Mechanical properties of concrete reinforced with macro fibres recycled from waste GFRP
-
摘要: 树脂基纤维增强复合材料(简称“复材”)具有轻质、高强、耐腐蚀等突出优点,广泛应用于建筑、交通、能源、航空航天及体育等行业。复合材料生产过程和寿命终端产生了大量的复材固体废弃物,其中95%以上为玻璃纤维增强复合材料(简称“玻纤复材”)。玻璃纤维附加值较低且力学性能易在回收处理后显著降低,因此玻纤复材固废的回收经济性不强。本研究团队此前提出了通过机械切割将玻纤复材固废加工成粗纤维,并用于制备粗纤维混凝土(Macro fibre reinforced concrete, MFRC)。本文通过一系列轴压和劈拉试验,研究粗纤维体积掺量、厚度、长度对两种配比混凝土的力学性能的影响。试验结果表明,粗纤维的掺入能显著提升混凝土的劈拉强度,体积掺量为1.5%时,配比二混凝土的劈拉强度提高40%。评估了现有FRC劈拉强度预测公式对MFRC劈拉强度的预测效果,并基于试验结果提出了粗纤维混凝土劈拉强度预测公式。Abstract: Fibre-reinforced polymer (FRP) composites have been widely used in many sectors, such as construction, transportation, energy, aerospace and sports, due to their advantages such as lightweightness, high strength, and excellent durability. A large amount of FRP wastes arises from the production process and at the end-of-life of FRP products, of which 95% is glass fibre reinforced polymer (GFRP) composites. Existing GFRP recycling methods are not economical owing to the low added value of glass fibres and significant degradation of glass fibre properties due to the recycling process. The authors’ research team has previously proposed a mechanical method to process decommissioned wind turbine blades into macro fibres, which can then be used to produce macro fibre reinforced concrete (MFRC). This paper presents an experimental study in which the effects of fibre volume fraction, fibre thickness, fibre length, and concrete mix on the compression and splitting tensile properties of MFRC were investigated. The test results show that the splitting tensile strength of the concrete can be significantly enhanced by the addition of macro fibres, e.g., by 40% when the macro fibre volume fraction in mix 2 concrete is 1.5%. The applicability of existing equations for predicting the splitting tensile strength of fibre reinforced concrete (FRC) to MFRC is evaluated, and a new equation for predicting the splitting tensile strength of MFRC is proposed based on the test data.
-
Key words:
- GFRP /
- wastes /
- mechanical recycling /
- macro fibres /
- fibre reinforced concrete
-
表 1 回收粗纤维统计参数
Table 1. Statistical properties of recycled macro fibres
Designation MF-1 MF-2 MF-3 MF-4 MF-5 Nominal dimensions/mm 90×4.5×0.5 90×4.5×1.2 90×4.5×2.2 60×4.5×0.5 30×4.5×0.5 Length/mm Average 91.20 90.57 87.60 58.25 33.30 Standard deviation 1.94 4.56 2.97 1.94 1.20 Width/mm Average 4.49 4.57 4.57 4.63 4.81 Standard deviation 0.43 0.36 0.75 0.80 0.48 Thickness/mm Average 0.54 1.26 2.26 0.54 0.50 Standard deviation 0.16 0.26 0.53 0.19 0.12 Tensile strength/MPa Average 554 Standard deviation 135 Elastic modulus/GPa Average 37.7 Standard deviation 7.3 表 2 试件设计
Table 2. Specimen design
No. Mix Water/cement ratio Fibre length/mm Fibre thickness/mm Fibre volume fraction/% No. of specimens Compression Splitting 1-1 S1 W0.32 L0 V0%T0 0.32 - - 0 3 3 1-2 S1 W0.32 L90 V0.5%T0.5 0.32 90 0.5 0.5 3 3 1-3 S1 W0.32 L90 V1%T0.5 0.32 90 0.5 1 3 3 1-4 S1 W0.32 L90 V1.5%T0.5 0.32 90 0.5 1.5 3 3 1-5 S1 W0.32 L90 V2%T0.5 0.32 90 0.5 2 3 3 2-1 S2 W0.32 L90 V1.5%T1.2 0.32 90 1.2 1.5 3 3 2-2 S2 W0.32 L90 V1.5%T2.2 0.32 90 2.2 1.5 3 3 2-3 S2 W0.32 L60 V1.5%T0.5 0.32 60 0.5 1.5 3 3 2-4 S2 W0.32 L30 V1.5%T0.5 0.32 30 0.5 1.5 3 3 2-5 S2 W0.47 L90 V1.5%T0.5 0.47 90 0.5 1.5 3 3 2-6 S2 W0.47 L0 V0%T0 0.47 - - 0 3 3 表 3 混凝土基体配合比
