCE可以达到14%[24-25]

    作为一种2D材料,石墨烯具有天然的薄膜属性。目前,高质量的石墨烯薄膜一般是在铜箔表面CVD生长出来的,因此在使用的过程中往往需要经过覆盖PMMA聚合物、溶解铜箔、溶解聚合物层等一系列的复杂操作,最后才能将其从刻蚀液中湿法转移到其他基底上。鉴于钙钛矿器件中不便使用湿法转移,一些研究工作通过干法转移,将铜箔上的石墨烯制备到钙钛矿吸光层和Spiro-OMeTAD空穴传输层上,得到可工作的钙钛矿光电器件[26-27]。香港理工大学的严锋团队[9]将铜箔上的石墨烯先转移至PDMS/PMMA基底上,然后在其表面旋涂一层PEDOT:PSS辅助粘结,最后把多层膜整体贴合到正置结构PSCs的Spiro-OMeTAD层上作为顶电极。得到如图5所示的半透明钙钛矿器件,最高PCE可以达到12%。

    图  5  基于转移石墨烯电极的钙钛矿器件结构示意图、实物照片和J-V特性曲线[9]
    Figure  5.  Device structure, photograph and J-V characteristics of transferred graphene electrode based PSCs[9]
    PDMS—Polydimethylsiloxane; PMMA—Polymethyl methacrylate

    单层石墨烯材料具有极高的电导率,但是实际用作电极材料时,其方块电阻大于100 Ω/sq,显然难以满足大面积光伏器件的要求。韩国釜山大学的Lee团队[28]利用铜箔生长的石墨烯和碳纳米管干纺技术,制备了可自支撑的多层混合薄膜,并在氯苯和压力的辅助下将其转移到正置结构的PSCs中。通过调控石墨烯和CNT的层数,将石墨烯/CNT多层混合薄膜的方阻降低到51 Ω/sq,最终得到了超过15%的器件PCE。

    金属电极具有导电性好的优点,钙钛矿太阳能电池中常规的金属顶电极,是利用真空环境下的蒸镀、溅射等物理气相沉积工艺制备的。利用预制的金属薄膜材料转移制备顶电极,有望在保有金属电极高性能的前提下,突破真空镀膜设备的尺寸限制、降低设备成本。

    基于金属纳米线的网络结构,是一类具有潜在应用价值的透明导电材料。美国斯坦福大学的McGehee团队和Christoforo等[29]一起,将Ag纳米线应用在钙钛矿/晶硅电池(或铜铟镓硒电池)的四端叠层光伏系统中。溶剂分散的Ag纳米线在聚对苯二甲酸乙二酯(PET)塑料基底上喷涂成膜后干燥,再将形成的纳米导电网络转印到正置结构PSCs的Spiro-OMeTAD层上。因为金属纳米线材料的力学特性,转移过程需要在PET上加盖薄载玻片,再用滚珠来施加转印的压力。基于这种电极的半透明钙钛矿器件和相应的叠层光伏系统,可以分别实现12.7%和18.6%的PCE。非贵金属材料的使用,对于PSCs的低成本制备十分重要,但是非贵金属纳米材料的表面配体和氧化层会影响其导电性。韩国延世大学的Moon团队[30]利用喷涂在聚酰亚胺膜上的Cu纳米线@乳酸核壳结构,并在200℃下加热产生还原性氛围,即可获得互联性良好的纯Cu纳米线网络。再同样通过滚珠的压力作用(图6(a)),将Cu纳米导电网络转印至钙钛矿器件中(图6(b)),可获得9.9%的PCE。

    图  6  基于转移法Cu纳米线网络电极的钙钛矿器件的结构示意图(a)和SEM截面图像(b) [30]
    Figure  6.  Schematic structure (a) and SEM cross-sectional images (b) of a PSCs with transferred Cu-nanowire networks top electrode[30]
    CuNW—Cu-nanomire

    利用预制的蒸镀金属薄膜再转移,是蒸镀金属顶电极工艺直接拓展,且可以通过多次转移来突破蒸镀设备尺寸的限制。但是到目前为止,这方面仅有少量Au薄膜转移制备电极的研究报道。新加坡材料研究与工程研究院的Li和Wang等[10]使用PDMS作为金薄膜的基底,并在90℃下层压两个小时,最后剥离PDMS膜,实现了Au电极在正置结构PSCs上的转移制备以及13.7%的器件PCE。另外值得注意的是,该研究认为相对于蒸镀的金电极,转移法Au电极中的Au原子不容易扩散进下方的功能层,因此具有更好的器件稳定性。武汉理工大学的肖俊彦等[12]则选用脱模性更好的PTFE膜作为转印介质,通过图7所示的室温下辊压方式,将蒸镀在PTFE上的Au层转移至钙钛矿器件上,获得了17.1%的PCE,作为对照组的标准蒸镀Au电极器件PCE为19.3%。

    图  7  PTFE基底转印Au薄膜电极的流程示意图[12]
    Figure  7.  Schematic diagrams of the PTFE substrate pressing transferred Au electrode on PSCs[12]

    金的单质或合金材料还具有非常优异的延展性,可以被加工成百纳米级别厚度的超薄箔片。将用于包金装饰的金箔直接转移制备成PSCs的顶电极,可以实现15%的PCE[31]。日本京都大学的Matsuda团队[11]选用了厚度约100 nm的商用Au35Ag65合金箔来制备器件。他们用硝酸腐蚀其中的Ag来实现脱合金化,从而得到多孔结构的Au箔。通过无水乙醇的辅助,将多孔Au箔沉积在钙钛矿器件上,获得了高达19%的PCE(对照的蒸镀Au电极器件PCE为20.4%)。同时,在柔性PSCs中也获得了17.3%的PCE,并且在1000次弯折后(曲率半径为5 mm)保持了初始PCE的98.5%。此外,如图8所示,这种自支撑的多孔Au箔还可以在溶去电池的其他功能层后重复循环使用。

    图  8  多孔Au箔电极在钙钛矿太阳能电池中的制备和循环使用示意图[11]
    Figure  8.  Schematic flow of the fabrication and restoration process of the nanoporous Au electrode in PSCs[11]

    以上3类电极材料的已报道研究结果,与实际应用还有着较远的距离。具体而言,有如下几点问题:导电聚合物、石墨烯电极的导电性能难以满足大面积器件的需求;高质量石墨烯、碳纳米管薄膜、金薄膜的材料成本高;非贵金属纳米材料在钙钛矿器件中的化学稳定性存疑。而基于多种材料体系复合而成的顶电极,理论上可以结合这3类材料的优点,例如金属的高导电性、导电聚合物的空间连续性和碳材料的化学稳定性。同时,还可以利用非导电性的粘合剂,来增强顶电极和器件下层材料之间的界面结合。这类复合电极通常是由高导电性的基底和含有导电性填料与粘合剂的导电胶层构成的,总厚度达到数十微米,可以直接通过压力贴合的方式制备到到器件上。

    实际上,工业上用于电子连接或实验室用于电镜制样的导电胶带,就具有这种复合电极的特性。美国内布拉斯加-林肯大学的黄劲松团队[13]将一种电镜使用的导电胶带用在了钙钛矿太阳能电池中。这种胶带使用Cu箔作为基底,方阻低至0.001 Ω/sq,并使用微米金属Ni颗粒和丙烯酸压敏胶作为导电胶层,Z轴方向电阻低至0.005 Ω/in。通过70℃加热软化丙烯酸胶,并控制辊压贴合工艺的压强,他们把导电胶带制备在倒置结构PSCs的电子传输层PCBM上,可以达到超过12%的PCE。

    由于目前的商品导电胶带并不是为PSCs设计的,在贴合的过程中,较低的操作压强会降低电极的有效接触面积,而过大的操作压强则可能导致金属导电颗粒刺穿器件的下层结构。利用PEDOT:PSS作为导电填料的一些实验室自制导电胶膜,可以更好地与钙钛矿器件匹配。英国斯旺西大学的Worsley团队[14]使用嵌有金属Ni微网的PET薄膜作为导电基底,1.75%的PEDOT:PSS与丙烯酸压敏胶混合作为导电胶层,制备了一种透明导电胶膜(图9(a)~9(b))。他们在钙钛矿器件的Spiro-OMeTAD层上喷涂一种几乎不含水PEDOT:PSS以降低界面电阻,再通过简单的手指按压,就完成了这种透明复合顶电极的制备。在如图9(c)所示的器件结构里,PCE可以达到15.5%,其光电流密度(21 mA/cm2)甚至高于作为对比的标准Au电极器件(19 mA/cm2)。在他们的后续研究中,进一步将这种电极用于Ti箔基底的PSCs上作为透明顶电极,得到了PCE为10.3%的柔性PSCs[32]。德国埃尔朗根-纽伦堡大学的Brabec团队与其合作者[33]以AgNWs/PET为导电基底,用PEDOT:PSS和40%的山梨糖醇混合制备导电胶层,应用在OPV和PSCs中。其中对于倒置结构的钙钛矿器件,可以通过60℃下的压力贴合,得到9.8%的PCE。值得一提的是,他们还将这种电极用于激光刻蚀加工过的小面积(30 mm2)PSCs串联组件中,组件与单块电池的性能相当,这对于未来的实际应用有重要的参考价值。

    图  9  带有PEDOT∶PSS导电胶涂层并嵌入Ni网的PET膜的SEM图像(a)和实物照片(b)以及相应的钙钛矿器件示意图 (c)[14]
    Figure  9.  SEM image (a) and photograph (b) of PEDOT:PSS conducting adhesive applied to an PET embedded Ni grid and device structure of PSCs with the composite electrode (c)[14]
    TCA—Transparent conducting adhesive

