留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同应用场景下超高分子量聚乙烯/弹性体复合材料力学性能劣化规律

陈谦 王朝辉 张文武 李彦伟 王珊珊

陈谦, 王朝辉, 张文武, 等. 不同应用场景下超高分子量聚乙烯/弹性体复合材料力学性能劣化规律[J]. 复合材料学报, 2023, 40(11): 6288-6298. doi: 10.13801/j.cnki.fhclxb.20230111.001
引用本文: 陈谦, 王朝辉, 张文武, 等. 不同应用场景下超高分子量聚乙烯/弹性体复合材料力学性能劣化规律[J]. 复合材料学报, 2023, 40(11): 6288-6298. doi: 10.13801/j.cnki.fhclxb.20230111.001
CHEN Qian, WANG Chaohui, ZHANG Wenwu, et al. Degradation law of mechanical properties for ultra high molecular weight polyethylene/elastomer composites at different application environments[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6288-6298. doi: 10.13801/j.cnki.fhclxb.20230111.001
Citation: CHEN Qian, WANG Chaohui, ZHANG Wenwu, et al. Degradation law of mechanical properties for ultra high molecular weight polyethylene/elastomer composites at different application environments[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6288-6298. doi: 10.13801/j.cnki.fhclxb.20230111.001

不同应用场景下超高分子量聚乙烯/弹性体复合材料力学性能劣化规律

doi: 10.13801/j.cnki.fhclxb.20230111.001
基金项目: 陕西省创新能力支撑计划项目(2022 TD-07);山东高速集团养护科技项目(QLTD-2019-A-FW-0059);太行城乡建设集团有限公司科技项目(KT-2);陕西省博士后科研项目(2023BSHYDZZ120)Innovation Capability Support Program of Shaanxi (2022 TD-07); Technology Project of Shandong Hi-Speed Group CO., LTD. (QLTD-2019-A-FW-0059); Technology Project of Taihang Urban and Rural Construction Group CO., LTD. (KT-2); Shaanxi Province Postdoctoral Research Project (2023BSHYDZZ120)
详细信息
    通讯作者:

    王朝辉,博士,教授,博士生导师,研究方向为功能性道路材料 E-mail: wchh0205@chd.edu.cn

  • 中图分类号: TB332

Degradation law of mechanical properties for ultra high molecular weight polyethylene/elastomer composites at different application environments

  • 摘要: 为揭示弹性体复合材料在不同服役环境下力学性能的劣化规律,以促进其在无溶剂涂层领域的推广应用,制备了超高分子量聚乙烯/弹性体(UHMWPE/EL)复合材料,模拟了湿热老化、低温脆化与气候老化等应用场景,研究了不同场景下弹性体及其复合材料的各项力学性能演变过程及规律,评价了不同变形及环境温度下复合材料的形状自动回复能力损伤状况,最终探明了复合材料的耐久性及环境适应性。结果表明:UHMWPE/EL复合材料在不同应用环境连续暴露7天或81 h后的力学性能保持率均大于90%,满足规范要求;湿热、寒冷、气候老化等环境暴露30天后,复合材料力学性能衰减15%~20%;复合材料具有优异热稳定性与形状自动回复能力,拉伸、弯曲和扭转等不同变形方式下的回复率达90%以上。

     

  • 图  1  湿热环境下UHMWPE/EL力学性能变化状况

    Figure  1.  Change of mechanical properties for UHMWPE/EL at hygrothermal environment

    图  2  湿热环境下UHMWPE/EL力学性能保持率

    Figure  2.  Mechanical property retention of UHMWPE/EL at hygrothermal environment

