留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MOFs/生物质基复合材料及其应用进展

石宇航 刘颖 黄艳辉 程献宝 花婷婷 林欣雨

石宇航, 刘颖, 黄艳辉, 等. MOFs/生物质基复合材料及其应用进展[J]. 复合材料学报, 2023, 40(11): 5977-5988. doi: 10.13801/j.cnki.fhclxb.20230515.002
引用本文: 石宇航, 刘颖, 黄艳辉, 等. MOFs/生物质基复合材料及其应用进展[J]. 复合材料学报, 2023, 40(11): 5977-5988. doi: 10.13801/j.cnki.fhclxb.20230515.002
SHI Yuhang, LIU Ying, HUANG Yanhui, et al. MOFs/biomass matrix composites and their application progress[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 5977-5988. doi: 10.13801/j.cnki.fhclxb.20230515.002
Citation: SHI Yuhang, LIU Ying, HUANG Yanhui, et al. MOFs/biomass matrix composites and their application progress[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 5977-5988. doi: 10.13801/j.cnki.fhclxb.20230515.002

MOFs/生物质基复合材料及其应用进展

doi: 10.13801/j.cnki.fhclxb.20230515.002
基金项目: 中央高校基本科研业务费专项(2021ZY20)
详细信息
    通讯作者:

    黄艳辉,博士,副教授,硕士生导师,研究方向为竹木材料 E-mail: huangyanhuizhou@163.com;

    程献宝,硕士,工程师,研究方向为木材材性研究、检测技术与质量标准化研究 E-mail:chengxb@criwi.org.cn

  • 中图分类号: TB333

MOFs/biomass matrix composites and their application progress

Funds: Fundamental Research Funds for the Central Universities (2021ZY20)
  • 摘要: 金属有机框架(MOFs)因其具有比表面积大、孔隙度和孔径可调、表面修饰功能强、化学和热稳定性好等优点而被广泛应用于材料领域。然而,MOFs容易团聚,其固有的晶体结构导致其柔韧性、加工性和可回收性较差,严重限制了其应用。近年来,MOFs与环保可再生的生物质材料复合,不仅解决了上述问题,且兼有生物质和MOFs两种材料的优势,实现了其在新兴领域的应用。从不同生物质原料出发,介绍了MOFs/生物质基复合材料的种类、制备方法,详细综述了该材料在水体净化、气体分离、抗菌处理、电化学应用方面的研究进展,并针对制备和应用过程中存在的问题提出了建设性的意见,为研究者设计和开发高性能MOFs/生物质复合材料提供科学的依据。

     

  • 图  1  金属有机框架(MOFs)/生物质复合材料:(a) ZIF-8/木材复合材料的制备过程[15];(b) ZIF-8沉积在管腔表面示意图[15]; (c) UiO-66/玉米秸秆的合成和一体式装置的设计示意图[17];(d) MS细胞壁表面的SEM图像[17];MOFs/生物质提取物复合材料:(e) Co/C/CNF气凝胶制备示意图[22]

    ZIF—Zeolitic Imidazolate Frameworks; H2BDC—2-hydroxyterephthalic acid; MS—Corn stalks; UiO—Universitetet i Oslo; CNF—Cellulose nanofibers

    Figure  1.  Metal-organic frameworks (MOFs)/wood composites: (a) Schematic diagram of the preparation process of ZIF-8/wood composite[15]; (b) Schematic diagram of ZIF-8 deposition on the surface of the lumen[15]; (c) Schematic diagram of the design of the synthesis and integrated unit of UiO-66/corn stover[17]; (d) SEM image of the surface of the MS cell wall[17]; MOFs/biomass extract composites: (e) Schematic diagram of Co/C/CNF aerogel preparation[22]

    图  2  MOFs吸附去除有害物质的可能机制示意图[30]

    Figure  2.  Schematic diagram of the possible mechanism of MOFs adsorption to remove harmful substances[30]