    石墨、炭黑等廉价导电碳材料,一般需要与粘合剂混合后制成导电碳浆使用,因此把基于碳浆的电极分类为复合电极。具体而言,除了涂布在器件中再原位干燥制备成电极之外,也可以把碳浆预先涂布在其他基底上干燥成膜后,再转移制备成顶电极。2015年,中国科学院物理研究所的孟庆波团队[34]首先报道了一种自支撑的热塑性导电碳膜电极。他们利用热塑性粘合剂和导电碳粉混合成的碳浆,刮涂在PTFE上,干燥后将其从基底上剥离即得到热塑性碳膜。将无空穴传输层的半电池、碳膜和铝箔一起热压贴合,可以实现13.5%PCE的无空穴传输层结构PSCs。为了避免热压过程对器件中Spiro-OMeTAD材料的影响,他们2018年又报道了一种具有常温下自粘性的导电碳膜技术。基于商品导电碳浆和溶剂置换干燥处理(图10(a)~10(b)),得到具有微观大孔结构和一定压敏粘性的碳膜,再将其压力转移到常规的正置结构PSCs中,PCE可达到19.2%(对照的蒸镀Au电极器件PCE为20%)[35]。溶剂置换干燥法在提供表面粘性的同时,使得这种自粘性碳膜的导电性明显下降,因此难以在大面积的器件中应用。武汉理工大学的肖俊彦等[36-37]尝试将多种高导电性基底与自粘性碳膜结合,以提高大面积转移电极的性能。他们发现,具有一定可压缩性的石墨纸基底和高度柔性的导电布基底性能较好,分别在大面积(1 cm2)的刚性和柔性PSCs中可获得17%和14%以上的转换效率。虽然这类碳膜电极缺少蒸镀Au电极那样的光学反射特性,但可以与器件的Spiro-OMeTAD层之间实现高质量的界面接触(图10(c)),所以能够达到与标准Au电极器件非常接近的性能。

    图  10  自粘性大孔碳膜的制备流程示意图(a)和孔隙形成机制示意图(b) [35],以及相应的钙钛矿器件截面SEM图像(c) [37]
    Figure  10.  Schematic diagrams (a) and microscopic mechanism of self-adhesive macroporous carbon film electrode (b) [35], and SEM cross-sectional image of a PSCs with transferred carbon film electrode (c) [37]

    对于适用转移法的复合电极材料,粘合剂其实并不总是必需的。大连理工大学的史彦涛团队[39]发展了一类顶电极可拆卸的堆叠式钙钛矿太阳能电池。他们使用PEDOT:PSS[38]和多种碳材料粉末,同时喷涂在正置结构半电池和导电玻璃、金属箔等导电基底上形成几微米厚的涂层。再将半电池和导电基底的涂层面直接堆叠组装,得到可正常工作的电池器件(图11)。这种顶电极的转移和使用方式非常类似于染料敏化太阳电池中的对电极。在传统的染料敏化太阳电池中,是依靠液态电解质的流动性来实现固-液界面的有效电接触;而在这种堆叠式钙钛矿电池中,良好的固-固界面电接触是依靠导电聚合物和碳材料的适当弹塑性来实现的[40]。经过优化,基于掺杂PEDOT:PSS和石墨烯基碳材料粉末作为顶电极接触材料的堆叠式器件,PCE分别可以达到14.6%和18.6%(对照的蒸镀Ag电极器件PCE为19.4%),而且经过数百次的反复拆卸和组装过程,器件性能能够一直基本保持不变。此外,高导电性基底的引入,还可以解决PEDOT:PSS和石墨烯薄膜材料电阻较大的问题,相应的平方厘米级大面积钙钛矿器件PCE可达到13.5%和16.4%。

    图  11  基于PEDOT∶PSS和各种导电基底的堆叠式钙钛矿太阳能电池结构示意图[38]
    Figure  11.  PEDOT:PSS based stacking structured PSCs with various electrode substrates[38]
    c&m-TiO2—Compact and mesoporous TiO2 layers

    综上所述,多种类型的电极材料都可以通过转移法作为正置结构和倒置结构、刚性器件和柔性器件、透明电池和不透明电池、单块器件和串联组件的顶电极应用在钙钛矿太阳能电池中(表1)。这些电极材料的转移工艺具有操作简单、不受真空设备尺寸限制、对器件下层结构影响小等优点,为高性能器件的大面积制备技术中的顶电极部分,提供了一种解决方案。

    表  1  几种代表性的转移法顶电极技术总结
    Table  1.  Summary of several transferred top electrode techniques
    Top electrodeSubstrateTransfer processPCE/%DeviceRef.
    PEDOT:PSSPlastic wrap
    (peel off)
    Assisted with one drop of isopropanol10.1
    2.9 l
    Conventional
    Semitransparent
    [17]
    PEDOT:PSSPDMS(peel off)Assisted with O2 plasma for 5 s15.1Conventional
    Colorful
    [18]
    PEI doped PEDOT:PSSPUA/PC
    (peel off)
    Roll press under 100℃13.6 f, lInverted
    Semitransparent
    [19]
    Doped CNT filmMembrane film(peel off)Assisted with 200 μL spiro-OMeTAD17.56Conventional[23]
    CNT filmSi waferAssisted with droplets of chlorobenzene11.9 fConventional[21]
    CNT filmSi waferAssisted with 100 μL PEI-isopropanol solution10.8Inverted[25]
    Graphene/
    PEDOT:PSS
    PDMS/PMMARoll press under 65℃12.37Conventional
    Semitransparent
    [9]
    Ag nanowire filmPET(peel off)Ball bearing press under 500 g force12.7Conventional
    Semitransparent
    [29]
    AuPTFE(peel off)Roll press17.14Conventional[12]
    Nanoporous AuMembrane film(peel off)Assisted with 200 μL anhydrous ethanol19.0
    17.3 f
    Conventional[11]
    Ni particles in acrylicCu foilRoll press under 70℃, 980 Pa12.5Inverted[13]
    PEDOT:PSS in acrylicNi mesh embedded PETPress onto PEDOT:PSS covered semi-cell15.5Conventional
    Semitransparent
    [14]
    Carbon paste filmFlat press under 0.7 MPa19.2Conventional[35]
    Carbon paste filmConductive clothFlat press19.36
    14.05 f, l
    Conventional[37]
    PEDOT:PSSAl foil, Cu foil, FTO etc.Stack with PEDOT:PSS covered semi-cell14.6Conventional[38]
    GrapheneAl foil, FTOStack with graphene covered semi-cell18.65
    16.42 l
    Conventional[40]
    Notes: Upper script "f" represents flexible device, and "l" represents large device area about 1 cm2; PDMS, PC, PET, PMMA, PTFE are abbreviations for common polymer materials.
    下载: 导出CSV 
    | 显示表格

    在未来的研究中,转移法顶电极还有一些材料、工艺方面问题,需要更深入地去探索并解决。

    (1) 转移法顶电极器件的能量转换效率还需要提升。目前小面积PSCs的认证PCE已经超过了25%,而基于转移法顶电极的钙钛矿器件,文献报道的最佳结果还未达到20%。为此,首先需要将转移法顶电极技术与钙钛矿吸光层和电荷传输层的最新进展结合使用。如果能够采用标准蒸镀Au电极的器件PCE超过22%的半电池,多孔金箔、自粘性大孔碳膜、石墨烯基堆叠式等高效率型的顶电极技术应该可以实现20%以上的PCE。其次,需要基于转移法顶电极的特性,对下层半电池进行优化。目前的透明和碳基非透明型转移法顶电极,往往缺少光学反射特性,如果能够通过调控吸光层、引入陷光结构等方式增强对入射光的利用,那么转移法顶电极器件与标准蒸镀Au电极器件之间的性能差距应该可以进一步缩小。

    (2) 转移法顶电极器件的稳定性需要得到检验。稳定性问题可以算是金属卤化物钙钛矿材料和PSCs应用中的最大阻碍,而转移法顶电极器件的稳定性问题还未有详细的讨论。为此,在材料层面上,需要研究电极材料本身及其转移法工艺应用在器件后的化学稳定性问题,例如PEDOT:PSS材料含水的影响、金属材料化学反应和离子迁移的影响等。在器件层面上,则需要关注转移法顶电极与下层薄膜的界面稳定性问题,例如在光照、电场、变温、弯折等条件下,界面能否长时间保持有效电接触。此外,目前几种高效率的转移法顶电极技术,都是基于以Spiro-OMeTAD为空穴传输层的正置结构PSCs的,因此还需要验证这些顶电极技术与更稳定的倒置结构器件、聚合物基正置结构器件的匹配性。

    (3) 转移法顶电极的成本需要进行合理的核算。包括转移法在内的各种替代蒸镀贵金属电极技术,最吸引人的就是成本优势,但是目前缺少严格的成本分析。例如,转移法中的大面积石墨烯、碳纳米管薄膜、多孔金箔、金属纳米线等电极材料都不是通用材料,需要评估大规模使用中的成本。而对于复合电极,除了各种原材料的成本,还要计算预制备过程的成本和损耗。总之,最终应该通过核算单位面积下的各种顶电极技术成本,而非单位质量下的各种电极材料价格,来分析技术在成本上的可行性。