    图  3  湿热环境下UHMWPE/EL缓力功效状况

    σm—Maximum value of stress

    Figure  3.  Cushion property change of UHMWPE/EL at hygrothermal environment

    图  4  寒冷环境下UHMWPE/EL力学性能变化状况

    Figure  4.  Change of mechanical properties for UHMWPE/EL at cold environment

    图  5  低温环境下UHMWPE/EL力学性能保持率

    Figure  5.  Mechanical property retention of UHMWPE/EL at cold environment

    图  6  低温环境下UHMWPE/EL缓力功效状况

    Figure  6.  Cushion property change of UHMWPE/EL at cold environment

    图  7  气候老化环境下UHMWPE/EL力学性能变化状况

    Figure  7.  Change of mechanical properties for UHMWPE/EL at weathering environment

    图  8  气候老化环境下UHMWPE/EL力学性能保持率

    Figure  8.  Mechanical property retention of UHMWPE/EL at weathering environment

    图  9  气候老化环境下UHMWPE/EL缓力功效状况

    Figure  9.  Cushion property change of UHMWPE/EL at weathering environment

    图  10  UHMWPE/EL的TG-DSC曲线

    Figure  10.  TG-DSC curves of UHMWPE/EL

    图  11  UHMWPE/EL形状记忆试验过程

    Figure  11.  Process of shape memory test for UHMWPE/EL

    图  12  拉伸变形下的UHMWPE/EL试件长度(a)及回复比例(b)

    Figure  12.  Length (a) and recovery rate (b) of UHMWPE/EL test piece under tension deformation

    图  13  弯曲变形下的UHMWPE/EL试件弯曲角度(a)及回复比例(b)

    Figure  13.  Bending angle (a) and recovery rate (b) of UHMWPE/EL test piece under bending deformation

    图  14  扭转变形下的UHMWPE/EL试件扭转角度(a)及回复比例(b)

    Figure  14.  Torsion angle (a) and recovery rate (b) of UHMWPE/EL test piece under torsion deformation

    表  1  弹性体(EL)技术参数

    Table  1.   Technical parameters of elastomer (EL)

    ProjectTechnical parameter
    Solid content/%100
    Density/(g∙cm−3)1.02
    Gel time/s15-20
    Surface drying time/s30-35
    Low temperature bending property/℃−35
    Impact resistance/(kg∙m)1.0
    Water permeability (0.4 MPa, 2 h)Impervious
    Hardness (Shore A)85-90
    Wear resistance/(750 g·(500 r)–1·mg–1)5.0
    下载: 导出CSV

    表  2  超高分子量聚乙烯(UHMWPE)微粉技术参数

    Table  2.   Technical parameters of ultra high molecular weight polyethylene (UHMWPE) micropowder

    Parameter Value
    Density/(g∙cm−3) 0.920-0.964
    Granularity/µm 125
    Melting point/℃ 130-136
    Molecular weight 2×106-3×106
    Heat distortion temperature/℃ 80
    下载: 导出CSV

    表  3  人工气候老化与自然老化对照

    Table  3.   Matching relation between artificial weathering and natural aging

    Natural aging time/monthSolar radiant energy/(MJ·m−2)Natural rainfall/mmArtificial aging time/hRadiant energy of Xenon lamp/(MJ·m−2)Spraying water volume/mm
    0.037 4.32 1.85 1 4.32 1.85
    1 116.67 50.00 27 116.64 49.95
    3 350.00 150.00 81 349.92 149.85
    6 700.00 300.00 162 699.84 299.70
    12 1400.00 600.00 324 1399.68 599.40
    下载: 导出CSV

