留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同应用场景下超高分子量聚乙烯/弹性体复合材料力学性能劣化规律

陈谦 王朝辉 张文武 李彦伟 王珊珊

陈谦, 王朝辉, 张文武, 等. 不同应用场景下超高分子量聚乙烯/弹性体复合材料力学性能劣化规律[J]. 复合材料学报, 2023, 41(0): 1-11
引用本文: 陈谦, 王朝辉, 张文武, 等. 不同应用场景下超高分子量聚乙烯/弹性体复合材料力学性能劣化规律[J]. 复合材料学报, 2023, 41(0): 1-11
Qian CHEN, Chaohui WANG, Wenwu ZHANG, Yanwei LI, Shanshan WANG. Degradation law of mechanical properties for ultra high molecular weight polyethylene/elastomer composites at different application environments[J]. Acta Materiae Compositae Sinica.
Citation: Qian CHEN, Chaohui WANG, Wenwu ZHANG, Yanwei LI, Shanshan WANG. Degradation law of mechanical properties for ultra high molecular weight polyethylene/elastomer composites at different application environments[J]. Acta Materiae Compositae Sinica.

不同应用场景下超高分子量聚乙烯/弹性体复合材料力学性能劣化规律

基金项目: 陕西省创新能力支撑计划项目(2022 TD-07);山东高速集团养护科技项目(QLTD-2019-A-FW-0059);太行城乡建设集团有限公司科技项目
详细信息
    通讯作者:

    王朝辉,博士,教授,博士生导师,研究方向为功能性道路材料 E-mail: wchh0205@chd.edu.cn

  • 中图分类号: TB332

Degradation law of mechanical properties for ultra high molecular weight polyethylene/elastomer composites at different application environments

  • 摘要: 现阶段,关于弹性体材料的研究主要集中在其制备工艺、改性方法与性能提升方面,而关于其在湿热老化、低温脆化、气候老化等不同应用场景下的长期力学性能的研究涉及较少。因此,若能揭示弹性体材料在不同服役环境下力学性能的发展过程及规律,将进一步促进其在工程领域的推广与应用。本文制备了超高分子量聚乙烯/弹性体复合材料,全面研究了湿热老化、低温脆化与气候老化等不同场景下弹性体及其复合材料的拉伸、撕裂、冲击、缓冲等力学性能的劣化过程及衰变规律,对比评价了不同回复温度、变形方式下复合材料的形状自动回复能力及损伤状况,最终探明了弹性体复合材料的耐久性及环境适应性,从而为其全生命周期性能演化及工作机制研究提供数据支持。所制得的弹性体复合材料在不同应用环境连续暴露7 d或81 h(等同于气候老化3个月)后的力学性能保持率均大于90%;湿热、寒冷、气候老化等环境暴露30 d后,复合材料力学性能衰减15%~20%;复合材料具有优异热稳定性与形状自动回复能力,拉伸、弯曲和扭转等不同变形方式下的回复率达90%以上。湿热环境下UHMWPE/EL力学性能Mechanical properties of UHMWPE/EL at hygrothermal environment

     

  • 图  1  湿热环境下UHMWPE/EL力学性能变化状况

    Figure  1.  Change of mechanical properties for UHMWPE/EL at hygrothermal environment

    图  2  湿热环境下UHMWPE/EL力学性能保持率

    Figure  2.  Mechanical property retention of UHMWPE/EL at hygrothermal environment

    图  3  湿热环境下UHMWPE/EL缓力功效状况

    Figure  3.  Cushion property change of UHMWPE/EL at hygrothermal environment

    图  4  寒冷环境下UHMWPE/EL力学性能变化状况

    Figure  4.  Change of mechanical properties for UHMWPE/EL at cold environment

    图  5  低温环境下UHMWPE/EL力学性能保持率

    Figure  5.  Mechanical property retention of UHMWPE/EL at cold environment

    图  6  低温环境下UHMWPE/EL缓力功效状况

    Figure  6.  Cushion property change of UHMWPE/EL at cold environment

    图  7  气候老化环境下UHMWPE/EL力学性能变化状况

    Figure  7.  Change of mechanical properties for UHMWPE/EL at weathering environment

    图  8  气候老化环境下UHMWPE/EL力学性能保持率

    Figure  8.  Mechanical property retention of UHMWPE/EL at weathering environment

    图  9  气候老化环境下UHMWPE/EL缓力功效状况

    Figure  9.  Cushion property change of UHMWPE/EL at weathering environment

    图  10  UHMWPE/EL的TG-DSC曲线

    Figure  10.  TG-DSC curve of UHMWPE/EL

    图  11  UHMWPE/EL形状记忆试验过程

    Figure  11.  Process of shape memory test for UHMWPE/EL

    图  12  拉伸变形下的UHMWPE/EL试件长度及回复比例

    Figure  12.  Length and recovery rate of UHMWPE/EL test piece under tension deformation

    图  13  弯曲变形下的UHMWPE/EL试件弯曲角度及回复比例

    Figure  13.  Bending angle and recovery rate of UHMWPE/EL test piece under bending deformation

