留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光熔覆(CrFeNiAl)100-xMox高熵合金涂层的组织及耐磨耐蚀性能

赵小凤 崔洪芝 姜迪 宋晓杰

赵小凤, 崔洪芝, 姜迪, 等. 激光熔覆(CrFeNiAl)100-xMox高熵合金涂层的组织及耐磨耐蚀性能[J]. 复合材料学报, 2023, 41(0): 1-13
引用本文: 赵小凤, 崔洪芝, 姜迪, 等. 激光熔覆(CrFeNiAl)100-xMox高熵合金涂层的组织及耐磨耐蚀性能[J]. 复合材料学报, 2023, 41(0): 1-13
Xiaofeng ZHAO, Hongzhi CUI, Di JIANG, Xiaojie SONG. Microstructure, wear and corrosion resistance of (CrFeNiAl)100-xMox high-entropy alloy coatings by laser cladding[J]. Acta Materiae Compositae Sinica.
Citation: Xiaofeng ZHAO, Hongzhi CUI, Di JIANG, Xiaojie SONG. Microstructure, wear and corrosion resistance of (CrFeNiAl)100-xMox high-entropy alloy coatings by laser cladding[J]. Acta Materiae Compositae Sinica.

激光熔覆(CrFeNiAl)100-xMox高熵合金涂层的组织及耐磨耐蚀性能

基金项目: 国家自然科学基金 (51971121);山东省重大科技创新工程项目(2019JZZY010303;2019JZZY010360)
详细信息
    通讯作者:

    崔洪芝,博士,教授,博士生导师,研究方向为高能束表面强化、增材制造、耐磨蚀抗热震材料等 E-mail: cuihongzhi@ouc.edu.cn

  • 中图分类号: TG174.4

Microstructure, wear and corrosion resistance of (CrFeNiAl)100-xMox high-entropy alloy coatings by laser cladding

Funds: National Natural Science Foundation of China(51971121); Major-Special Science and Technology Projects in Shandong Province (2019JZZY010303; 2019JZZY010360)
  • 摘要: 海洋资源的开发利用对海洋工程装备提出了更高的要求。风力发电设备、石油钻杆和海上平台等装备的支撑和运作部件在服役过程中不可避免的遭受腐蚀和磨损失效,开发耐磨耐蚀材料对零部件表面进行防护是延长设备服役寿命的有效措施。高熵合金由于其独特的四大效应(高熵效应、晶格畸变效应、缓慢扩散效应和鸡尾酒效应),可以获得比其他合金更优异的性能。Cr、Al、Ti、Mo等元素常用来提高高熵合金的耐蚀性。但是由于Mo会在σ相等析出物的周围造成元素的偏析,降低耐蚀性,如何实现耐磨和耐蚀的同步提高还需要进一步研究。本文采用激光熔覆技术在304不锈钢上制备不同Mo含量的(CrFeNiAl)100-xMox (x=6,8,11,14 at%) 高熵合金涂层,研究不同Mo含量对涂层的微观结构、硬度、耐磨和耐蚀性能的影响。涂层并没有生成σ相等物相,而是生成了BCC+B2双相,并且在枝晶内部析出纳米级别的B2相。由于固溶强化和第二相强化作用,涂层的硬度逐渐提高,硬度最高达到636.6 HV0.2,耐磨性也逐渐提高。在3.5 wt.% NaCl溶液中,腐蚀电流密度随着Mo含量的增加,先减小后增大,(CrFeNiAl)92Mo8的腐蚀电流密度和钝化电流密度均小于304不锈钢,耐蚀性最好,同时具有较好的耐磨性。(CrFeNiAl)100-xMox涂层的(a)硬度,(b)磨损体积,(c)Tafel曲线

     

  • 图  1  原始粉末的形貌

    Figure  1.  Morphologies of raw powders

    图  2  (CrFeNiAl)100-xMox涂层的XRD图谱:(a) XRD 图谱;(b) 局部放大图

    Figure  2.  XRD patterns of (CrFeNiAl)100-xMox coatings: (a) XRD patterns; (b) Local magnification patterns