    (4) 转移法顶电极的制备需要实现标准化、自动化。目前已报道的转移法顶电极技术,缺少不同团队之间的相互验证,甚至在同一团队内也难以保证研究的延续性。这里一个可能的原因是,已报道的转移法顶电极技术,往往高度依赖于个人操作,导致转移过程的温度、压强及其实现方法因人而异。所以不仅实验的重现性没有保障,而且操作简单的优点也只是停留在理论上。为此,需要更多地利用通用性的设备来制备电极材料、转移顶电极,以实现整个工艺流程的标准化和自动化。对这方面的研究探索将有助于解决转移法顶电极在大面积、串联组件中的应用问题,甚至实现电极-封装一体化的功能,推动整个钙钛矿太阳能电池领域的发展。

  • 图  1   碳纤维复合材料常见损伤[4-5]

    Figure  1.   Common damage in carbon fiber composite materials[4-5]

    图  2   损伤检测与成像的主要环节

    Figure  2.   Main links of damage detection and imaging

    图  3   基于体波检测的碳纤维复合材料各向同性声学模型

    Figure  3.   Isotropic acoustic model for carbon fiber composites based on body wave detection

    图  4   均质化声学模型示意图(a)[6]和速度分布曲线(b)[7]

    (Sx, Sy)—Coordinates of point A; A—Incidence point; c, d, e—Refraction point of each layer; B—End point; d1, d2, d3, d4—Thickness of each layer; Ve—Velocity of each layer; BRM—Backwall reflection method; De—Average energy ray direction; d—Plate thickness

    Figure  4.   Schematic diagram of the homogenization acoustic model (a)[6] and velocity distribution curve (b)[7]

    图  5   基于体波的碳纤维复合材料各向异性声学模型

    Figure  5.   Anisotropic acoustic model for carbon fiber composites based on body wave

    图  6   基于导波的碳纤维复合材料各向异性声学模型[13]

    FEM—Finite element method; i—Layer number; r—Wave vector; Φ—The angle between the direction of wave propagation and the x-axis; ξ—Wave number; θ—The angle between the wave number and the x-axis; l—Direction tangent to wave crest; n—Direction normal to wave crest

    Figure  6.   Anisotropic acoustic model for carbon fiber composites based on guided wave[13]

    图  7   B扫描和C扫描检测技术

    Figure  7.   B-scan and C-scan detection technology

    图  8   超声C扫描检测系统[24]

    Figure  8.   Ultrasonic C-scan detection system[24]

    图  9   检测复合材料中的冲击损伤:(a)超声波C扫描技术;(b) X射线技术[44]

    Figure  9.   Detection of impact damage in composites: (a) Ultrasonic C-scan technology; (b) X-ray technology[44]

    图  10   激光超声检测复合材料的结果[46]

    Figure  10.   Results of the composite by the laser ultrasound[46]

    ϕ—Diameter

    图  11   光纤超声检测系统示意图[88]

    CFRP—Carbon fibre reinforced plastics; FBG—Fiber bragg grating

    Figure  11.   Schematic diagram of optical fiber ultrasonic testing system[88]

    图  12   碳纤维复合材料中褶皱损伤的TFM成像[32]

    Figure  12.   TFM imaging of wrinkle defects in carbon fiber composites[32]

    图  13   碳纤维复合材料损伤的三维可视化成像[110]

    Figure  13.   Three-dimensional visualization imaging of carbon fiber composite damage[110]

    图  14   三维相控阵扫描示意图[113]

    Figure  14.   Schematic image of a scanning of 3D phased arrays[113]

    图  15   碳纤维复合材料的损伤层析成像结果[118]

    Figure  15.   Tomography results of damage in carbon fibre composites[118]

    图  16   碳纤维复合材料不同形状的损伤概率成像结果[137]:(a)梯形;(b)矩形;(c)圆形

    Figure  16.   Probability imaging results of damage in carbon fiber composites with different shapes[137]: (a) Trapezoidal; (b) Rectangle; (c) Circular

    表  1   检测碳纤维复合材料的线性换能器阵列参数

    Table  1   Linear transducer array parameters for carbon fiber composites

    Element pitch/
    mm
    Number of element Centre frequency/
    MHz
    Ref.
    0.6 64 5 [7]
    0.75 64 2.25 [7]
    1.4 32 2.25 [27]
    1 64 5 [28]
    0.63 64 5 [29]
    0.6 16 7 [30]
    1.0 32 5 [31]
    0.3 128 10 [32]
    0.6 32 5 [33-34]
    下载: 导出CSV

    表  2   用于碳纤维复合材料损伤的检测技术的比较

    Table  2   Comparison of damage detection techniques for carbon fiber composites

    Detection technique Wave type Damage type Feature
    C-scan Body wave Hole[25], delamination[37], impact damage[42],
    debonding defect[43]
    Intuitive display and high detection efficiency
    Phased array Body wave Delamination[30, 35, 51], fiber wrinkle defect[32] Acoustic beam focusing, high detection accuracy, high detection sensitivity
    Guided wave Delamination[90], drill hole[59], multiple surface damage[63]
    Air-coupled Body wave Delamination[40], square hole[41], impact damage[42], debonding defect[43] Contactless, no coupling agent, no effect on material properties
    Guided wave Circular defect[69]
    Laser ultrasonic Body wave Circular defect[46], delamination[45] Long-distance, contactless, high-resolution, wide-range detection
    Guided wave Impact damage[70]
    Optical fiber ultrasonic Guided wave Impact damage[88] Anti-electromagnetic interference, corrosion resistant
    下载: 导出CSV

    表  3   三维图像重构的两种数据采集方式的优劣

    Table  3   Advantages and disadvantages of two data acquisition methods for 3D image reconstruction

    Data acquisition method Advantage Disadvantage
    1D linear array Low cost Complex detection process and slow detection speed[111], low resolution[112]
    2D array Fast detection speed, high imaging spatial resolution[111] High cost, complex acoustic beam control algorithm
    下载: 导出CSV

    表  4   5种成像方法用于碳纤维复合材料损伤的优劣

    Table  4   Advantages and disadvantages of five imaging methods for carbon fiber composite damage

    Imaging method Wave type Advantage Disadvantage Application
    Total focus method Body wave Simple algorithm Artifacts Hole[51], fiber wrinkle defect[32]
    3D visualization imaging Body wave 3D damage image Large amount of data, complex process Impact damage[110]
    Tomography Guided wave No media prior
    knowledge required
    Large amount of calculation Delamination[116]
    Reverse time migration Guided wave High accuracy Large amount of calculation and storage space Damage of thin plate of complex structure[133-134]
    Probability-based
    diagnostic imaging
    Guided wave No media prior
    knowledge required
    Vulnerable to environmental impact Debonding damage[142-143]
    下载: 导出CSV
  • [1] 唐见茂. 碳纤维树脂基复合材料发展现状及前景展望[J]. 航天器环境工程, 2010, 27(3):269-280. DOI: 10.3969/j.issn.1673-1379.2010.03.001

    TANG Jianmao. Review of studies of carbon fiber resin matrix composites[J]. Spacecraft Environment Engineering,2010,27(3):269-280(in Chinese). DOI: 10.3969/j.issn.1673-1379.2010.03.001

    [2] 王恒生, 程艳婷. 复合材料在航天领域中的研究与应用进展[J]. 化工科技, 2013, 21(2):67-70. DOI: 10.3969/j.issn.1008-0511.2013.02.018

    WANG Hengsheng, CHENG Yanting. Advance on research and application of the composite materials in the aerospace engineering[J]. Science & Technology in Chemical Industry,2013,21(2):67-70(in Chinese). DOI: 10.3969/j.issn.1008-0511.2013.02.018

    [3] 陈绍杰. 先进复合材料在汽车领域的应用[J]. 高科技纤维与应用, 2011, 36(1):11-17, 23. DOI: 10.3969/j.issn.1007-9815.2011.01.003

    CHEN Shaojie. Application of advanced composites on automotive filed[J]. Hi-Tech Fiber & Application,2011,36(1):11-17, 23(in Chinese). DOI: 10.3969/j.issn.1007-9815.2011.01.003

    [4] 曹弘毅. 碳纤维复合材料超声相控阵无损检测技术研究[D]. 济南: 山东大学, 2021.

    CAO Hongyi. Research on phased array ultrasonic non-destructive testing technique of carbon fiber reinforced plastic[D]. Jinan: Shandong University, 2021(in Chinese).

    [5] 张祥林. 复合材料R角部位缺陷检测技术与超声C扫描检测工艺技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.

    ZHANG Xianglin. Compound materials R angle spot flaw examination technology and supersonic C scanning examination processing technology research[D]. Harbin: Harbin Engineering University, 2012(in Chinese).

    [6]

    DEYDIER S, GENGEMBRE N, CALMON P, et al. Ultrasonic field computation into multilayered composite materials using a homogenization method based on ray theory[C]//AIP Conference Proceedings. American Institute of Physics, 2005, 760(1): 1057-1064.

    [7]

    GRAGER J C, SCHRAPP M, MOOSHOFER H, et al. Ultrasonic imaging of carbon fiber-reinforced plastics using the full matrix capture data acquisition technique[C]//Proceedings of the World Conference on Nondestructive Testing. Germany: NDT. net, 2016: 1-11.