    图  3  MOF/生物质基材料水体净化应用相关示意图:有机化合物的去除:(a) 在三维木膜中生长UiO-66粒子制备UiO-66/wood过滤膜材料的示意图[33];(b) 三层过滤器在不同流速下对每种有机污染物的去除效率[33];(c) 三层过滤器连续再生循环的吸附效率[33];(d) 制备碳化木(WC)-Co炭化材料示意图[34];(e) 不同材料对刚果红(CR)、亚甲基蓝(MB)的吸附能力[34];金属离子的去除:(f) 制备细菌纤维素/2-甲基咪唑锌(BC/ZIF-8)示意图[35];(g) BC/ZIF-8对Pb2+的吸附能力[35];(h) BC、ZIF-8和BC@ZIF-8纳米颗粒对Pb2+的吸附效率对比[35];(i)制备的ZIF-67/BC/壳聚糖气凝胶去除重金属离子和有机污染物示意图[23];(j) BC、BC/壳聚糖和ZIF-67/BC/壳聚糖气凝胶对Cu2+和Cr6+的吸附能力对比[23];(k) ZIF-67/BC/壳聚糖气凝胶连续循环对Cr2+、Cu2+的吸附效率[23]

    TPA—Terephthalic acid; BPS—Brominated polystyrene; 1-NA—Azo dye precursors; BPA—Bisphenol-A; NPC—Nanoporous carbon; Qt—Adsorption capacity at time t

    Figure  3.  Schematic diagram of MOF/biomass-based material water purification application: Removal of organic compounds: (a) Schematic diagram of UiO-66/wood filter membrane material prepared by growing UiO-66 particles in a three-dimensional wood membrane; (b) Removal efficiency of the three-layer filter for each organic contaminant at different flow rates; (c) Adsorption efficiency of continuous regeneration cycle of three-layer filter; (d) Schematic diagram of wood composites (WC)-Co carbonized material preparation; (e) Adsorption capacity of different materials for congo red (CR) and methylene blue (MB); Removal of metal ions: (f) Schematic diagram of bacterial cellulose/zeolitic imidazolate framework-8 (BC/ZIF-8) prepared; (g) Adsorption capacity of BC/ZIF-8 to Pb2+; (h) Comparison of adsorption efficiency of BC, ZIF-8 and BC@ZIF-8 nanoparticles on Pb2+; (i) Schematic diagram of ZIF-67/BC/chitosan aerogel for removal of heavy metal ions and organic pollutants; (j) Comparison of adsorption capacity of BC, BC/chitosan and ZIF-67/BC/chitosan aerogels on Cu2+ and Cr6+; (k) Adsorption efficiency of ZIF-67/BC/chitosan aerogel by continuous cycling of Cr2+ and Cu2+

    图  4  MOF/生物质基材料空气净化应用相关示意图:(a) ZIF-8/CNF复合膜中CO2传输的示意图;(b) Ag-MOFs/CNF/ZIF-8过滤器的结构和过滤机制[38];(c) 不同过滤器的过滤能力[38]

    Figure  4.  Schematic diagram of MOF/biomass-based material air purification application: (a) Schematic diagram of CO2 transport in ZIF-8/CNF composite film; (b) Structure and filtration mechanism of Ag-MOFs/CNF/ZIF-8 filters[38]; (c) Filtering capabilities of different filters[38]

    图  5  MOFs/生物质基材料生物医学应用相关示意图:(a) MOFs抗菌机制[22];(b)不同过滤器对大肠杆菌的抗菌性能[34];(c) PDA/ZIF-8/CNFs在近红外光或低pH辐射下的药物释放[47];(d) NIR光照和pH值对PDA@ZIF-8/CNFs复合水凝胶药物释放的影响[47]

    PDA—Polydopamine; NIR—Near infrared

    Figure  5.  Schematic diagram of the biomedical application of MOFs/biomass-based materials: (a) Schematic diagram of the antibacterial mechanism of MOFs[22]; (b) Antimicrobial properties of different filters against E. coli[34]; (c) Drug release of PDA/ZIF-8/CNFs in near-infrared light or low pH radiation[47]; (d) Effects of NIR light and pH on drug release of PDA@ZIF-8/CNFs complex hydrogels[47]