    图  3  (CrFeNiAl)100-xMox涂层的截面宏观形貌:(a) Mo6;(b) Mo8;(c) Mo11;(d) Mo14

    Figure  3.  Macro morphologies of cross section of (CrFeNiAl)100-xMox coatings: (a) Mo6; (b) Mo8; (c) Mo11; (d) Mo14

    图  4  (CrFeNiAl)100-xMox 涂层中部的微观组织形貌:(a) Mo6;(b) Mo8;(c) Mo11;(d) Mo14

    Figure  4.  Topography of microstructure in the middle of (CrFeNiAl)100-xMox coatings: (a) Mo6; (b) Mo8; (c) Mo11; (d) Mo14

    图  5  Mo14的TEM图像:(a) Bright-field TEM 图像; (b)~(c) 晶粒内部的局部放大图;(d) 两个物相的HRTEM 和SEAD图;(e) 相界面的IFFT图

    Figure  5.  TEM characterization of Mo14: (a) Bright-field TEM image; (b)~(c) Local magnified image of grain interior; (d) HRTEM image and SEAD-pattern of two phases; (e) IFFT image of the interface of the phases

    图  6  Mo14枝晶内部的TEM-HAADF和TEM-EDS图谱

    Figure  6.  TEM-HAADF image and TEM-EDS mappings in dendrite of Mo14

    图  7  (CrFeNiAl)100-xMox涂层的显微硬度

    Figure  7.  Microhardness of (CrFeNiAl)100-xMox coatings

    图  8  (CrFeNiAl)100-xMox涂层的摩擦系数

    Figure  8.  Coefficient of (CrFeNiAl)100-xMox coatings

    图  9  (CrFeNiAl)100-xMox涂层的磨痕截面轮廓(a)和磨损体积(b)

    Figure  9.  Wear sectional profiles (a) and wear volume losses (b) of (CrFeNiAl)100-xMox coatings

    图  10  (CrFeNiAl)100-xMox涂层磨损表面的SEM形貌和三维形貌:(a1)~(a3) Mo6; (b1)~(b3) Mo8; (c1)~(c3) Mo11; (d1)~(d3) Mo14

    Figure  10.  SEM morphologies and three-dimensional morphologies of the worn surfaces of (CrFeNiAl)100-xMox coatings:(a1)~(a3) Mo6; (b1)~(b3) Mo8; (c1)~(c3) Mo11; (d1)~(d3) Mo14

    图  11  (CrFeNiAl)100-xMox涂层和304 ss的动电位极化曲线

    Figure  11.  Potentiodynamic polarization curve of (CrFeNiAl)100-xMox coatings and 304 ss

    图  12  (CrFeNiAl)100-xMox涂层和304 ss的Nyquist (a)和 Bode图(b)

    Figure  12.  Nyquist plots (a) and Bode plots (b) of (CrFeNiAl)100-xMox coatings and 304 ss

    图  13  (CrFeNiAl)100-xMox涂层和304 ss的等效电路图

    Figure  13.  Equivalent circuits of (CrFeNiAl)100-xMox coatings and 304 ss

    图  14  (CrFeNiAl)100-xMox涂层在1 M HCl 溶液浸泡120 h的腐蚀形貌的SEM图像和三维形貌:(a1)~(a2) Mo6;(b1)~(b2) Mo8;(c1)~(c2) Mo11;(d1)~(d2) Mo14

    Figure  14.  SEM and three-dimensional morphologies of (CrFeNiAl)100-xMox coatings after immersion in 1 M HCl for 120 h: (a1)~(a2) Mo6; (b1)~(b2) Mo8; (c1)~(c2) Mo11; (d1)~(d2) Mo14

    表  1  (CrFeNiAl)100-xMox 涂层的化学成分(at%)

    Table  1.   Chemical composition of (CrFeNiAl)100-xMox coatings (at%)

    SampleCrFeNiAlMo
    Mo623.5023.5023.5023.50 6.00
    Mo823.0023.0023.0023.00 8.00
    Mo1122.2522.2522.2522.2511.00
    Mo1421.5021.5021.5021.5014.00
    下载: 导出CSV

    表  2  元素之间的混合焓$ \Delta {H}_{AB}^{\mathrm{m}\mathrm{i}\mathrm{x}} $ (kJ·mol−1)[30]

