Degradation law of mechanical properties for ultra high molecular weight polyethylene/elastomer composites at different application environments
-
摘要:
现阶段,关于弹性体材料的研究主要集中在其制备工艺、改性方法与性能提升方面,而关于其在湿热老化、低温脆化、气候老化等不同应用场景下的长期力学性能的研究涉及较少。因此,若能揭示弹性体材料在不同服役环境下力学性能的发展过程及规律,将进一步促进其在工程领域的推广与应用。本文制备了超高分子量聚乙烯/弹性体复合材料,全面研究了湿热老化、低温脆化与气候老化等不同场景下弹性体及其复合材料的拉伸、撕裂、冲击、缓冲等力学性能的劣化过程及衰变规律,对比评价了不同回复温度、变形方式下复合材料的形状自动回复能力及损伤状况,最终探明了弹性体复合材料的耐久性及环境适应性,从而为其全生命周期性能演化及工作机制研究提供数据支持。所制得的弹性体复合材料在不同应用环境连续暴露7 d或81 h(等同于气候老化3个月)后的力学性能保持率均大于90%;湿热、寒冷、气候老化等环境暴露30 d后,复合材料力学性能衰减15%~20%;复合材料具有优异热稳定性与形状自动回复能力,拉伸、弯曲和扭转等不同变形方式下的回复率达90%以上。 湿热环境下UHMWPE/EL力学性能Mechanical properties of UHMWPE/EL at hygrothermal environment Abstract: The purpose is to reveal the deterioration law of mechanical properties for elastomer composites at different service environments and promote their popularization and application in the field of solvent-free coatings. Ultra high molecular weight polyethylene/elastomer (UHMWPE/EL) composites were prepared. Application environments such as hydrothermal aging, low-temperature embrittlement and climate aging were simulated, and the evolution process and laws of various mechanical properties for elastomer and its composites at different environments were studied. The damage status of shape auto restore ability for composites at different deformations and temperatures was evaluated. Finally, the durability and environmental adaptability of composites were proved. The results show that after continuous exposure for 7 days or 81 hours at different application environments, the retention rates of mechanical properties for UHMWPE/EL composites are more than 90%, which meet the requirements of specifications. And the mechanical properties of composites decrease 15%−20% after being exposed to hygrothermal environment, cold environment and weathering environment for 30 days. The composites have obvious thermal stability and automatic shape recovery ability, and the recovery rates at different deformation modes of tension, bending and torsion are over 90%. -
表 1 弹性体(EL)技术参数
Table 1. Technical parameters of elastomer (EL)
Project Technical parameter Solid content/% 100 Density/(g∙cm−3) 1.02 Gel time/s 15−20 Surface drying time/s 30−35 Low temperature bending property/℃ −35 Impact resistance/(kg∙m) 1.0 Water permeability(0.4 MPa,2 h) Impervious Hardness(Shore A) 85~90 Wear resistance(750 g/500 r)/mg 5.0 表 2 UHMWPE微粉技术参数
Table 2. Technical parameters of UHMWPE micropowder
Density/
(g∙cm−3)Granularity/µm Melting point/℃ Molecular weight Heat distortion temperature/℃ 0.920−0.964 125 130−136 2~3×106 80 表 3 人工气候老化与自然老化对照
Table 3. Matching relation between artificial weathering and natural aging
Natural aging time/month Solar radiant energy/(MJ·m−2) Natural rainfall/mm Artificial aging time/h Radiant energy of Xenon lamp/(MJ·m−2) Spraying water volume/mm 0.037 4.32 1.85 1 4.32 1.85 1 116.67 50 27 116.64 49.95 3 350 150 81 349.92 149.85 6 700 300 162 699.84 299.7 12 1400 600 324 1399.68 599.4 表 4 UHMWPE/EL热失重对应温度
Table 4. Corresponding temperature of thermal weight loss of UHMWPE/EL
Thermal weightlessness Weightlessness 2% Weightlessness
5%Weightlessness
25%Maximum weight loss rate Weightlessness
93%Temperature/℃ 155 260 337 405 500 -