    [8]

    ZHOU B, GREENHALGH S. On the computation of elastic wave group velocities for a general anisotropic medium[J]. Journal of Geophysics & Engineering,2004,1(3):205-215. DOI: DOI:10.1088/1742-2132/1/3/005

    [9]

    DE LUCA A, CAPUTO F, KHODAEI Z, et al. Damage characterization of composite plates under low velocity impact using ultrasonic guided waves[J]. Composites Part B: Engineering,2018,138:168-180. DOI: 10.1016/j.compositesb.2017.11.042

    [10]

    XU C B, YANG Z B, ZUO H, et al. Minimum variance Lamb wave imaging based on weighted sparse decomposition coefficients in quasi-isotropic composite laminates[J]. Composite Structures,2021,275:114432. DOI: 10.1016/j.compstruct.2021.114432

    [11]

    HALL J S, MCKEON P, SATYANARAYAN L, et al. Minimum variance guided wave imaging in a quasi-isotropic composite plate[J]. Smart Materials and Structures,2011,20(2):025013. DOI: 10.1088/0964-1726/20/2/025013

    [12]

    SU Z Q, LIN Y, YE L. Guided Lamb waves for identification of damage in composite structures: A review[J]. Journal of Sound and Vibration,2006,295(3-5):753-780. DOI: 10.1016/j.jsv.2006.01.020

    [13]

    MEI H F, GIURGIUTIU V. Guided wave excitation and propagation in damped composite plates[J]. Structural Health Monitoring,2019,18(3):690-714. DOI: 10.1177/1475921718765955

    [14]

    DATTA D, KISHORE N N. Features of ultrasonic wave propagation to identify defects in composite materials modelled by finite element method[J]. NDT & E International,1996,29(4):213-223. DOI: DOI:10.1016/S0963-8695(96)00016-3

    [15]

    MEI H F, GIURGIUTIU V. Predictive 1D and 2D guided-wave propagation in composite plates using the SAFE approach[C]//Proceedings of the Health Monitoring of Structural and Biological Systems XII. Colorado: SPIE, 2018: 215-225.

    [16]

    THOMSON W T. Transmission of elastic waves through a stratified solid medium[J]. Journal of Applied Physics,1950,21(2):89-93. DOI: 10.1063/1.1699629

    [17] 张海燕, 刘镇清, 吕东辉. 全局矩阵法及其在层状各向异性复合板中 Lamb 波传播特性研究中的应用[J]. 复合材料学报, 2004(2):111-116. DOI: 10.3321/j.issn:1000-3851.2004.02.020

    ZHANG Haiyan, LIU Zhenqing, LYU Donghui. Global matrix and its application to study on lamb wave propagation in layered anisotropic composite plates[J]. Acta Materiae Compositae Sinica,2004(2):111-116(in Chinese). DOI: 10.3321/j.issn:1000-3851.2004.02.020

    [18]

    LI F C, PENG H K, SUN X W, et al. Wave propagation analysis in composite laminates containing a delamination using a three-dimensional spectral element method[J]. Mathematical Problems in Engineering,2012,2012(5):1-19. DOI: 10.1155/2012/659849

    [19]

    HE C F, LI H Y, LI Z H, et al. The propagation of coupled Lamb waves in multilayered arbitrary anisotropic composite laminates[J]. Journal of Sound & Vibration,2013,332(26):7243-7256. DOI: DOI:10.1016/j.jsv.2013.08.035

    [20]

    MORA P, DUCASSE E, DESCHAMPS M. Transient 3D elastodynamic field in an embedded multilayered anisotropic plate[J]. Ultrasonics,2016,69:106-115. DOI: 10.1016/j.ultras.2016.03.020

    [21]

    RAMADAS C, BALASUBRAMANIAM K, HOOD A, et al. Modelling of attenuation of Lamb waves using Rayleigh damping: Numerical and experimental studies[J]. Composite Structures,2011,93(8):2020-2025. DOI: 10.1016/j.compstruct.2011.02.021

    [22]

    SHEN Y F, CESNIK C E S. Hybrid local FEM/global LISA modeling of damped guided wave propagation in complex composite structures[J]. Smart Materials and Structures,2016,25(9):095021. DOI: 10.1088/0964-1726/25/9/095021

    [23]

    GRESIL M, GIURGIUTIU V. Prediction of attenuated guided waves propagation in carbon fiber composites using Rayleigh damping model[J]. Journal of Intelligent Material Systems and Structures,2015,26(16):2151-2169. DOI: 10.1177/1045389X14549870

    [24] 周正干, 向上, 魏东, 等. 复合材料的超声检测技术[J]. 航空制造技术, 2009, 330(8):70-73. DOI: 10.3969/j.issn.1671-833X.2009.08.010

    ZHOU Zhenggan, XIANG Shang, WEI Dong, et al. Ultrasonic testing technologies for composites[J]. Aeronautical Manufacturing Technology,2009,330(8):70-73(in Chinese). DOI: 10.3969/j.issn.1671-833X.2009.08.010

    [25] 汪林娜, 赵子华, 张峥. CFRP层压板超声C扫描检测可靠性影响因素分析[J]. 玻璃钢/复合材料, 2011(3):20-23. DOI: 10.3969/j.issn.1003-0999.2011.03.004

    WANG Linna, ZHAO Zihua, ZHANG Zheng. Reliability factors analysis in ultrasonic C-scan for CFRP laminates[J]. Composites Science and Engineering,2011(3):20-23(in Chinese). DOI: 10.3969/j.issn.1003-0999.2011.03.004

    [26]

    ROTH D J, TOKARS R P, MARTIN R E, et al. Ultrasonic phased array inspection experiments and simulations for an isogrid structural element with cracks[C]//Proceedings of the AIP Conference Proceedings. Kingston: American Institute of Physics, 2010: 910-917.

    [27]

    YAN D, SUTCLIFFE M, WRIGHT B, et al. Ultrasonic imaging of full matrix capture acquired data for carbon fibre-reinforced polymer[J]. Insight: Non-Destructive Testing and Condition Monitoring,2013,55(9):477-481. DOI: 10.1784/insi.2012.55.9.477

    [28]

    LI L, CAO H Q, LUO Z B. Total focusing method imaging of multidirectional CFRP laminate with model-based time delay correction[J]. NDT & E International,2018,97:51-58. DOI: 10.1016/j.ndteint.2018.03.011

    [29]

    LI C, PAIN D, WILCOX P D, et al. Imaging composite material using ultrasonic arrays[J]. NDT & E International,2012,53(1):8-17. DOI: 10.1016/j.ndteint.2012.07.006

    [30]

    NAGESWARAN C, BIRD C R, TAKAHASHI R. Phased array scanning of artificial and impact damage in carbon fibre reinforced plastic (CFRP)[J]. Insight: Non-Destructive Testing and Condition Monitoring,2006,48(3):155-159. DOI: 10.1784/insi.2006.48.3.155

    [31] 张海燕, 宋佳昕, 任燕, 等. 碳纤维增强复合材料褶皱损伤的超声成像[J]. 物理学报, 2021, 70(11):114301. DOI: 10.7498/aps.70.20210032

    ZHANG Haiyan, SONG Jiaxin, REN Yan, et al. Ultrasonic imaging of wrinkles in carbon-fiber-reinforce-polymer composites[J]. Acta Physica Sinica,2021,70(11):114301(in Chinese). DOI: 10.7498/aps.70.20210032

    [32] 周正干, 朱甜甜, 马腾飞, 等. 先进树脂基复合材料纤维褶皱缺陷阵列超声全聚焦成像[J]. 复合材料学报, 2022, 39(9):4384-4392.

    ZHOU Zhenggan, ZHU Tiantian, MA Tengfei, et al. Array ultrasonic total-focus imaging for advanced resin matrix composite fiber wrinkle defect arrays[J]. Acta Materiae Compositae Sinica,2022,39(9):4384-4392(in Chinese).

    [33] 徐娜, 沙正骁, 史亦韦. 超声相控阵延迟时间的声速校正及在复合材料中的检测[J]. 材料工程, 2015, 43(9):74-79. DOI: 10.11868/j.issn.1001-4381.2015.09.012

    XU Na, SHA Zhengxiao, SHI Yiwei. Velocity correction of delay time and inspection for composite materials using ultrasonic phased array[J]. Journal of Materials Engineering,2015,43(9):74-79(in Chinese). DOI: 10.11868/j.issn.1001-4381.2015.09.012

    [34]

    CAO H Q, GUO S F, ZHANG S X, et al. Ray tracing method for ultrasonic array imaging of CFRP corner part using homogenization method[J]. NDT & E International,2021,122:102493. DOI: DOI:10.1016/j.ndteint.2021.102493

    [35]

    MEOLA C, BOCCARDI S, CARLOMAGNO G M, et al. Nondestructive evaluation of carbon fibre reinforced composites with infrared thermography and ultrasonics[J]. Composite Structures,2015,134:845-853. DOI: 10.1016/j.compstruct.2015.08.119

    [36]

    CAMINERO M A, GARCÍA-MORENO I, RODRÍGUEZ G P, et al. Internal damage evaluation of composite structures using phased array ultrasonic technique: Impact damage assessment in CFRP and 3D printed reinforced compo-sites[J]. Composites Part B: Engineering,2019,165:131-142. DOI: 10.1016/j.compositesb.2018.11.091

    [37] 曹弘毅, 马蒙源, 丁国强, 等. 复合材料层压板分层缺陷超声相控阵检测与评估[J]. 材料工程, 2021, 49(2):149-157. DOI: 10.11868/j.issn.1001-4381.2020.000405

    CAO Hongyi, MA Mengyuan, DING Guoqiang, et al. Delamination defects testing and evaluation of compo-site laminates using phased array ultrasonic technique[J]. Journal of Materials Engineering,2021,49(2):149-157(in Chinese). DOI: 10.11868/j.issn.1001-4381.2020.000405

    [38] 周正干, 魏东, 向上. 线性调频脉冲压缩方法在空气耦合超声检测中的应用研究[J]. 机械工程学报, 2010, 46(18):24-28, 35. DOI: 10.3901/JME.2010.18.024

    ZHOU Zhenggan, WEI Dong, XIANG Shang. Application of linear-frequency-modulation based pulse compression in air-coupled ultra-sonic testing[J]. Journal of Mechanical Engineering,2010,46(18):24-28, 35(in Chinese). DOI: 10.3901/JME.2010.18.024