    图  14  扭转变形下的UHMWPE/EL试件扭转角度及回复比例

    Figure  14.  Torsion angle and recovery rate of UHMWPE/EL test piece under torsion deformation

    表  1  弹性体(EL)技术参数

    Table  1.   Technical parameters of elastomer (EL)

    ProjectTechnical parameter
    Solid content/%100
    Density/(g∙cm−3)1.02
    Gel time/s15−20
    Surface drying time/s30−35
    Low temperature bending property/℃−35
    Impact resistance/(kg∙m)1.0
    Water permeability(0.4 MPa,2 h)Impervious
    Hardness(Shore A)85~90
    Wear resistance(750 g/500 r)/mg5.0
    下载: 导出CSV

    表  2  UHMWPE微粉技术参数

    Table  2.   Technical parameters of UHMWPE micropowder

    Density/
    (g∙cm−3)
    Granularity/µmMelting point/℃Molecular weightHeat distortion temperature/℃
    0.920−0.964125130−1362~3×10680
    下载: 导出CSV

    表  3  人工气候老化与自然老化对照

    Table  3.   Matching relation between artificial weathering and natural aging

    Natural aging time/monthSolar radiant energy/(MJ·m−2)Natural rainfall/mmArtificial aging time/hRadiant energy of Xenon lamp/(MJ·m−2)Spraying water volume/mm
    0.0374.321.8514.321.85
    1116.675027116.6449.95
    335015081349.92149.85
    6700300162699.84299.7
    1214006003241399.68599.4
    下载: 导出CSV

    表  4  UHMWPE/EL热失重对应温度

    Table  4.   Corresponding temperature of thermal weight loss of UHMWPE/EL

    Thermal weightlessnessWeightlessness 2%Weightlessness
    5%
    Weightlessness
    25%
    Maximum weight loss rateWeightlessness
    93%
    Temperature/℃155260337405500
    下载: 导出CSV
  • [1] ZHANG Z, WU J, ZHAO X, et al. Life evaluation of organic coatings on hydraulic metal structures[J]. Progress in Organic Coatings,2020,148:105848. doi: 10.1016/j.porgcoat.2020.105848
    [2] YU M, FAN C, GE F, et al. Anticorrosion behavior of organic offshore coating systems in UV, salt spray and low temperature alternation simulated Arctic offshore environment[J]. Materials Today Communications,2021,28:102545. doi: 10.1016/j.mtcomm.2021.102545
    [3] NAZARI M, ZHANG Y, MAHMOODI A, et al. Nanocomposite organic coatings for corrosion protection of metals: A review of recent advances[J]. Progress in Organic Coatings,2022,162:106573. doi: 10.1016/j.porgcoat.2021.106573
    [4] CROLL S. Stress and embrittlement in organic coatings during general weathering exposure: A review[J]. Progress in Organic Coatings,2022,172:107085. doi: 10.1016/j.porgcoat.2022.107085
    [5] 陈谦, 王朝辉, 傅豪, 等. 路用水性环氧树脂的拉伸强度预测和极值寻优[J]. 材料导报, 2021, 35(16):16172-16177.

    CHEN Qian, WANG Chaohui, FU Hao, et al. Prediction and extreme value optimization of tensile strength of waterborne epoxy resin for road[J]. Materials Reports,2021,35(16):16172-16177(in Chinese).
    [6] 贾涉, 姚正军, 张莎莎, 等. 硅烷改性纳米TiO2-Zn-Al/水性环氧涂层的防腐性能[J]. 复合材料学报, 2018, 35(9):2405-2413.

    JIA She, YAO Zhengjun, ZHANG Shasha, et al. Anticorrosion performance of silane modified nano TiO2-Zn-Al/waterborne epoxy coatings[J]. Acta Materiae Compositae Sinica,2018,35(9):2405-2413(in Chinese).
    [7] CHEN Q, LU Y, WANG C, et al. Effect of raw material composition on the working performance of waterborne epoxy resin for road[J]. International Journal of Pavement Engineering,2022,23(7):2380-2391. doi: 10.1080/10298436.2020.1856842
    [8] CORCIONE C, STRIANI R, FRIGIONE M. Organic-inorganic UV-cured methacrylic-based hybrids as protective coatings for different substrates[J]. Progress in Organic Coatings,2014,77(6):1117-1125. doi: 10.1016/j.porgcoat.2014.03.010
    [9] SHU P, AI L, KONG Y, et al. UV-cured organic-inorganic composites for highly durable and flexible antireflection coatings[J]. Applied Surface Science,2022,584:152600. doi: 10.1016/j.apsusc.2022.152600
    [10] CUI Y, WEI B, WANG Y, et al. Fabrication of UV/moisture dual curing coatings based on fluorinated polyoxetanes for anti-fouling applications[J]. Progress in Organic Coatings,2022,163:106656. doi: 10.1016/j.porgcoat.2021.106656
    [11] CHEN Q, WANG C, LI Y, et al. Performance development of polyurethane elastomer composites in different construction and curing environments[J]. Construction and Building Materials,2023,365:130047. doi: 10.1016/j.conbuildmat.2022.130047
    [12] SHAMSADINLO B, SHEIKHI M, UNVER O, et al. Numerical and empirical modeling of peak deceleration and stress analysis of polyurethane elastomer under impact loading test[J]. Polymer Testing,2020,89:106594. doi: 10.1016/j.polymertesting.2020.106594
    [13] JING X, LI X, DI Y, et al. Effect of the amide units in soft segment and urea units in hard segment on microstructures and physical properties of polyurethane elastomer[J]. Polymer,2021,233:124205. doi: 10.1016/j.polymer.2021.124205
    [14] SUN N, WANG Z, MA X, et al. Preparation and characterization of lignin-containing self-healing polyurethane elastomers with hydrogen and disulfide bonds[J]. Industrial Crops and Products,2021,174:114178. doi: 10.1016/j.indcrop.2021.114178
    [15] 陈谦, 王朝辉, 胡学亮, 等. 基于均衡调控的路用基础吸能材料制备及性能优化[J]. 复合材料学报, 2022, 39(7):3356-3368.