    Table  2.   Mixing enthalpy $ \Delta {H}_{AB}^{\mathrm{m}\mathrm{i}\mathrm{x}} $ of the elements (kJ·mol−1)[30]

    ElementCrFeNiMoAl
    Cr−1−7 0−10
    Fe−2−2−11
    Ni−7−22
    Mo −5
    Notes: $ \Delta {H}_{AB}^{\mathrm{m}\mathrm{i}\mathrm{x}} $−Mixing enthalpy, which is approximately equal to the value heat of mixing between A and B[30]. The more negative $ \Delta {H}_{AB}^{\mathrm{m}\mathrm{i}\mathrm{x}} $ is, the easier for A and B to form compounds[28].
    下载: 导出CSV

    表  3  (CrFeNiAl)100-xMox涂层和304 ss的腐蚀电位、腐蚀电流密度和钝化电流密度

    Table  3.   Corrosion potential, corrosion current density and passivation current density of (CrFeNiAl)100-xMox coatings and 304 ss

    SampleEcorr/mVIcorr/(μA·cm-2)Ip/(μA·cm-2)
    304 ss-326.900.532.32
    Mo6-221.600 .651.18
    Mo8-184.400.400.91
    Mo11-179.200.421.31
    Mo14-200.900.650.95
    Notes: Ecorr-Corrosion potential; Icorr-Corrosion current density; Ip-Passivation current density.
    下载: 导出CSV

    表  4  (CrFeNiAl)100-xMox涂层和304 ss的等效电路的拟合参数

    Table  4.   Fitting parameters of the equivalent circuit model of (CrFeNiAl)100-xMox coatings and 304 ss

    SampleRs
    /(Ω·cm2)
    Rf
    /(103Ω·cm2)
    Rct
    /(103Ω·cm2)
    Y1
    /(μF·cm−2)
    n1Y2
    /(μF·cm−2)
    n2χ2
    304 ss 7.4 6.4 82.6 100.5 0.87 199.7 0.94 2.0×10−3
    Mo6 3.6 2.6 127.5 57.6 0.75 551.4 0.91 7.6×10−4
    Mo8 2.0 2.6 366.3 53.6 0.64 678.9 0.86 6.2×10−4
    Mo11 1.8 2.2 360.1 64.3 0.84 106.5 0.85 4.8×10−4
    Mo14 1.6 7.4 268.5 21.3 0.59 67.3 0.86 8.0×10−4
    Notes: Rs-Solution resistance; Rf-Outer layer resistance; Rct-Inner layer resistance; Y1-Capacitance of the outer layer; Y2-Capacitance of inner layer; n1-CPEf index; n2-CPEct index; χ2 -Good fitting quality.
    下载: 导出CSV
  • [1] FU Y, LI J, LUO H, et al. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys[J]. Journal of Materials Science & Technology,2021,80:217-233.
    [2] YEH J W, CHEN S K, LIN S J, et al. Nanostructured High-Entropy Alloys with Multiple Principal Elements Novel Alloy Design[J]. Advanced Engineering Materials,2004,6(5):299-303. doi: 10.1002/adem.200300567
    [3] 崔洪芝, 姜迪. 高熵合金涂层研究进展[J]. 金属学报, 2022, 58(3):17-27.

    CUI H Z, JIAND D. Research Progress of High-Entropy Alloy Coatings[J]. Acta Metallurgica Sinica,2022,58(3):17-27(in Chinese).
    [4] GU Z, PENF W, GUO W, et al. Design and characterization on microstructure evolution and properties of laser-cladding Ni1.5CrFeTi2B0.5Mox high-entropy alloy coatings[J]. Surface and Coatings Technology,2021,408:126793. doi: 10.1016/j.surfcoat.2020.126793
    [5] LI D, LI C, FENG T, et al. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures[J]. Acta Materialia,2017,123:285-294. doi: 10.1016/j.actamat.2016.10.038
    [6] LUO J, SUN W, DUAN R, et al. Laser surface treatment-introduced gradient nanostructured TiZrHfTaNb refractory high-entropy alloy with significantly enhanced wear resistance[J]. Journal of Materials Science & Technology,2022,110:43-56.
    [7] FENG X, WANG H, LIU X, et al. Effect of Al content on wear and corrosion resistance of Ni-based alloy coatings by laser cladding[J]. Surface and Coatings Technology,2021,412:126976. doi: 10.1016/j.surfcoat.2021.126976
    [8] 周子钧, 姜芙林, 宋鹏芳, 等. 激光熔覆高熵合金涂层的耐腐蚀性能研究进展[J]. 表面技术, 2021, 50(12):257-270.