    [39] 魏东, 周正干. 改进的非线性调频脉冲压缩方法在空气耦合超声检测中的应用[J]. 机械工程学报, 2012, 48(16):8-13. DOI: 10.3901/JME.2012.16.008

    WEI Dong, ZHOU Zhenggan. Application of non-linear frequency-modulation based pulse compression in air-coupled ultra-sonic testing[J]. Journal of Mechanical Engineering,2012,48(16):8-13(in Chinese). DOI: 10.3901/JME.2012.16.008

    [40] 危荃, 金翠娥, 周建平, 等. 空气耦合超声技术在航空航天复合材料无损检测中的应用[J]. 无损检测, 2016, 38(8):6-11. DOI: 10.11973/wsjc201608002

    WEI Quan, JIN Cui'e, ZHOU Jianping, et al. Application of air-coupled ultrasonic technology for nondestructive testing of aerospace composites[J]. Nondestructive Testing,2016,38(8):6-11(in Chinese). DOI: 10.11973/wsjc201608002

    [41] 殷晓康, 周凯, 王雨婷. 空气耦合超声检测系统开发与测试[J]. 电子测量技术, 2020, 43(15):79-83. DOI: 10.19651/j.cnki.emt.2004465

    YIN Xiaokang, ZHOU Kai, WANG Yuting. Development and test of air-coupled ultrasound system[J]. Electronic Measurement Technology,2020,43(15):79-83(in Chinese). DOI: 10.19651/j.cnki.emt.2004465

    [42] 高双胜, 陆春, 薛继佳, 等. CFRP 复合材料层板冲击损伤的空气耦合超声无损检测[J]. 纤维复合材料, 2015, 32(3):10-12. DOI: 10.3969/j.issn.1003-6423.2015.03.003

    GAO Shuangsheng, LU Chun, XUE Jijia, et al. Nondestruc-tive testing of impact damage in CFRP laminates by air-coupled ultrasound[J]. Fiber Composites,2015,32(3):10-12(in Chinese). DOI: 10.3969/j.issn.1003-6423.2015.03.003

    [43] 董方旭, 凡丽梅, 赵付宝, 等. 空气耦合超声检测技术在复合材料检测中的应用[J]. 无损探伤, 2022, 46(1):10-13.

    DONG Fangxu, FAN Limei, ZHAO Fubao, et al. Application of air coupled ultrasonic testing technology in composite testing[J]. Nondestructive Testing Technology,2022,46(1):10-13(in Chinese).

    [44]

    IMIELIŃSKA K, CASTAINGS M, WOJTYRA R, et al. Air-coupled ultrasonic C-scan technique in impact response testing of carbon fibre and hybrid: Glass, carbon and Kevlar/epoxy composites[J]. Journal of Materials Processing Technology,2004,157-158:513-522. DOI: 10.1016/j.jmatprotec.2004.07.143

    [45]

    SUN G K, ZHOU Z G, CHEN X C, et al. Ultrasonic characterization of delamination in aeronautical composites using noncontact laser generation and detection[J]. Applied Optics,2013,52(26):6481-6486. DOI: 10.1364/AO.52.006481

    [46] 郭佳, 李四海, 宁宁, 等. 激光超声技术在无损检测中的应用[J]. 航空工程进展, 2014, 5(4):487-490, 501. DOI: 10.3969/j.issn.1674-8190.2014.04.013

    GUO Jia, LI Sihai, NING Ning, et al. Application of laser ultrasonic technique in non-destructive testing[J]. Advance in Aeronautical Science and Engineering,2014,5(4):487-490, 501(in Chinese). DOI: 10.3969/j.issn.1674-8190.2014.04.013

    [47] 刘松平, 郭恩明, 刘菲菲, 等. 激光超声检测碳纤维增强树脂基复合材料的缺陷评估技术研究[J]. 无损检测, 2007, 29(7):396-398, 401. DOI: 10.3969/j.issn.1000-6656.2007.07.011

    LIU Songping, GUO Enming, LIU Feifei, et al. Evaluation of defects in carbon fiber-reinforced composites by laser ultrasonic technique[J]. Nondestructive Testing,2007,29(7):396-398, 401(in Chinese). DOI: 10.3969/j.issn.1000-6656.2007.07.011

    [48]

    VOILLAUME H, SIMONET D, BROUSSET C, et al. Analysis of commercial aeronautics applications of laser ultrasonics for composite manufacturing[J]. Proceedings of ECNDT, 2006: 1-8.

    [49]

    VANDENRIJT J F, LANGUY F, THIZY C, et al. Nondestruc-tive inspection of aerospace composites by a fiber-coupled laser ultrasonics system[C]//Proceedings of the Fifth International Conference on Optical and Photonics Engineering. Angleur: SPIE, 2017: 299-307.

    [50]

    ZENG L M, WANG B D, LIU X, et al. High-resolution air-coupled laser ultrasound imaging of microstructure and defects in braided CFRP[J]. Composites Communications,2021,28:100915. DOI: 10.1016/j.coco.2021.100915

    [51]

    LIN L, CAO H Q, LUO Z B. Dijkstra's algorithm-based ray tracing method for total focusing method imaging of CFRP laminates[J]. Composite Structures,2019,215:298-304. DOI: 10.1016/j.compstruct.2019.02.086

    [52]

    GUO N Q, CAWLEY P. Lamb wave propagation in compo-site laminates and its relationship with acousto-ultrasonics[J]. NDT & E International,1993,26(2):75-84. DOI: DOI:10.1016/0963-8695(93)90257-U

    [53]

    YU L Y, GIURGIUTIU V. In-situ optimized PWAS phased arrays for Lamb wave structural health monitoring[J]. Journal of Mechanics of Materials and Structures,2007,2(3):459-487. DOI: 10.2140/jomms.2007.2.459

    [54]

    AMBROZIŃSKI Ł, STEPINSKI T, UHL T. Efficient tool for designing 2D phased arrays in lamb waves imaging of isotropic structures[J]. Journal of Intelligent Material Systems and Structures,2015,26(17):2283-2294. DOI: 10.1177/1045389X14545389

    [55]

    ENGHOLM M, STEPINSKI T. Direction of arrival estimation of Lamb waves using circular arrays[J]. Structural Health Monitoring,2011,10(5):467-480. DOI: 10.1177/1475921710379512

    [56]

    WILCOX P D. Omni-directional guided wave transducer arrays for the rapid inspection of large areas of plate structures[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2003,50(6):699-709. DOI: 10.1109/TUFFC.2003.1209557

    [57]

    KANNAJOSYULA H, LISSENDEN C J, ROSE J L. Analysis of annular phased array transducers for ultrasonic guided wave mode control[J]. Smart Materials and Structures,2013,22(8):085019. DOI: 10.1088/0964-1726/22/8/085019

    [58]

    YAN F, ROSE J L. Guided wave phased array beam steering in composite plates[C]//Proceedings of the Health Monitoring of Structural and Biological Systems 2007. San Diego: SPIE, 2007: 142-150.

    [59]

    YAN F, LISSENDEN C J, ROSE J L. Directivity profiles of ultrasonic guided wave phased arrays for multilayer composite plates[C]//Proceedings of the Health Monitoring of Structural and Biological Systems 2009. San Diego: SPIE, 2009: 340-350.

    [60]

    VISHNUVARDHAN J, MURALIDHARAN A, KRISHNAMURTHY C V, et al. Structural health monitoring of anisotropic plates using ultrasonic guided wave STMR array patches[J]. NDT & E International,2009,42(3):193-198. DOI: DOI:10.1016/j.ndteint.2008.09.012

    [61]

    LELEUX A, MICHEAU P, CASTAINGS M. Long range detection of defects in composite plates using Lamb waves generated and detected by ultrasonic phased array probes[J]. Journal of Nondestructive Evaluation,2013,32(2):200-214. DOI: 10.1007/s10921-013-0173-0

    [62]

    PUREKAR A S, PINES D J. Damage detection in thin composite laminates using piezoelectric phased sensor arrays and guided Lamb wave interrogation[J]. Journal of Intelligent Material Systems and Structures,2010,21(10):995-1010. DOI: 10.1177/1045389X10372003

    [63]

    YU L Y, TIAN Z H. Guided wave phased array beamforming and imaging in composite plates[J]. Ultrasonics,2016,68:43-53. DOI: 10.1016/j.ultras.2016.02.001

    [64]

    HUAN Q, CHEN M T, SU Z Q, et al. A high-resolution structural health monitoring system based on SH wave piezoelectric transducers phased array[J]. Ultrasonics,2019,97:29-37. DOI: 10.1016/j.ultras.2019.04.005

    [65]

    CASTAINGS M, HOSTEN B. Lamb and SH waves generated and detected by air-coupled ultrasonic transducers in composite material plates[J]. NDT & E International,2001,34(4):249-258. DOI: DOI:10.1016/S0963-8695(00)00065-7

    [66]

    YAN F, HAUCK E, MOR PERA T, et al. Ultrasonic guided wave imaging of a composite plate with air-coupled transducers[C]//Proceedings of the AIP Conference Proceedings. Oregon: American Institute of Physics, 2007: 1007-1012.

    [67]

    LIU Z H, YU H T, HE C F, et al. Delamination detection in composite beams using pure Lamb mode generated by air-coupled ultrasonic transducer[C]//Proceedings of the International Conference on Advances in Structural Health Management. Jeonju: SAGE Publications LTD, 2014: 541-550.