[1] ZHANG Z, WU J, ZHAO X, et al. Life evaluation of organic coatings on hydraulic metal structures[J]. Progress in Organic Coatings,2020,148:105848. doi: 10.1016/j.porgcoat.2020.105848 [2] YU M, FAN C, GE F, et al. Anticorrosion behavior of organic offshore coating systems in UV, salt spray and low temperature alternation simulated Arctic offshore environment[J]. Materials Today Communications,2021,28:102545. doi: 10.1016/j.mtcomm.2021.102545 [3] NAZARI M, ZHANG Y, MAHMOODI A, et al. Nanocomposite organic coatings for corrosion protection of metals: A review of recent advances[J]. Progress in Organic Coatings,2022,162:106573. doi: 10.1016/j.porgcoat.2021.106573 [4] CROLL S. Stress and embrittlement in organic coatings during general weathering exposure: A review[J]. Progress in Organic Coatings,2022,172:107085. doi: 10.1016/j.porgcoat.2022.107085 [5] 陈谦, 王朝辉, 傅豪, 等. 路用水性环氧树脂的拉伸强度预测和极值寻优[J]. 材料导报, 2021, 35(16):16172-16177.CHEN Qian, WANG Chaohui, FU Hao, et al. Prediction and extreme value optimization of tensile strength of waterborne epoxy resin for road[J]. Materials Reports,2021,35(16):16172-16177(in Chinese). [6] 贾涉, 姚正军, 张莎莎, 等. 硅烷改性纳米TiO2-Zn-Al/水性环氧涂层的防腐性能[J]. 复合材料学报, 2018, 35(9):2405-2413.JIA She, YAO Zhengjun, ZHANG Shasha, et al. Anticorrosion performance of silane modified nano TiO2-Zn-Al/waterborne epoxy coatings[J]. Acta Materiae Compositae Sinica,2018,35(9):2405-2413(in Chinese). [7] CHEN Q, LU Y, WANG C, et al. Effect of raw material composition on the working performance of waterborne epoxy resin for road[J]. International Journal of Pavement Engineering,2022,23(7):2380-2391. doi: 10.1080/10298436.2020.1856842 [8] CORCIONE C, STRIANI R, FRIGIONE M. Organic-inorganic UV-cured methacrylic-based hybrids as protective coatings for different substrates[J]. Progress in Organic Coatings,2014,77(6):1117-1125. doi: 10.1016/j.porgcoat.2014.03.010 [9] SHU P, AI L, KONG Y, et al. UV-cured organic-inorganic composites for highly durable and flexible antireflection coatings[J]. Applied Surface Science,2022,584:152600. doi: 10.1016/j.apsusc.2022.152600 [10] CUI Y, WEI B, WANG Y, et al. Fabrication of UV/moisture dual curing coatings based on fluorinated polyoxetanes for anti-fouling applications[J]. Progress in Organic Coatings,2022,163:106656. doi: 10.1016/j.porgcoat.2021.106656 [11] CHEN Q, WANG C, LI Y, et al. Performance development of polyurethane elastomer composites in different construction and curing environments[J]. Construction and Building Materials,2023,365:130047. doi: 10.1016/j.conbuildmat.2022.130047 [12] SHAMSADINLO B, SHEIKHI M, UNVER O, et al. Numerical and empirical modeling of peak deceleration and stress analysis of polyurethane elastomer under impact loading test[J]. Polymer Testing,2020,89:106594. doi: 10.1016/j.polymertesting.2020.106594 [13] JING X, LI X, DI Y, et al. Effect of the amide units in soft segment and urea units in hard segment on microstructures and physical properties of polyurethane elastomer[J]. Polymer,2021,233:124205. doi: 10.1016/j.polymer.2021.124205 [14] SUN N, WANG Z, MA X, et al. Preparation and characterization of lignin-containing self-healing polyurethane elastomers with hydrogen and disulfide bonds[J]. Industrial Crops and Products,2021,174:114178. doi: 10.1016/j.indcrop.2021.114178 [15] 陈谦, 王朝辉, 胡学亮, 等. 基于均衡调控的路用基础吸能材料制备及性能优化[J]. 