    表  1  3种合成方法的比较总结

    Table  1.   Comparison of three synthesis methods

    方法基本原理优点缺点费用Ref.
    静电纺丝法对液滴施加高压使其带电形成液体射流,溶剂快速汽化过程相对简单、可调节纤维直径和MOF负载量孔隙活性位点堵塞[7]
    原位生长法通过逐层沉积或水热处理诱导MOFs在基体内外表面生长复合材料比表面积大、纯度好、活
    性位点多、操作简单
    [8-9]
    溶液共混法机械搅拌或超声波处理进行物理结合适用于大部分聚合物分布均匀性差、内部孔隙
    不可控、负载率低
    [6, 10]
    Note: MOFs—Metal-organic frameworks.
    下载: 导出CSV
  • [1] IKEZOE Y, WASHINO G, UEMURA T, et al. Autonomous motors of a metal-organic framework powered by reorganization of self-assembled peptides at interfaces[J]. Nature Materials,2012,11(12):1081-1085. doi: 10.1038/nmat3461
    [2] RAMASWAMY P, WONG N E, SHIMIZU G K H. MOFs as proton conductors-challenges and opportunities[J]. Chemical Society Reviews,2014,43(16):5913-5932. doi: 10.1039/C4CS00093E
    [3] USMANI M, KHAN I. Lignocellulosic fibre and biomass-based composite materials: Processing, properties and applications[M]. Elsevier: Woodhead Publishing, 2017: 45-76.
    [4] YADAV A, BAGOTIA N, SHARMA A K, et al. Advances in decontamination of wastewater using biomass-based composites: A critical review[J]. Science of the Total Environment,2021,784:147108. doi: 10.1016/j.scitotenv.2021.147108
    [5] MILLANGE F, SERRE C, GUILLOU N, et al. Structural effects of solvents on the breathing of metal-organic frameworks: An in situ diffraction study[J]. Angewandte Chemie, 2008, 120(22): 4168-4173.
    [6] LI Z S, ZHOU G S, DAI H, et al. Biomineralization-mimetic preparation of hybrid membranes with ultra-high loading of pristine metal-organic frameworks grown on silk nanofibers for hazard collection in water[J]. Journal of Materials Chemistry A,2018,6(8):3402-3413. doi: 10.1039/C7TA06924C
    [7] FAN L L, XUE M, KANG Z X, et al. Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis[J]. Journal of Materials Chemistry,2012,22(48):25272-25276. doi: 10.1039/c2jm35401b
    [8] WANG C H, CHENG P, YAO Y Y, et al. In-situ fabrication of nanoarchitectured MOF filter for water purification[J]. Journal of Hazardous Materials,2020,392:122164. doi: 10.1016/j.jhazmat.2020.122164
    [9] LI S Z, HUO F W. Metal-organic framework composites: From fundamentals to applications[J]. Nanoscale,2015,7(17):7482-7501. doi: 10.1039/C5NR00518C
    [10] BASU S, MAES M, CANO-ODENA A, et al. Solvent resistant nanofiltration (SRNF) membranes based on metal-organic frameworks[J]. Journal of Membrane Science,2009,344(1-2):190-198. doi: 10.1016/j.memsci.2009.07.051
    [11] SU M L, ZHANG R, LI H R, et al. In situ deposition of MOF199 onto hierarchical structures of bamboo and wood and their antibacterial properties[J]. RSC Advances,2019,9(69):40277-40285. doi: 10.1039/C9RA07046J
    [12] 刘颖, 黄艳辉, 刘贤淼. 气凝胶型轻木基复合材料的研究进展[J]. 材料导报, 2022, 36(15):203-211. doi: 10.11896/cldb.21010182