    [68]

    LIU Z H, YU H T, HE C F, et al. Delamination damage detection of laminated composite beams using air-coupled ultrasonic transducers[J]. Science China-Physics Mechanics & Astronomy,2013,56(7):1269-1279. DOI: DOI:10.1007/s11433-013-5092-7

    [69] 吴霞, 卢超, 陈果, 等. CFRP 层压板缺陷同侧空气耦合超声兰姆波特征成像检测研究[J]. 南昌航空大学学报:自然科学版, 2018, 32(4):52-58.

    WU Xia, LU Chao, CHEN Guo, et al. Study on eigenvalue lmaging of CFRP plate defect using air-coupled ultrasonic lamb waves[J]. Journal of Nanchang Hangkong University (Natural Sciences),2018,32(4):52-58(in Chinese).

    [70]

    ZHANG C, QIU J H, JI H L, et al. Laser ultrasonic imaging for impact damage visualization in composite structure[C]//Proceedings of the EWSHM-7th European Workshop on Structural Health Monitoring. France: La Cité, Nantes, 2014: 2199-2205.

    [71]

    SALAMONE S, BARTOLI I, LANZA DI SCALEA F, et al. Guided-wave health monitoring of aircraft composite panels under changing temperature[J]. Journal of Intelligent Material Systems and Structures,2009,20(9):1079-1090. DOI: 10.1177/1045389X08101634

    [72]

    GAO D Y, WU Z J, YANG L, et al. Structural health monitoring for long-term aircraft storage tanks under cryoge-nic temperature[J]. Aerospace Science and Technology,2019,92:881-891. DOI: 10.1016/j.ast.2019.02.045

    [73]

    WANG Y S, GAO L M, YUAN S F, et al. An adaptive filter-based temperature compensation technique for structural health monitoring[J]. Journal of Intelligent Material Systems and Structures,2014,25(17):2187-2198. DOI: 10.1177/1045389X13519001

    [74]

    SUN H, YI J Y, XU Y, et al. Identification and compensation technique of non-uniform temperature field for Lamb wave-and multiple sensors-based damage detection[J]. Sensors,2019,19(13):1-14. DOI: 10.1109/JSEN.2019.2912676

    [75]

    MARZANI A, SALAMONE S. Numerical prediction and experimental verification of temperature effect on plate waves generated and received by piezoceramic sensors[J]. Mechanical Systems and Signal Processing,2012,30:204-217. DOI: 10.1016/j.ymssp.2011.11.003

    [76]

    HA S, LONKAR K, MITTAL A, et al. Adhesive layer effects on PZT-induced lamb waves at elevated temperatures[J]. Structural Health Monitoring,2010,9(3):247-256. DOI: 10.1177/1475921710365267

    [77]

    LU Y H, MICHAELS J E. A methodology for structural health monitoring with diffuse ultrasonic waves in the presence of temperature variations[J]. Ultrasonics,2005,43(9):717-731. DOI: 10.1016/j.ultras.2005.05.001

    [78]

    TAKEDA N. Fiber optic sensor-based SHM technologies for aerospace applications in Japan[C]//Proceedings of the Smart Sensor Phenomena, Technology, Networks, & Systems. San Diego: SPIE-INT SOC Optical Engineering, 2008: 1-13.

    [79] 郝小柱, 张汉泉, 韦成龙, 等. 光纤水听器阵列应用于海洋地震勘探的试验[J]. 热带海洋学报, 2018, 37(3):93-98.

    HAO Xiaozhu, ZHANG Hanquan, WEI Chenglong, et al. Sea trial for fiber-optic hydrophone array used in marine geophysical exploration[J]. Journal of Tropical Oceanography,2018,37(3):93-98(in Chinese).

    [80]

    ALCOZ J, JORGE LEE C E, TAYLOR H F. Embedded fiber-optic fabry-perot ultrasound sensor[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control,1990,37(4):302-306. DOI: DOI:10.1109/58.56491

    [81]

    PAVEL F, KRISHNASWAMY S. Response of a fiber Bragg grating ultrasonic sensor[J]. Optical Engineering,2003,42(4):956-963. DOI: 10.1117/1.1556372

    [82]

    ZHU Y P, HU L L, LIU Z G, et al. Ultrasensitive ultrasound detection using an intracavity phase-shifted fiber Bragg grating in a self-injection-locked diode laser[J]. Optics Letters,2019,44(22):5525-5528. DOI: 10.1364/OL.44.005525

    [83]

    BETZ D C, STASZEWSKI W J, THURSBY G, et al. Multi-functional fibre Bragg grating sensors for fatigue crack detection in metallic structures[J]. Proceedings of the Institution of Mechanical Engineers-Part G,2006,220(5):453-461. DOI: 10.1243/09544100JAERO34

    [84]

    TSUDA H, LEE J R, GUAN Y S. Fatigue crack propagation monitoring of stainless steel using fiber Bragg grating ultrasound sensors[J]. Smart Materials & Structures,2006,15(5):1429-1437. DOI: DOI:10.1088/0964-1726/15/5/032

    [85]

    TSUDA H, LEE J R, GUAN Y S, et al. Investigation of fatigue crack in stainless steel using a mobile fiber Bragg grating ultrasonic sensor[J]. Optical Fiber Technology,2007,13(3):209-214. DOI: 10.1016/j.yofte.2006.12.003

    [86]

    LAM P M, LAU K T, LING H Y, et al. Acousto-ultrasonic sensing for delaminated GFRP composites using an embedded FBG sensor[J]. Optics & Lasers in Engineering,2009,47(10):1049-1055.

    [87]

    WU Q, YU F M, OKABE Y, et al. Application of a novel optical fiber sensor to detection of acoustic emissions by various damages in CFRP laminates[J]. Smart Materials and Structures,2015,24(1):1-10. DOI: DOI:10.1088/0964-1726/24/1/015011

    [88]

    TSUDA H. Ultrasound and damage detection in CFRP using fiber Bragg grating sensors[J]. Composites Science & Technology,2006,66(5):676-683. DOI: DOI:10.1016/j.compscitech.2005.07.043

    [89]

    TSUDA H, TOYAMA N, TAKATSUBO J. Damage detection of CFRP using fiber Bragg gratings[J]. Materials Science, 2004, 39(6): 2211-2214.

    [90]

    SPYTEK J, MROWKA J, PIECZONKA L, et al. Multi-resolution non-contact damage detection in complex-shaped composite laminates using ultrasound[J]. NDT & E International,2020,116:1-11. DOI: DOI:10.1016/j.ndteint.2020.102366

    [91]

    STASZEWSKI W J. Intelligent signal processing for damage detection in composite materials[J]. Composites Science and Technology,2002,62(7-8):941-950. DOI: 10.1016/S0266-3538(02)00008-8

    [92]

    BENAMMAR A, DRAI R, GUESSOUM A. Ultrasonic flaw detection using threshold modified S-transform[J]. Ultrasonics,2014,54(2):676-683. DOI: 10.1016/j.ultras.2013.09.004

    [93]

    NAQIUDDIN M S M, LEONG M S, HEE L M, et al. Ultrasonic signal processing techniques for pipeline: A review[C]//Proceedings of the MATEC Web of Conferences. Malaysia: EDP Sciences, 2019: 1-11.

    [94]

    TIWARI K A, RAISUTIS R, SAMAITIS V. Signal processing methods to improve the signal-to-noise ratio (SNR) in ultrasonic non-destructive testing of wind turbine blade[J]. Procedia Structural Integrity,2017,5:1184-1191. DOI: 10.1016/j.prostr.2017.07.036

    [95]

    ABDESSALEM B, REDOUANE D, AHMED K, et al. Enhancement of phased array ultrasonic signal in compo-site materials using TMST algorithm[J]. Physics Procedia,2015,70:488-491. DOI: 10.1016/j.phpro.2015.08.292

    [96]

    WOYTOWICH B J. Detection of delamination defects in carbon fiber laminate composites using ultrasound and the Hilbert-Huang transform[D]. Boston: Tufts University, 2008.

    [97]

    HOLMES C, DRINKWATER B W, WILCOX P D. Post-processing of the full matrix of ultrasonic transmit-receive array data for non-destructive evaluation[J]. NDT & E International,2005,38(8):701-711. DOI: 10.1016/j.ndteint.2005.04.002

    [98]

    GENGEMBRE N, CALMON P, PETILLON O, et al. Prediction of ultrasonic fields into composite multi-layered structures: Homogenization approach for the direct field and statistical approach for the inner reflections[C]//AIP Conference Proceedings. American Institute of Physics, 2003, 657: 957-964.

    [99]

    DEYDIER S, LEYMARIE N, CALMON P, et al. Modeling of the ultrasonic propagation into carbon-fiber-reinforced epoxy composites, using a ray theory based homogenization method[C]//Proceedings of the American Institute of Physics. Brunswick: Amer Inst Physics, 2006, 820: 972-978.