复合材料学报, 2022, 39(7):3356-3368.CHEN Qian, WANG Chaohui, HU Xueliang, et al. Preparation and property optimization of road basic energy-absorbing materials based on balanced control[J]. Acta Materiae Compositae Sinica,2022,39(7):3356-3368(in Chinese). [16] LEI W, PEI H, FANG C, et al. Influence of nanocrystalline cellulose extracted from different precursors on properties of polyurethane elastomer composites[J]. Composites Science and Technology,2022,218:109159. doi: 10.1016/j.compscitech.2021.109159 [17] ZHOU W, REN S, ZHANG F, et al. Reinforcement of boron–nitrogen coordinated polyurethane elastomers with silica nanoparticles[J]. Polymer,2022,256:125200. doi: 10.1016/j.polymer.2022.125200 [18] PAN G, WANG Z, GONG X, et al. Self-healable recyclable thermoplastic polyurethane elastomers: Enabled by metal–ligand bonds between the cerium(III) triflate and phloretin [J]. Chemical Engineering Journal, 2022, 446, Part 4: 137228. [19] ISO. Plastics-Determination of the effects of exposure to damp heat, water spray and salt mist: 4611: 2010(E) [S]. London, Britain: British Standards Institution, 2010. [20] MA X, GUO W, XU Z, et al. Synthesis of degradable hyperbranched epoxy resins with high tensile, elongation, modulus and low-temperature resistance[J]. Composites Part B:Engineering,2020,192:108005. doi: 10.1016/j.compositesb.2020.108005 [21] 中国国家标准化管理委员会. 塑料 实验室光源暴露试验方法 第2部分: 氙弧灯: GB/T 16422.2-2022 [S]. 北京: 中国标准出版社, 2022.Standardization Administration of the People’s Republic of China. Plastics-Methods of exposure to laboratory light sources Part 2: Xenon-arc lamps: GB/T 16422.2-2022 [S]. Beijing: China Standards Press, 2022(in Chinese). [22] 中国国家标准化管理委员会. 树脂浇注体性能试验方法: GB/T 2567-2008 [S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People’s Republic of China. Test method for properties of resin casting boby: GB/T 2567-2008 [S]. Beijing: China Standards Press, 2008(in Chinese). [23] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样): GB/T 529-2008 [S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic- determination of tear strength (Trouser, angle and crescent test pieces): GB/T 529-2008 [S]. Beijing: China Standards Press, 2008(in Chinese). [24] ISO. 179-1-2010 Plastics-Determination of charpy impact properties-Part Non-instrumented impact test [S]. London, Britain: British Standards Institution, 2010. [25] 中国国家标准化管理委员会. 包装用缓冲材料静态压缩试验方法: GB/T 8168-2008 [S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People’s Republic of China. Testing method of Static compression for for packaging cushioning materials: GB/T 8168-2008 [S]. Beijing: China Standards Press, 2008(in Chinese). [26] ZARE M, PRABHAKARAN M, PARVIN N, et al. Thermally-induced two-way shape memory polymers: Mechanisms, structures, and applications[J]. Chemical Engineering Journal,2019,374:706-720. doi: 10.1016/j.cej.2019.05.167 [27] 王晓晗, 李洋, 孙俊奇. 基于聚乙烯醇的高强度可修复超分子形状记忆塑料[J]. 高分子学报, 2021, 52(8):1043-1052.WANG Xiaohan, LI Yang, SUN Junqi. Mechanically robust and healable poly(vinyl alcohol)-based shape memory supramolecular plastics[J]. Acta Polymerica Sinica,2021,52(8):1043-1052(in Chinese). [28] 住房和城乡建设部. 建筑与市政工程防水通用规范: GB 55030-2022 [S]. 北京: 中国建筑工业出版社, 2022.Ministry of Housing and Urban-Rural Construction. General specification for waterproofing of buildings and municipal works: GB 55030-2022 [S]. Beijing: China Architecture & Building Press, 2022(in Chinese). -

计量
- 文章访问数: 122
- HTML全文浏览量: 88
- 被引次数: 0