    LIU Ying, HUANG Yanhui, LIU Xianmiao. Research progress of aerogel-type balsa wood-based composites[J]. Materials Reports,2022,36(15):203-211(in Chinese). doi: 10.11896/cldb.21010182
    [13] JIA C, CHEN C J, KUANG Y D, et al. From wood to textiles: Top-down assembly of aligned cellulose nanofibers[J]. Advanced Materials,2018,30(30):1801347. doi: 10.1002/adma.201801347
    [14] SAITO T, ISOGAI A. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions[J]. Biomacromolecules,2004,5(5):1983-1989. doi: 10.1021/bm0497769
    [15] TU K K, ADOBES-VIDAL M, WANG Y, et al. Green synthesis of hierarchical metal-organic framework/wood functional composites with superior mechanical properties[J]. Advanced Science,2020,7(7):1902897. doi: 10.1002/advs.201902897
    [16] ZHU H L, LUO W, CIESIELSKI P N, et al. Wood-derived materials for green electronics, biological devices, and energy applications[J]. Chemical Reviews,2016,116(16):9305-9374. doi: 10.1021/acs.chemrev.6b00225
    [17] LI D C, ZHANG Q, WANG W Q, et al. Filter fabrication by constructing metal-organic frameworks membrane on waste maize straw for efficient phosphate removal from wastewater[J]. Chemical Engineering Journal,2022,443:136461. doi: 10.1016/j.cej.2022.136461
    [18] QIAO X R, GAO W C, LIU X M, et al. Preparation of zeolitic imidazolate framework-67/wool fabric and its adsorption capacity for reactive dyes[J]. Journal of Environmental Management,2022,321:115972. doi: 10.1016/j.jenvman.2022.115972
    [19] ZHU H, YANG X, CRANSTON E D, et al. Flexible and porous nanocellulose aerogels with high loadings of metal-organic-framework particles for separations applications[J]. Advanced Materials,2016,28(35):7652-7657. doi: 10.1002/adma.201601351
    [20] FEI Y, LIANG M, ZHOU T, et al. Unique carbon nanofiber@Co/C aerogel derived bacterial cellulose embedded zeolitic imidazolate frameworks for high-performance electromagnetic interference shielding[J]. Carbon,2020,167:575-584. doi: 10.1016/j.carbon.2020.06.013
    [21] HUANG Y, TANG K Y, YUAN F S, et al. N-doped porous carbon nanofibers fabricated by bacterial cellulose-directed templating growth of MOF crystals for efficient oxygen reduction reaction and sodium-ion storage[J]. Carbon,2020,168:12-21. doi: 10.1016/j.carbon.2020.06.052
    [22] FEI Y, LIANG M, YAN L W, et al. Co/C@cellulose nanofiber aerogel derived from metal-organic frameworks for highly efficient electromagnetic interference shielding[J]. Chemical Engineering Journal,2020,392:124815. doi: 10.1016/j.cej.2020.124815
    [23] LI D W, TIAN X J, WANG Z Q, et al. Multifunctional adsorbent based on metal-organic framework modified bacterial cellulose/chitosan composite aerogel for high efficient removal of heavy metal ion and organic pollutant[J]. Chemical Engineering Journal, 2020, 383: 123127.
    [24] WANG S B, LUO H L, LI X, et al. Amino acid-functionalized metal organic framework with excellent proton conducti-vity for proton exchange membranes[J]. International Journal of Hydrogen Energy,2021,46(1):1163-1173. doi: 10.1016/j.ijhydene.2020.09.235
    [25] JAIN-BEUGUEL C, LI X E, HOUEL-RENAULT L, et al. Water-soluble poly(3-hydroxyalkanoate) sulfonate: Versatile biomaterials used as coatings for highly porous nano-metal organic framework[J]. Biomacromolecules,2019,20(9):3324-3332. doi: 10.1021/acs.biomac.9b00870
    [26] LI X, CUI E B, XIANG Z, et al. Fe@NPC@CF nanocomposites derived from Fe-MOFs/biomass cotton for lightweight and high-performance electromagnetic wave absorption applications[J]. Journal of Alloys and Compounds,2020,819:152952. doi: 10.1016/j.jallcom.2019.152952
    [27] ZHOU Y, ZHOU W J, NI C H, et al. “Tree blossom” Ni/NC/C composites as high-efficiency microwave absorbents[J]. Chemical Engineering Journal,2022,430:132621. doi: 10.1016/j.cej.2021.132621
    [28] LU Y, LIU C Z, MEI C T, et al. Recent advances in metal organic framework and cellulose nanomaterial compo-sites[J]. Coordination Chemistry Reviews,2022,461:214496. doi: 10.1016/j.ccr.2022.214496