    [100]

    ROKHLIN S I, BOLLAND T K, ADLER L. Reflection and refraction of elastic waves on a plane interface between two generally anisotropic media[J]. The Journal of the Acoustical Society of America,1986,79(4):906-918. DOI: 10.1121/1.393764

    [101]

    DIJKSTRA E. A note on two problems in connexion with graphs[J]. Numerische Mathematik,1959,1(1):269-271. DOI: 10.1007/BF01386390

    [102]

    HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics,1968,4(2):100-107. DOI: DOI:10.1109/tssc.1968.300136

    [103]

    ZHOU H P, HAN Z D, DONG D, et al. A combined marching and minimizing ray-tracing algorithm developed for ultrasonic array imaging of austenitic welds[J]. NDT & E International,2018,95:45-56. DOI: DOI:10.1016/j.ndteint.2018.01.008

    [104]

    PERLIN L P, DE ANDRADE PINTO R C. Use of network theory to improve the ultrasonic tomography in concrete[J]. Ultrasonics,2019,96:185-195. DOI: 10.1016/j.ultras.2019.01.007

    [105]

    ZIELIŃSKA M, RUCKA M. Detection of debonding in reinforced concrete beams using ultrasonic transmission tomography and hybrid ray tracing technique[J]. Construction and Building Materials,2020,262:1-16. DOI: DOI:10.1016/j.conbuildmat.2020.120104

    [106]

    PERKOWSKI Z, TATARA K. The use of Dijkstra's algorithm in assessing the correctness of imaging brittle damage in concrete beams by means of ultrasonic transmission tomography[J]. Materials,2020,13(3):551. DOI: DOI:10.3390/ma13030551

    [107]

    FENSTER A, TONG S D, SHEREBRIN S, et al. Three-dimensional ultrasound imaging[C]//Proceedings of the Medical Imaging 1995: Physics of Medical Imaging. USA: SPIE-Int. Soc. Opt. Eng. ,1995, 4549: 176-184.

    [108] 王婧云, 陈军, 叶伟龙, 等. 超声相控阵三维可视成像技术的发展与应用概述[J]. 无损探伤, 2015, 39(6):32-34. DOI: 10.3969/j.issn.1671-4423.2015.06.008

    WANG Jingyun, CHEN Jun, YE Weilong, et al. Overview of the development and application of ultrasonic phased array 3D visual imaging technology[J]. Nondestructive Testing Technology,2015,39(6):32-34(in Chinese). DOI: 10.3969/j.issn.1671-4423.2015.06.008

    [109]

    MOHAMMADKHANI R, ZANOTTI FRAGONARA L, PADIYAR M J, et al. Improving depth resolution of ultrasonic phased array imaging to inspect aerospace composite structures[J]. Sensors,2020,20(2):1-18. DOI: 10.1109/JSEN.2019.2963157

    [110]

    BULAVINOV A, PINCHUK R, PUDOVIKOV S, et al. Industrial application of real-time 3D imaging by sampling phased array[C]//Proceedings of the European Conference for Non-destructive Testing. Moscow: Int Committee Non-destructive Testing, 2010: 532-540.

    [111] 周正干, 李洋, 陈芳浩, 等. 矩阵换能器超声三维成像方法研究[J]. 仪器仪表学报, 2016, 37(2):371-378. DOI: 10.3969/j.issn.0254-3087.2016.02.018

    ZHOU Zhenggan, LI Yang, CHEN Fanghao, et al. Research on three dimensional imaging method using ultrasonic matrix array transducer[J]. Chinese Journal of Scientific Instrument,2016,37(2):371-378(in Chinese). DOI: 10.3969/j.issn.0254-3087.2016.02.018

    [112]

    FENSTER A, TONG S, CARDINAL H N, et al. Three-dimensional ultrasound imaging systems for prostate cancer diagnosis and treatment[J]. IEEE Instrumentation & Measurement Magazine,1998,1(4):32-35. DOI: DOI:10.1109/5289.735975

    [113]

    KITAZAWA S, KONO N, BABA A, et al. Three-dimensional visualisation and evaluation techniques for volumetrically scanned data of ultrasonic phased arrays[J]. Insight: Non-Destructive Testing and Condition Monitoring,2010,52(4):201-205. DOI: 10.1784/insi.2010.52.4.201

    [114]

    LYTLE R J, DINES K A. Iterative ray tracing between boreholes for underground image reconstruction[J]. IEEE Transactions on Geoscience and Remote Sensing,1980,18(3):234-240. DOI: DOI:10.1109/TGRS.1980.4307496

    [115] 陈彦华, 兰从庆, 许克克. 反射式超声计算机层析成像算法研究[J]. 声学学报, 1992, 17(4):301-307. DOI: 10.15949/j.cnki.0371-0025.1992.04.009

    CHEN Yanhua, LAN Congqing, XU Keke. A compution algorithm for ultrasonic reflective tomography[J]. Acta Acustica,1992,17(4):301-307(in Chinese). DOI: 10.15949/j.cnki.0371-0025.1992.04.009

    [116]

    JANSEN D P, HUTCHINS D A, MOTTRAM J T. Lamb wave tomography of advanced composite laminates containing damage[J]. Ultrasonics,1994,32(2):83-90. DOI: 10.1016/0041-624X(94)90015-9

    [117]

    WANG C H, CHANG F K. Scattering of plate waves by a cylindrical inhomogeneity[J]. Journal of Sound & Vibration,2005,282(1-2):429-451. DOI: DOI:10.1016/j.jsv.2004.02.023

    [118]

    SU C H, JIANG M S, LIANG J Y, et al. Damage identification in composites based on hilbert energy spectrum and Lamb wave tomography algorithm[J]. IEEE Sensors Jour-nal,2019,19(23):11562-11572. DOI: 10.1109/JSEN.2019.2935740

    [119]

    ETGEN J, GRAY S H, ZHANG Y. An overview of depth imaging in exploration geophysics[J]. Geophysics,2009,74(6):5-17. DOI: 10.1190/1.3223188

    [120]

    BAYSAL E, KOSLOFF D D, SHERWOOD J W C. A two-way nonreflecting wave equation[J]. Geophysics,1984,49(2):132-141. DOI: 10.1190/1.1441644

    [121]

    ZHOU H W, HU H, ZOU Z H, et al. Reverse time migration: A prospect of seismic imaging methodology[J]. Earth-Science Reviews,2018,179:207-227. DOI: 10.1016/j.earscirev.2018.02.008

    [122]

    CLAERBOUT J F. Toward a unified theory of reflector mapping[J]. Geophysics,1971,36(3):467-481. DOI: 10.1190/1.1440185

    [123]

    BLEISTEIN N. On the imaging of reflectors in the earth[J]. Geophysics,1987,52(7):931-942. DOI: 10.1190/1.1442363

    [124]

    KAELIN B, GUITTON A. Imaging condition for reverse time migration[C]//Seg technical program expanded abstracts 2006. Tulsa: Society of Exploration Geophysicists, 2006: 2594-2598.

    [125]

    BAYSAL E, KOSLOFF D D, SHERWOOD J W C. Reverse time migration[J]. Geophysics,1983,48(11):1514-1524. DOI: 10.1190/1.1441434

    [126]

    SAVA P, HILL S J. Overview and classification of wavefield seismic imaging methods[J]. The Leading Edge,2009,28(2):170-183. DOI: 10.1190/1.3086052

    [127] 丁亮, 刘洋. 逆时偏移成像技术研究进展[J]. 地球物理学进展, 2011, 26(3):1085-1100. DOI: 10.3969/j.issn.1004-2903.2011.03.039

    DING Liang, LIU Yang. Progress in reverse time migration imaging[J]. Progress in Geoghys,2011,26(3):1085-1100(in Chinese). DOI: 10.3969/j.issn.1004-2903.2011.03.039

    [128]

    YANG X B, WANG K, XU Y F, et al. A reverse time migration-based multistep angular spectrum approach for ultrasonic imaging of specimens with irregular surfaces[J]. Ultrasonics,2020,108:1-10. DOI: DOI:10.1016/j.ultras.2020.106233

    [129]

    YANG H J, LI J, WU D L, et al. Imaging a defect in layered media with different shaped interfaces using reverse time migration without velocity model known a priori[J]. Ultrasonics,2022,124:1-7. DOI: DOI:10.1016/j.ultras.2022.106750

    [130] 徐琰锋, 胡文祥. 纵向带状裂隙形貌的逆时偏移超声成像[J]. 物理学报, 2014, 63(15):1-8. DOI: 10.7498/aps.63.154302

    XU Yanfeng, HU Wenxiang. Ultrasonic imaging for appearance of vertical slot by reverse time migration[J]. Acta Physica Sinica,2014,63(15):1-8(in Chinese). DOI: 10.7498/aps.63.154302

    [131]

    MÜLLER S, NIEDERLEITHINGER E, KRAUSE M, et al. Reverse time migration: A seismic imaging technique applied to ultrasonic data[J]. International Journal of Geophysics, 2012, 2012(11): 128465.

    [132]

    WANG L, YUAN F G. Damage identification in a compo-site plate using prestack reverse-time migration technique[J]. Structural Health Monitoring,2005,4(3):195-211. DOI: 10.1177/1475921705055233

    [133]

    HE J Z, YUAN F G. Damage identification for composite structures using a cross-correlation reverse-time migration technique[J]. Structural Health Monitoring,2015,14(6):558-570. DOI: 10.1177/1475921715602546

    [134]

    HE J Z, YUAN F G. A quantitative damage imaging technique based on enhanced CCRTM for composite plates using 2D scan[J]. Smart Materials and Structures,2016,25(10):1-11. DOI: DOI:10.1088/0964-1726/25/10/105022

    [135]

    HAY T R, ROYER R L, GAO H D, et al. A comparison of embedded sensor Lamb wave ultrasonic tomography approaches for material loss detection[J]. Smart Materials and Structures,2006,15(4):946-951. DOI: 10.1088/0964-1726/15/4/007

    [136]

    ZHAO X L, GAO H D, ZHANG G F, et al. Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring[J]. Smart Materials and Structures,2007,16(4):1208-1217. DOI: 10.1088/0964-1726/16/4/032

    [137]

    LIU Z H, YU H T, FAN J W, et al. Baseline-free delamination inspection in composite plates by synthesizing non-contact air-coupled Lamb wave scan method and virtual time reversal algorithm[J]. Smart Materials and Structures,2015,24(4):1-15. DOI: DOI:10.1088/0964-1726/24/4/045014

    [138]

    MUSTAPHA S, YE L. Propagation behaviour of guided waves in tapered sandwich structures and debonding identification using time reversal[J]. Wave Motion,2015,57:154-170. DOI: 10.1016/j.wavemoti.2015.03.010

    [139]

    WU Z J, LIU K H, WANG Y S, et al. Validation and evaluation of damage identification using probability-based diagnostic imaging on a stiffened composite panel[J]. Journal of Intelligent Material Systems & Structures,2015,26(16):2181-2195. DOI: DOI:10.1177/1045389X14549873

    [140]

    LIU Z H, ZHONG X W, DONG T C, et al. Delamination detection in composite plates by synthesizing time-reversed Lamb waves and a modified damage imaging algorithm based on RAPID[J]. Structural Control and Health Monitoring,2016,24(5):1-17. DOI: DOI:10.1002/stc.1919

    [141]

    LIU Z H, YU F X, RU W, et al. Image fusion based on single-frequency guided wave mode signals for structural health monitoring in composite plates[J]. Materials Evaluation,2013,71(12):1434-1443.