Table 3. Mix proportions of concrete matrix
Mix Strength grade Fresh water/
Cement ratioFresh water/
(kg·m−3)Cement/
(kg·m−3)Fine Aggregate/
(kg·m−3)Coarse Aggregate/
(kg·m−3)Water reducer/% 1 C60 0.32 160 500 795 970 0.45 2 C40 0.47 185 395 715 1075 0.19 表 4 MFRC轴压实验结果
Table 4. Key results of MFRC compression tests
No. Group fc,m/ MPa CoV/ % εco,m/ % CoV/ % Em/ GPa CoV/ % vm CoV/ % 1-1 S1 W0.32 L0 V0%T0 51.7 2.1 0.223 13.7 35.5 5.9 0.18 6.2 1-2 S1 W0.32 L90 V0.5%T0.5 46.0 6.4 0.175 10.6 36.2 0.7 0.19 0.0 1-3 S1 W0.32 L90 V1%T0.5 49.1 4.7 0.183 3.8 35.4 3.6 0.20 5.0 1-4 S1 W0.32 L90 V1.5%T0.5 37.4 5.3 0.167 9.0 32.7 6.8 0.19 11.2 1-5 S1 W0.32 L90 V2%T0.5 38.0 7.3 0.194 6.2 28.6 6.7 0.17 3.5 2-1 S2 W0.32 L90 V1.5%T1.2 74.5 1.6 0.264 4.7 39.7 1.2 0.17 0.0 2-2 S2 W0.32 L90 V1.5%T2.2 65.5 1.2 0.245 11.9 39.5 1.9 0.21 4.8 2-3 S2 W0.32 L60 V1.5%T0.5 57.4 1.0 0.236 16.2 37.1 5.4 0.19 6.0 2-4 S2 W0.32 L30 V1.5%T0.5 60.2 2.7 0.208 1.7 40.2 2.5 0.19 5.3 2-5 S2 W0.47 L90 V1.5%T0.5 50.9 2.9 0.272 0.7 32.4 4.6 0.19 16.6 2-6 S2 W0.47 L0 V0%T0 50.1 2.4 0.218 7.2 36.0 2.9 0.22 16.2 Note: fc,m = Average compressive strength; εco,m = Average value of strain at compressive strength; Em = Average value of modulus of elasticity in compression; vm = Average Poisson's ratio; CoV = Coefficient of variation. 表 5 纤维混凝土劈拉强度预测模型
Table 5. Models for predicting the splitting tensile strength of FRC
Source Parameters Equation Note WAFA and ASHOUR [39] $ f_{\rm{c}}^{\prime},{V_{\rm{f}}} $ $ {f_{\rm{spf}}} = 0.58{(f_{\rm{c}}^{\prime})^{0.5}} + 3.02{V_{\rm{f}}} $ $ f_{\rm{c}}^{\prime} \leqslant 100\;{\text{MPa}} $ BAE et al. [41] $ f_{\rm{c}}^{\prime},{V_{\rm{f}}},L,{d_{\rm{f}}} $ $ {f_{\rm{spf}}} = 0.83{(f_{\rm{c}}^{\prime})^{0.47}}\left(\dfrac{{ - 2}}{{1 + {{(0.125 Ri)}^{0.8}}}} + 3\right) $ $ \begin{gathered} Ri{\text{ = }}{V_{\rm{f}}}L/{d_{\rm{f}}} \\ f_{\rm{c}}^{\prime} \leqslant 150\;{\text{MPa}} \\ \end{gathered} $ SONG et al. [40] $ f_{\rm{c}}^{},{V_{\rm{f}}} $ $ {f_{\rm{spf}}} = 0.63{({f_{c} })^{0.5}} + 3.01{V_{\rm{f}}} - 0.02{V_{\rm{f}} }^2 $ $ {f_{\rm{c}}} \leqslant 100\;{\text{MPa}} $ AL AZZAWI and SARSAM [42] $ f_{\rm{c}}^{},{V_{\rm{f}}},L,{d_{\rm{f}}},{b_{\rm{f}} } $ $ {f_{\rm{spf}}} = 0.47{(f_{\rm{c}}^{})^{0.5}} + 4.2 F $ $ \begin{gathered} F{\text{ = }}{V_{\rm{f}}}{{\text{b}}_{\rm{f}}}L/{d_{\rm{f}}} \\ 41 \leqslant f_{\rm{c}}^{} \leqslant 115\;{\text{MPa}} \\ \end{gathered} $ MUSMAR [43] $ f_{\rm{cf} }^{},{V_{\rm{f}} },L,{d_{\rm{f}} } $ $ {f_{{s} {pf} }} = {({f_{\rm{cf} }})^{0.5}}\left(0.6 + 0.4{V_{\rm{f}}}\dfrac{L}{{{d_{\rm{f}} }}}\right) $ $ 4 \leqslant {f_{\rm{cf} }} \leqslant 120\;{\text{MPa}} $ EL DIN et al. [44] $ f_{\rm{cf} }^{},{V_{\rm{f}} },L,{d_{\rm{f}} },{b_{\rm{f}}} $ $ {f_{\rm{spf} }} = 0.095\left[{f_{\rm{cf} }} + 10\sqrt F \left(3 - \dfrac{{20}}{{{f_{\rm{cf} }}}}\right)\right] $ $ F{\text{ = }}{V_{\rm{f}} }{{\text{b}}_{\rm{f}}}L/{d_{\rm{f}}} $ LE HOANG [45] $ f_{\rm{cf} }^{},{V_{\rm{f}}},L,{d_{\rm{f}}},{b_{\rm{f}}} $ $ {f_{\rm{spf}}} = {({f_{\rm{cf} }})^{0.5}}\left(0.94{V_{\rm{f}} }\dfrac{L}{{{d_{\rm{f}}}}}{b_{\rm{f}} } + 0.67\right) $ $ 120 \leqslant {f_{\rm{cf} }} \leqslant 200\;{\text{MPa}} $ Notes: fc’= Characteristic compressive strength of plain concrete; fc = Measured compressive strength of plain concrete; fcf = Measured compressive strength of FRC. 表 6 FRC模型对MFRC劈拉强度的预测效果