    表  4  UHMWPE/EL热失重对应温度

    Table  4.   Corresponding temperature of thermal weight loss of UHMWPE/EL

    Thermal weightlessness Temperature/℃
    Weightlessness 2% 155
    Weightlessness 5% 260
    Weightlessness 25% 337
    Maximum weight loss rate 405
    Weightlessness 93% 500
    下载: 导出CSV
  • [1] ZHANG Z H, WU J, ZHAO X, et al. Life evaluation of organic coatings on hydraulic metal structures[J]. Progress in Organic Coatings,2020,148:105848. doi: 10.1016/j.porgcoat.2020.105848
    [2] YU M D, FAN C Q, GE F, et al. Anticorrosion behavior of organic offshore coating systems in UV, salt spray and low temperature alternation simulated Arctic offshore environment[J]. Materials Today Communications,2021,28:102545. doi: 10.1016/j.mtcomm.2021.102545
    [3] HONARVAR NAZARI M, ZHANG Y, MAHMOODI A, et al. Nanocomposite organic coatings for corrosion protection of metals: A review of recent advances[J]. Progress in Organic Coatings,2022,162:106573. doi: 10.1016/j.porgcoat.2021.106573
    [4] CROLL S G. Stress and embrittlement in organic coatings during general weathering exposure: A review[J]. Progress in Organic Coatings,2022,172:107085. doi: 10.1016/j.porgcoat.2022.107085
    [5] 陈谦, 王朝辉, 傅豪, 等. 路用水性环氧树脂的拉伸强度预测和极值寻优[J]. 材料导报, 2021, 35(16):16172-16177.

    CHEN Qian, WANG Chaohui, FU Hao, et al. Prediction and extreme value optimization of tensile strength of waterborne epoxy resin for road[J]. Materials Reports,2021,35(16):16172-16177(in Chinese).
    [6] 贾涉, 姚正军, 张莎莎, 等. 硅烷改性纳米TiO2-Zn-Al/水性环氧涂层的防腐性能[J]. 复合材料学报, 2018, 35(9):2405-2413.

    JIA She, YAO Zhengjun, ZHANG Shasha, et al. Anticorrosion performance of silane modified nano TiO2-Zn-Al/waterborne epoxy coatings[J]. Acta Materiae Compositae Sinica,2018,35(9):2405-2413(in Chinese).
    [7] CHEN Q A, LU Y F, WANG C H, et al. Effect of raw material composition on the working performance of waterborne epoxy resin for road[J]. International Journal of Pavement Engineering,2022,23(7):2380-2391. doi: 10.1080/10298436.2020.1856842
    [8] CORCIONE C E, STRIANI R, FRIGIONE M. Organic-inorganic UV-cured methacrylic-based hybrids as protective coatings for different substrates[J]. Progress in Organic Coatings,2014,77(6):1117-1125. doi: 10.1016/j.porgcoat.2014.03.010
    [9] SHU P J, AI L, KONG Y H, et al. UV-cured organic-inorga-nic composites for highly durable and flexible antireflection coatings[J]. Applied Surface Science,2022,584:152600. doi: 10.1016/j.apsusc.2022.152600
    [10] CUI Y T, WEI B X, WANG Y J, et al. Fabrication of UV/moisture dual curing coatings based on fluorinated polyoxetanes for anti-fouling applications[J]. Progress in Organic Coatings,2022,163:106656. doi: 10.1016/j.porgcoat.2021.106656
    [11] CHEN Q, WANG C H, LI Y W, et al. Performance development of polyurethane elastomer composites in different construction and curing environments[J]. Construction and Building Materials,2023,365:130047. doi: 10.1016/j.conbuildmat.2022.130047
    [12] SHAMSADINLO B, SHEIKHI M R, UNVER O, et al. Numerical and empirical modeling of peak deceleration and stress analysis of polyurethane elastomer under impact loading test[J]. Polymer Testing,2020,89:106594. doi: 10.1016/j.polymertesting.2020.106594
    [13] JING X, LI X Y, DI Y L, et al. Effect of the amide units in soft segment and urea units in hard segment on microstructures and physical properties of polyurethane elastomer[J]. Polymer,2021,233:124205. doi: 10.1016/j.polymer.2021.124205
    [14] SUN N, WANG Z F, MA X, et al. Preparation and characterization of lignin-containing self-healing polyurethane elastomers with hydrogen and disulfide bonds[J]. Industrial Crops and Products,2021,174:114178. doi: 10.1016/j.indcrop.2021.114178
    [15] 陈谦, 王朝辉, 胡学亮, 等. 基于均衡调控的路用基础吸能材料制备及性能优化[J]. 复合材料学报, 2022, 39(7):3356-3368.