    ZHOU Z J, JIANG F L, SONG P F, et al. Advances in Corrosion Resistance of High-Entropy Alloy Coatings Prepared by Laser Cladding[J]. Surface technology,2021,50(12):257-270(in Chinese).
    [9] JIANG Y Q, LI J, JUAN Y F, et al. Evolution in microstructure and corrosion behavior of AlCoCrxFeNi high-entropy alloy coatings fabricated by laser cladding[J]. Journal of Alloys and Compounds,2019,775:1-14. doi: 10.1016/j.jallcom.2018.10.091
    [10] MA G, ZHN Y, CUI H, et al. Addition Al and/or Ti Induced Modifications of Microstructures, Mechanical Properties, and Corrosion Properties in CoCrFeNi High-Entropy Alloy Coatings[J]. Acta Metallurgica Sinica (English Letters),2021,34(8):1087-1102. doi: 10.1007/s40195-021-01219-z
    [11] 郝文俊, 孙荣禄, 牛伟, 等. 激光熔覆CoCrFeNiSix合金涂层组织及耐蚀性能研究[J]. 表面技术, 2021, 50(8):343-381.

    HAO We J, SUN R L, NIU W, et al. Study on Microstructure and Corrosion Resistance of CoCrFeNiSix Alloy Coating by Laser Cladding[J]. Surface technology,2021,50(8):343-381(in Chinese).
    [12] DAI C, ZHAO T, DU C, et al. Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMox high-entropy alloys[J]. Journal of Materials Science & Technology,2020,46:64-73.
    [13] FU Y, HUANG C, DU C, et al. Evolution in microstructure, wear, corrosion, and tribocorrosion behavior of Mo-containing high-entropy alloy coatings fabricated by laser cladding[J]. Corrosion Science,2021,191:129727.
    [14] 魏琳, 王志军, 吴庆峰, 等. Mo 元素及热处理对 Ni2CrFeMox 高熵合金在 NaCl 溶液中耐蚀性能的影响[J]. 金属学报, 2019, 55(7):840-848. doi: 10.11900/0412.1961.2018.00558

    WEI L, WANG Z J, Wu Q F, et al. Effect of Mo Element and Heat Treatment on Corrosion Resistance of Ni2CrFeMox High-Entropy Alloy in NaCl Solution[J]. Acta Metallurgica Sinica,2019,55(7):840-848(in Chinese). doi: 10.11900/0412.1961.2018.00558
    [15] TOMIO A, SAGARA M, DOI T, et al. Role of alloyed molybdenum on corrosion resistance of austenitic Ni–Cr–Mo–Fe alloys in H2S–Cl environments[J]. Corrosion Science,2015,98:391-398. doi: 10.1016/j.corsci.2015.05.053
    [16] CHOU Y L, YEH J W, SHIH H C. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments[J]. Corrosion Science,2010,52(8):2571-2581. doi: 10.1016/j.corsci.2010.04.004
    [17] PANG S, ZHANG T, ASAMI K, et al. Formation of bulk glassy Fe75–xyCrxMoyC15B10 alloys and their corrosion behavior[J]. Journal of Materials Research,2011,17(3):701-704.
    [18] JAKUPI P, WANG F, NOËL J J, et al. Corrosion product analysis on crevice corroded Alloy-22 specimens[J]. Corrosion Science,2011,53(5):1670-1679. doi: 10.1016/j.corsci.2011.01.028
    [19] MI B, WANG H, WANG Q, et al. Corrosion resistance and contact resistance properties of Cr-doped amorphous carbon films deposited under different carbon target current on the 316 L stainless steel bipolar plate for PEMFC[J]. Vacuum,2022,203:111263. doi: 10.1016/j.vacuum.2022.111263
    [20] CARMINATI P, BUFFETEAU T, DAUGEY N, et al. Low pressure chemical vapour deposition of BN: Relationship between gas phase chemistry and coating microstructure[J]. Thin Solid Films,2018,664:106-114. doi: 10.1016/j.tsf.2018.08.020
    [21] ALLIMANALAN A, BABU S P K, MUTHUKUMARAN S, et al. Corrosion behaviour of thermally sprayed Mo added AlCoCrNi high entropy alloy coating[J]. Materials Today:Proceedings,2020,27:2398-2400. doi: 10.1016/j.matpr.2019.09.149
    [22] 宋鹏芳, 姜芙林, 王玉玲, 等. 激光熔覆制备高熵合金涂层研究进展[J]. 表面技术, 2021, 50(1):242-252.