    [142]

    ZHU J J, WANG Y S, QING X L. A novel electromechanical impedance model for surface-bonded circular piezoelectric transducer[J]. Smart Materials and Structures,2019,28(10):1-12. DOI: DOI:10.1088/1361-665X/ab39ba

    [143]

    ZHU J J, QING X L, LIU X, et al. Electromechanical impedance-based damage localization with novel signatures extraction methodology and modified probability-weighted algorithm[J]. Mechanical Systems and Signal Processing,2021,146:1-20. DOI: DOI:10.1016/j.ymssp.2020.107001

    [144]

    SUTCLIFFE M, WESTON M, DUTTON B, et al. Real-time full matrix capture for ultrasonic non-destructive testing with acceleration of post-processing through graphic hardware[J]. NDT & E International,2012,51:16-23. DOI: DOI:10.1016/j.ndteint.2012.06.005

    [145]

    NJIKI M, ELOUARDI A, BOUAZIZ S, et al. A real-time implementation of the total focusing method for rapid and precise diagnostic in non destructive evaluation [C]//Proceedings of the 2013 IEEE 24th International Conference on Application-Specific Systems, Architectures and Processors. Washington: IEEE, 2013: 245-248.

    [146]

    ASTM. Standard practice for ultrasonic testing of flat panel composites and sandwich core materials used in aerospace applications: E2580[S]. West Conshohocken: ASTM, 2017.

    [147]

    ASTM. Standard guide for non-destructive testing of polymer matrixcompos itesused in aerospace applications: E2533[S]. West Conshohocken: ASTM International, 2017.

    [148] 国防科学技术工业委员会. 纤维增强复合材料无损检验方法第1部分: 超声波检验: GJB 1038. IA—2004[S]. 北京: 国防科学技术工业委员会, 2004.

    National Defense Science TAIC. Non-destructive testing methods for fiber reinforced composites part 1: Ultrasound testing: GJB 1038. IA—2004[S]. Beijing: National Defense Science, Technology and Industry Commission, 2004(in Chinese).

    [149] 国防科学技术工业委员会. 复合材料制件无损检测对比试块制作与要求: HB 7825—2007[S]. 北京: 国防科学技术工业委员会, 2007.

    National Defense Science TAIC. Non-destructive testing of composite parts comparison test block fabrication and requirements: HB 7825—2007[S]. Beijing: National Defense Science TAIC, 2007(in Chinese).

    [150]

    FARRAR C R, WORDEN K. Structural health monitoring: A machine learning perspective[M]. Hoboken: John Wiley & Sons, 2012: 1-15.

    [151]

    SARAIVA F D E O, BERNARDES W M S, ASADA E N. A framework for classification of non-linear loads in smart grids using artificial neural networks and multi-agent systems[J]. Neurocomputing,2015,170:328-338. DOI: 10.1016/j.neucom.2015.02.090

    [152]

    SIMONE G, MORABITO F C, POLIKAR R, et al. Feature extraction techniques for ultrasonic signal classification[J]. International Journal of Applied Electromagnetics and Mechanics,2002,15(1-4):291-294. DOI: 10.3233/JAE-2002-462

    [153]

    MENG M, CHUA Y J, WOUTERSON E, et al. Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks[J]. Neurocomputing,2017,257:128-135. DOI: 10.1016/j.neucom.2016.11.066

    [154]

    CACCIOLA M, CALCAGNO S, MORABITO F C, et al. Computational intelligence aspects for defect classification in aeronautic composites by using ultrasonic pulses[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2008,55(4):870-878. DOI: 10.1109/TUFFC.2008.722

    [155] 杨宇, 王彬文, 吕帅帅, 等. 一种基于深度学习的复合材料结构损伤导波监测方法[J]. 航空科学技术, 2020, 31(7):102-108.

    YANG Yu, WANG Binwen, LYU Shuaishuai, et al. A deep-learning-based method for damage ldentification of composite laminates[J]. Aeronautical Science & Technology,2020,31(7):102-108(in Chinese).

    [156]

    AGARWAL S, MITRA M. Lamb wave based automatic damage detection using matching pursuit and machine learning[J]. Smart Materials and Structures,2014,23(8):1-11. DOI: DOI:10.1088/0964-1726/23/8/085012

    [157] 高东岳. 基于机器学习方法的超声导波结构健康监测研究[J]. 纤维复合材料, 2020, 37(3):3-8. DOI: 10.3969/j.issn.1003-6423.2020.03.001

    GAO Dongyue. Ultrasonic guided wave structural health monitoring technology based on machine learning method[J]. Fiber Composites,2020,37(3):3-8(in Chinese). DOI: 10.3969/j.issn.1003-6423.2020.03.001

    [158] 杨宇, 周雨熙, 王莉. 一种集成多个机器学习模型的复合材料结构损伤识别方法[J]. 数据采集与处理, 2020, 35(2):278-287. DOI: 10.16337/j.1004-9037.2020.02.009

    YANG Yu, ZHOU Yuxi, WANG Li. Integrated method of multiple machine-learning models for damage recognition of composite structures[J]. Journal of Data Acquisition and Processing,2020,35(2):278-287(in Chinese). DOI: 10.16337/j.1004-9037.2020.02.009

  • 期刊类型引用(1)

    1. 杨元林,李英,陈丽佳,牛连斌. 钙钛矿太阳能电池中顶电极的研究进展. 功能材料. 2022(07): 7040-7057 . 百度学术

    其他类型引用(1)

  • 目的 

    碳纤维复合材料具有密度小、弹性高和韧性好等特点,被广泛应用于航空航天和汽车工业等领域。由于碳纤维复合材料制作工艺的复杂性和不稳定性以及服役期间易受环境的影响,易产生分层、孔隙、纤维褶皱等各种类型的损伤。因此,为了防止重大事故的发生,亟需在碳纤维复合材料制造加工和服役阶段及时检测出损伤,以实现碳纤维复合材料的质量控制和安全性能评估。

    方法 

    针对碳纤维复合材料结构无损检测技术有很多, 如X射线检测法、涡流检测法、磁粉检测法、激光散斑干涉法、红外热成像法和超声无损检测法等。其中,超声无损检测技术因具有技术成熟、检测成本低、准确度高等优势,被广泛应用于碳纤维复合材料的检测。本文介绍了基于体波或导波的C扫描、相控阵、空气耦合、激光超声、光纤超声检测技术的原理、特点以及用于碳纤维复合材料损伤检测的研究现状。本文综述了最具有代表性的损伤诊断成像算法,包括全聚焦成像、三维可视化成像、层析成像、逆时偏移成像和概率成像方法。

    结果 

    基于体波的检测技术能够实现碳纤维复合材料厚度方向上微小损伤的检测,现有研究检测碳纤维复合材料的样品厚度的范围约为3~6.4 mm,在检测频率为20 MHz时,能够检测到的碳纤维复合材料最小损伤直径约为 0.5 mm。基于导波的检测技术,检测的样品厚度范围一般为2.54~4 mm的碳纤维复合材料层合板,该技术具有检测范围广和检测效率高等优势,能够检测最小损伤直径约为3 mm。成像结果表明五种成像方法能够有效地实现碳纤维复合材料各种类型的损伤形貌图像。然而,这五种成像方法的可靠性都依赖于碳纤维复合材料传播模型的建立和换能器的设计与布局,因此,在实际工业损伤检测诊断成像前,应准确测量各检测样品的各层厚度、弹性常数、密度以及检测换能器的参数等。根据实际损伤诊断需求,选择相应的成像方法。

    结论 

    超声检测技术是一种可靠的无损检测/结构健康监测手段,在碳纤维复合材料损伤检测领域具有广泛的应用前景。可有效地解决碳纤维复合材料的各种损伤类型的检测,具有操作简单、高效、成本低、检测精度高等特点。总结并对比了超声检测技术结合体波或导波检测的特点以及用于碳纤维复合材料损伤检测的研究现状。各超声检测与成像方法有不同的优缺点,应根据实际检测需求,选择合适的成像方法。从建立复杂构件的碳纤维复合材料层合板的阵列声场模型、优化损伤成像算法、构建智能/高效/实时化的结构健康监测成像系统、建立损伤定量评估标准、结合机器学习和数字孪生技术实施损伤诊断评估和寿命预测等方面进行了展望。

图(16)  /  表(4)
计量
  • 文章访问数:  3115
  • HTML全文浏览量:  1406
  • PDF下载量:  491
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-12-06
  • 修回日期:  2023-03-07
  • 录用日期:  2023-03-10
  • 网络出版日期:  2023-03-19
  • 刊出日期:  2023-08-14

目录

/

返回文章
返回