    CHEN Qian, WANG Chaohui, HU Xueliang, et al. Preparation and property optimization of road basic energy-absorbing materials based on balanced control[J]. Acta Materiae Compositae Sinica,2022,39(7):3356-3368(in Chinese).
    [16] LEI W Q, PEI H, FANG C Q, et al. Influence of nanocrystalline cellulose extracted from different precursors on properties of polyurethane elastomer composites[J]. Composites Science and Technology,2022,218:109159. doi: 10.1016/j.compscitech.2021.109159
    [17] ZHOU W J, REN S H, ZHANG F, et al. Reinforcement of boron-nitrogen coordinated polyurethane elastomers with silica nanoparticles[J]. Polymer,2022,256:125200. doi: 10.1016/j.polymer.2022.125200
    [18] PAN G F, WANG Z, GONG X B, et al. Self-healable recyclable thermoplastic polyurethane elastomers: Enabled by metal-ligand bonds between the cerium(III) triflate and phloretin[J]. Chemical Engineering Journal, 2022, 446: 137228.
    [19] ISO. Plastics—Determination of the effects of exposure to damp heat, water spray and salt mist: ISO 4611: 2010[S]. Britain: British Standards Institution, 2010.
    [20] MA X, GUO W Q, XU Z J, et al. Synthesis of degradable hyperbranched epoxy resins with high tensile, elongation, modulus and low-temperature resistance[J]. Composites Part B: Engineering,2020,192:108005. doi: 10.1016/j.compositesb.2020.108005
    [21] 中国国家标准化管理委员会. 塑料 实验室光源暴露试验方法 第2部分: 氙弧灯: GB/T 16422.2—2022[S]. 北京: 中国标准出版社, 2022.

    Standardization Administration of the People's Republic of China. Plastics—Methods of exposure to laboratory light sources—Part 2: Xenon-arc lamps: GB/T 16422.2—2022[S]. Beijing: China Standards Press, 2022(in Chinese).
    [22] 中国国家标准化管理委员会. 树脂浇注体性能试验方法: GB/T 2567—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Test method for properties of resin casting boby: GB/T 2567—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [23] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样): GB/T 529—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Rubber, vulcanized or thermoplastic—Determination of tear strength (Trouser, angle and crescent test pieces): GB/T 529—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [24] ISO. Plastics—Determination of charpy impact properties—Part non-instrumented impact test: ISO 179-1—2010[S]. Britain: British Standards Institution, 2010.
    [25] 中国国家标准化管理委员会. 包装用缓冲材料静态压缩试验方法: GB/T 8168—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Testing method of static compression for packaging cushioning materials: GB/T 8168—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [26] ZARE M, PRABHAKARAN M P, PARVIN N, et al. Thermally-induced two-way shape memory polymers: Mechanisms, structures, and applications[J]. Chemical Engineering Journal,2019,374:706-720. doi: 10.1016/j.cej.2019.05.167
    [27] 王晓晗, 李洋, 孙俊奇. 基于聚乙烯醇的高强度可修复超分子形状记忆塑料[J]. 高分子学报, 2021, 52(8):1043-1052.

    WANG Xiaohan, LI Yang, SUN Junqi. Mechanically robust and healable poly(vinyl alcohol)-based shape memory supramolecular plastics[J]. Acta Polymerica Sinica,2021,52(8):1043-1052(in Chinese).
    [28] 中华人民共和国住房和城乡建设部. 建筑与市政工程防水通用规范: GB/T 55030—2022[S]. 北京: 中国建筑工业出版社, 2022.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. General specification for waterproofing of buildings and municipal works: GB/T 55030—2022[S]. Beijing: China Architecture & Building Press, 2022(in Chinese).
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  581
  • HTML全文浏览量:  277
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-15
  • 修回日期:  2022-12-21
  • 录用日期:  2022-12-29
  • 网络出版日期:  2023-01-12
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回