    [29] LI Y R, BAI P, YAN Y, et al. Removal of Zn2+, Pb2+, Cd2+, and Cu2+ from aqueous solution by synthetic clinoptilolite[J]. Microporous and Mesoporous Materials,2019,273:203-211. doi: 10.1016/j.micromeso.2018.07.010
    [30] HAQUE E, LEE J E, JANG I T, et al. Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates[J]. Journal of Hazardous Materials,2010,181(1-3):535-542. doi: 10.1016/j.jhazmat.2010.05.047
    [31] HUBBE M A, METTS J R, HERMOSILLA D, et al. Wastewater treatment and reclamation: A review of pulp and paper industry practices and opportunities[J]. BioResources,2016,11(3):7953-8091. doi: 10.15376/biores.11.3.Hubbe
    [32] MA S S, ZHANG M Y, NIE J Y, et al. Lightweight and porous cellulose-based foams with high loadings of zeolitic imidazolate frameworks-8 for adsorption applications[J]. Carbohydrate Polymers,2019,208:328-335. doi: 10.1016/j.carbpol.2018.12.081
    [33] GUO R X, CAI X H, LIU H W, et al. In situ growth of metal-organic frameworks in three-dimensional aligned lumen arrays of wood for rapid and highly efficient organic pollutant removal[J]. Environmental Science & Technology,2019,53(5):2705-2712.
    [34] MA X F, ZHAO S Y, TIAN Z W, et al. MOFs meet wood: Reusable magnetic hydrophilic composites toward efficient water treatment with super-high dye adsorption capacity at high dye concentration[J]. Chemical Engineering Journal,2022,446:136851. doi: 10.1016/j.cej.2022.136851
    [35] MA X T, LOU Y, CHEN X B, et al. Multifunctional flexible composite aerogels constructed through in-situ growth of metal-organic framework nanoparticles on bacterial cellulose[J]. Chemical Engineering Journal,2019,356:227-235. doi: 10.1016/j.cej.2018.09.034
    [36] JIA M M, ZHANG X F, FENG Y, et al. In-situ growing ZIF-8 on cellulose nanofibers to form gas separation membrane for CO2 separation[J]. Journal of Membrane Science,2020,595:117579. doi: 10.1016/j.memsci.2019.117579
    [37] PÉREZ-PELLITERO J, AMROUCHE H, SIPERSTEIN F R, et al. Adsorption of CO2, CH4, and N2 on zeolitic imidazolate frameworks: Experiments and simulations[J]. Chemistry—A European Journal, 2010, 16(5): 1560-1571.
    [38] MA S S, ZHANG M Y, NIE J Y, et al. Design of double-component metal-organic framework air filters with PM2.5 capture, gas adsorption and antibacterial capacities[J]. Carbohydrate Polymers,2019,203:415-422. doi: 10.1016/j.carbpol.2018.09.039
    [39] SHEN M F, FORGHANI F, KONG X Q, et al. Antibacterial applications of metal-organic frameworks and their composites[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(4):1397-1419. doi: 10.1111/1541-4337.12515
    [40] LIU Y, XU X, XIA Q C, et al. Multiple topological isomerism of three-connected networks in silver-based metal-organoboron frameworks[J]. Chemical Communications,2010,46(15):2608-2610. doi: 10.1039/b923365b
    [41] COLINAS I R, ROJAS-ANDRADE M D, CHAKRABORTY I, et al. Two structurally diverse Zn-based coordination polymers with excellent antibacterial activity[J]. CrystEngComm,2018,20(24):3353-3362. doi: 10.1039/C8CE00394G
    [42] ABBASI A R, AKHBARI K, MORSALI A. Dense coating of surface mounted CuBTC metal-organic framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity[J]. Ultrasonics Sonochemistry,2012,19(4):846-852. doi: 10.1016/j.ultsonch.2011.11.016
    [43] RODRÍGUEZ H S, HINESTROZA J P, OCHOA-PUENTES C, et al. Antibacterial activity against Escherichia coli of Cu-BTC (MOF-199) metal-organic framework immobilized onto cellulosic fibers[J]. Journal of Applied Polymer Science, 2014, 131(19): 40815.
    [44] MENG L J, ZHANG X K, LU Q H, et al. Single walled carbon nanotubes as drug delivery vehicles: Targeting doxorubicin to tumors[J]. Biomaterials,2012,33(6):1689-1698. doi: 10.1016/j.biomaterials.2011.11.004
    [45] ORELLANA-TAVRA C, BAXTER E F, TIAN T, et al. Amorphous metal-organic frameworks for drug delivery[J]. Chemical Communications,2015,51(73):13878-13881. doi: 10.1039/C5CC05237H
    [46] 刘文龙. PLA@ZIF-8纳米纤维膜功能化改性及药物缓释性能研究[D]. 天津: 天津工业大学, 2021.