    SONG P F, JIANG F L, WANG Y L, et al. Advances in the preparation of high entropy alloy coatings by laser cladding[J]. Surface Technology,2021,50(1):242-252(in Chinese).
    [23] MA G, CUI H, JIANG D, et al. The evolution of multi and hierarchical carbides and their collaborative wear-resisting effects in CoCrNi/WC composite coatings via laser cladding[J]. Materials Today Communications,2022,30:103223. doi: 10.1016/j.mtcomm.2022.103223
    [24] 刘奋军, 宁祥, 白艳霞, 等. AZ31镁合金表面激光熔覆Al-TiC复合涂层微观组织与腐蚀性能[J]. 复合材料学报, 2023, 40(2):963-973. doi: 10.13801/j.cnki.fhclxb.20220410.002

    LIU F J, NING X, BAI Y X, et al. Microstructure and corrosion properties of laser cladding Al-TiC composite coating on AZ31 magnesium alloy[J]. Acta Materiae Compositae Sinica,2023,40(2):963-973(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220410.002
    [25] JOSEPH J, STANFORD N, HODGSON P, et al. Under standing the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys[J]. Journal of Alloys and Compounds,2017,726:885-895. doi: 10.1016/j.jallcom.2017.08.067
    [26] NIU Z, WANG Y, GENG C, et al. Microstructural evolution, mechanical and corrosion behaviors of as-annealed CoCrFeNiMox (x = 0, 0.2, 0.5, 0.8, 1) high entropy alloys[J]. Journal of Alloys and Compounds,2020,820:153273. doi: 10.1016/j.jallcom.2019.153273
    [27] DONG Y, LU Y, KONG J, et al. Microstruc-ture and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys[J]. Journal of Alloys and Compounds,2013,573:96-101. doi: 10.1016/j.jallcom.2013.03.253
    [28] SHI X, WANG C, HUANG M, et al. Microstructure and wear resistance property of AlFeCrNiMox coatings by plasma cladding[J]. Materials Research Express,2019,6(10):106537. doi: 10.1088/2053-1591/ab3753
    [29] LI Y, LIAW PK, ZHANG Y. Microstructures and Proper-ties of the Low-Density Al15Zr40Ti28Nb12M(Cr, Mo, Si)5 High-Entropy Alloys[J]. Metals,2022,12(3):469. doi: 10.3390/met12030469
    [30] TAKEUCHI A, INOUE A. Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element[J]. Materials Transactions,2005,46(12):2817-2829. doi: 10.2320/matertrans.46.2817
    [31] 刘 昊, 高 强, 郝敬宾, 等. 激光熔覆 AlCoCrFeNiSix 高熵合金涂层的微观组织及耐蚀性能[J]. 稀有金属材料与工程, 2022, 51(6):2199-2208.