    CHEN Qian, WANG Chaohui, HU Xueliang, et al. Preparation and property optimization of road basic energy-absorbing materials based on balanced control[J]. Acta Materiae Compositae Sinica,2022,39(7):3356-3368(in Chinese).
    [16] LEI W, PEI H, FANG C, et al. Influence of nanocrystalline cellulose extracted from different precursors on properties of polyurethane elastomer composites[J]. Composites Science and Technology,2022,218:109159. doi: 10.1016/j.compscitech.2021.109159
    [17] ZHOU W, REN S, ZHANG F, et al. Reinforcement of boron–nitrogen coordinated polyurethane elastomers with silica nanoparticles[J]. Polymer,2022,256:125200. doi: 10.1016/j.polymer.2022.125200
    [18] PAN G, WANG Z, GONG X, et al. Self-healable recyclable thermoplastic polyurethane elastomers: Enabled by metal–ligand bonds between the cerium(III) triflate and phloretin [J]. Chemical Engineering Journal, 2022, 446, Part 4: 137228.
    [19] ISO. Plastics-Determination of the effects of exposure to damp heat, water spray and salt mist: 4611: 2010(E) [S]. London, Britain: British Standards Institution, 2010.
    [20] MA X, GUO W, XU Z, et al. Synthesis of degradable hyperbranched epoxy resins with high tensile, elongation, modulus and low-temperature resistance[J]. Composites Part B:Engineering,2020,192:108005. doi: 10.1016/j.compositesb.2020.108005
    [21] 中国国家标准化管理委员会. 塑料 实验室光源暴露试验方法 第2部分: 氙弧灯: GB/T 16422.2-2022 [S]. 北京: 中国标准出版社, 2022.

    Standardization Administration of the People’s Republic of China. Plastics-Methods of exposure to laboratory light sources Part 2: Xenon-arc lamps: GB/T 16422.2-2022 [S]. Beijing: China Standards Press, 2022(in Chinese).
    [22] 中国国家标准化管理委员会. 树脂浇注体性能试验方法: GB/T 2567-2008 [S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Test method for properties of resin casting boby: GB/T 2567-2008 [S]. Beijing: China Standards Press, 2008(in Chinese).
    [23] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样): GB/T 529-2008 [S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic- determination of tear strength (Trouser, angle and crescent test pieces): GB/T 529-2008 [S]. Beijing: China Standards Press, 2008(in Chinese).
    [24] ISO. 179-1-2010 Plastics-Determination of charpy impact properties-Part Non-instrumented impact test [S]. London, Britain: British Standards Institution, 2010.
    [25] 中国国家标准化管理委员会. 包装用缓冲材料静态压缩试验方法: GB/T 8168-2008 [S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Testing method of Static compression for for packaging cushioning materials: GB/T 8168-2008 [S]. Beijing: China Standards Press, 2008(in Chinese).
    [26] ZARE M, PRABHAKARAN M, PARVIN N, et al. Thermally-induced two-way shape memory polymers: Mechanisms, structures, and applications[J]. Chemical Engineering Journal,2019,374:706-720. doi: 10.1016/j.cej.2019.05.167
    [27] 王晓晗, 李洋, 孙俊奇. 基于聚乙烯醇的高强度可修复超分子形状记忆塑料[J]. 高分子学报, 2021, 52(8):1043-1052.

    WANG Xiaohan, LI Yang, SUN Junqi. Mechanically robust and healable poly(vinyl alcohol)-based shape memory supramolecular plastics[J]. Acta Polymerica Sinica,2021,52(8):1043-1052(in Chinese).
    [28] 住房和城乡建设部. 建筑与市政工程防水通用规范: GB 55030-2022 [S]. 北京: 中国建筑工业出版社, 2022.

    Ministry of Housing and Urban-Rural Construction. General specification for waterproofing of buildings and municipal works: GB 55030-2022 [S]. Beijing: China Architecture & Building Press, 2022(in Chinese).
  • 加载中
计量
  • 文章访问数:  122
  • HTML全文浏览量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-15
  • 修回日期:  2022-12-21
  • 录用日期:  2022-12-29
  • 网络出版日期:  2023-01-17

目录

    /

    返回文章
    返回