    LIU Wenlong. Study on functionalization modification of PLA@ZIF-8 nanofiber membrane and sustained release of drugs[D]. Tianjin:Tianjin Polytechnic University, 2021(in Chinese).
    [47] LIU Y Y, HUO Y, FAN Q, et al. Cellulose nanofibrils composite hydrogel with polydopamine@zeolitic imidazolate framework-8 encapsulated in used as efficient vehicles for controlled drug release[J]. Journal of Industrial and Engineering Chemistry,2021,102:343-350. doi: 10.1016/j.jiec.2021.07.023
    [48] XIAO X, ZOU L L, PANG H, et al. Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications[J]. Chemical Society Reviews,2020,49(1):301-331. doi: 10.1039/C7CS00614D
    [49] 张丽. 金属有机框架基复合材料的制备及其在电化学领域的应用[D]. 哈尔滨: 哈尔滨理工大学, 2019.

    ZHANG Li. Preparation of metal-organic framework matrix composites and their application in the field of electrochemistry[D]. Harbin: Harbin University of Science and Technology, 2019(in Chinese).
    [50] XU C, KONG X Y, ZHOU S Y, et al. Interweaving metal-organic framework-templated Co-Ni layered double hydroxide nanocages with nanocellulose and carbon nanotubes to make flexible and foldable electrodes for energy storage devices[J]. Journal of Materials Chemistry A,2018,6(47):24050-24057. doi: 10.1039/C8TA10133G
    [51] ZHAO G Z, XU X T, ZHU G, et al. Flexible nitrogen-doped carbon heteroarchitecture derived from ZIF-8/ZIF-67 hybrid coating on cotton biomass waste with high supercapacitive properties[J]. Microporous and Mesoporous Materials,2020,303:110257. doi: 10.1016/j.micromeso.2020.110257
    [52] GUO S H, ZHANG P C, FENG Y, et al. Rational design of interlaced Co9S8/carbon composites from ZIF-67/cellulose nanofibers for enhanced lithium storage[J]. Journal of Alloys and Compounds,2020,818:152911. doi: 10.1016/j.jallcom.2019.152911
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1110
  • HTML全文浏览量:  441
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-20
  • 修回日期:  2023-04-23
  • 录用日期:  2023-05-01
  • 网络出版日期:  2023-05-15
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回