    LIU H, GAO Q, HAO J B, et al. Microstructure and corrosion resistance of AlCoCrFeNiSix high-entropy alloy coating by laser cladding[J]. Rare Metal Materials and Engineering,2022,51(6):2199-2208(in Chinese).
    [32] LIANG H, MIAO J, GAO B, et al. Microstructure and tribological properties of AlCrFe2 Ni2W0.2Mo0.75 high-entropy alloy coating prepared by laser cladding in seawater, NaCl solution and deionized water[J]. Surface and Coatings Technology,2020,400:126214. doi: 10.1016/j.surfcoat.2020.126214
    [33] NAIR R B, ARORA H S, BOYANA A V, et al. Tribological behavior of microwave synthesized high entropy alloy claddings[J]. Wear,2019,436:203028.
    [34] HAO D, ZHANG N, ZHANG Y, et al. Effect of vanadium addition on microstructure and properties of Al0.5Cr0.9FeNi2.5 multi-principal alloys[J]. Journal of Iron and Steel Research International,2020,28(5):586-596.
    [35] GOU S, LI S, HU H, et al. Surface hardening of CrCoFeNi high-entropy alloys via Al laser alloying[J]. Materials Research Letters,2021,9(10):437-444. doi: 10.1080/21663831.2021.1968524
    [36] TANG Z, HUANG L, HE W, et al. Alloying and Processing Effects on the Aqueous Corrosion Behavior of High-Entropy Alloys[J]. Entropy,2014,16(2):895-911. doi: 10.3390/e16020895
    [37] 高玉龙, 马国梁, 高晓华, 等. 激光熔覆CoCrNiMnTix高熵合金涂层组织及耐磨性能研究[J]. 表面技术, 2022, 51(9):351-370.

    GAO Yulong, MA Guoliang, GAO Xiaohua, et al. Microstructure and Wear Resistance of CoCrNiMnTix High-entropy Alloy Coating by Laser Cladding[J]. Surface Technology,2022,51(9):351-370(in Chinese).
    [38] 方艳, 贾晓慧, 雷剑波, 等. 激光熔化沉积60 wt%不同粒径WC复合NiCu合金耐磨性及电化学腐蚀性能[J]. 复合材料学报, 2022, 39(7):3798-3509.

    FANG Y, JIA X H, LEI J B, et al. Wear resistance and electrochemical corrosion properties of 60 wt% coarse and fine WC composite NiCu alloy by laser melting deposition[J]. Acta Materiae Compositae Sinica,2022,39(7):3798-3509(in Chinese).
    [39] HAN Z, REN W, YANG J, et al. The corrosion behavior of ultra-fine grained CoNiFeCrMn high-entropy alloys[J]. Journal of Alloys and Compounds,2020,816:152583. doi: 10.1016/j.jallcom.2019.152583
    [40] FATTAH-ALHOSSEINI A, SOLTANI F, SHIRSALIMI F, et al. The semiconducting properties of passive films formed on AISI 316 L and AISI 321 stainless steels: A test of the point defect model (PDM)[J]. Corrosion Science,2011,53(10):3186-3192. doi: 10.1016/j.corsci.2011.05.063
    [41] HOSSEINI M, FOTOUHI L, EHSANI A, et al. Enhancement of corrosion resistance of polypyrrole using metal oxide nanoparticles: Potentiodynamic and electrochemical impedance spectroscopy study[J]. J Colloid Interface Sci,2017,505:213-219. doi: 10.1016/j.jcis.2017.05.097
    [42] MAN C, DONG C, LIU T, KONG D, et al. The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316 L SS in simulated body fluid[J]. Applied Surface Science,2019,467:193-205.
    [43] KAO Y F, LEE T D, CHEN S K, et al. Electro chemical passive properties of AlxCoCrFeNi (x=0, 0.25, 0.50, 1.00) alloys in sulfuric acids[J]. Corrosion Science,2010,52(3):1026-1034. doi: 10.1016/j.corsci.2009.11.028
    [44] HUANG G, QU L, LU Y, et al. Corrosion resistance improvement of 45 steel by Fe-based amorphous coating[J]. Vacuum,2018,153:39-42. doi: 10.1016/j.vacuum.2018.03.042
    [45] 陶继闯, 卢一平. Mo 含量对 Al0.1CoCrCu0.5FeNiMox 高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(4):18096-18099.

    TAO J C, LU Y P. Effect of Mo Content on Mi crostructure, Mechanical Properties and Corrosion Resistance of Al0.1CoCrCu0.5FeNiMox High-entropy Alloys[J]. Material Reports,2020,34(4):18096-18099(in Chinese).
  • 加载中
计量
  • 文章访问数:  144
  • HTML全文浏览量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-05
  • 修回日期:  2023-01-13
  • 录用日期:  2023-02-08
  • 网络出版日期:  2023-03-02

目录

    /

    返回文章
    返回