Table 6. Evaluation of FRC models for predicting the splitting tensile strength of MFRC
Source Predicted/Test IAE/% Average SD CoV/% WAFA and ASHOUR [39] 0.83 0.14 16 19.8 BAE et al. [41] 1.32 0.14 10 30.5 SONG et al. [40] 0.98 0.16 16 12.6 AL AZZAWI and SARSAM [42] 0.92 0.13 15 13.5 MUSMAR [43] 1.19 0.12 10 18.5 EL DIN et al. [44] 1.28 0.16 13 27.5 LE HOANG [45] 1.34 0.13 10 33.5 Equation (5) 1.00 0.08 8 6.0 Equation (6) 1.02 0.15 15 7.4 Notes: SD—Standard deviation; IAE—Integral absolute error. -
[1] DAS T K, GHOSH P, DAS N C. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review[J]. Advanced Composites and Hybrid Materials, 2019, 2(2): 214-233. doi: 10.1007/s42114-018-0072-z [2] COLLINS M, CULEBRAS M, REN G. Chapter 8 - The use of lignin as a precursor for carbon fiber–reinforced composites [M]//Puglia D, Santulli C, Sarasini F. Micro and Nanolignin in Aqueous Dispersions and Polymers. Limerick, Ireland: Elsevier, 2022: 237-250. [3] MENG F, MCKECHNIE J, TURNER T, et al. Environmental aspects of use of recycled carbon fiber composites in automotive applications[J]. Environmental Science & Technology, 2017, 51(21): 12727-12736. [4] VIJAY N, RAJKUMARA V, BHATTACHARJEE P. Assessment of composite waste disposal in aerospace industries[J]. Procedia Environmental Sciences, 2016, 35: 563-570. doi: 10.1016/j.proenv.2016.07.041 [5] 张建川, 张前峰, 蔡红军. 风力发电复合材料叶片废弃物的几种处理方法分析[J]. 材料科学与工程学报, 2012, 30: 473-482.ZHANG J C, ZHANG Q F, CAI H J. Analysis on treatment methods of composite blade wastes of wind turbines[J]. Journal of Materials Science & Engineering, 2012, 30: 473-482(in Chinese). [6] GHARDE S, KANDASUBRAMANIAN B. Mechanothermal and chemical recycling methodologies for the Fibre Reinforced Plastic (FRP)[J]. Environmental Technology & Innovation, 2019, 14: 100311. [7] HALLIWELL S. FRPs - The environmental agenda[J]. Advances in Structural Engineering, 2010, 13: 783-791. doi: 10.1260/1369-4332.13.5.783 [8] JOB S. Recycling glass fibre reinforced composites - History and progress[J]. Reinforced Plastics, 2013, 57: 19-23. doi: 10.1016/S0034-3617(13)70151-6 [9] BROEKEL J, SCHARR G. The specialties of fiber-reinforced plastics in terms of product lifecycle management[J]. Journal of Materials Processing Technology, 2005, 162-163: 725-729. doi: 10.1016/j.jmatprotec.2005.02.226 [10] MEIRA CASTRO A C, CARVALHO J, RIBEIRO M, et al. An integrated recycling approach for GFRP pultrusion wastes: Recycling and reuse assessment into new composite materials using Fuzzy Boolean Nets[J]. Journal of Cleaner Production, 2013, 66: 420-430. [11] OLIVEUX G, DANDY L O, LEEKE G A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties[J]. Progress in Materials Science, 2015, 72: 61-99. doi: 10.1016/j.pmatsci.2015.01.004 [12] YAZDANBAKHSH A, BANK L. A critical review of research on reuse of mechanically recycled FRP production and end-of-life waste for construction[J]. Polymers, 2014, 6(6): 1810-1826. doi: 10.3390/polym6061810 [13] LIU Y, FARNSWORTH M, TIWARI A. A review of optimisation techniques used in the composite recycling area: State-of-the-art and steps towards a research agenda[J]. Journal of Cleaner Production, 2017, 140: 1775-1781. doi: 10.1016/j.jclepro.2016.08.038 [14] MEYER L O, SCHULTE K, GROVE NIELSEN E. CFRP-recycling following a pyrolysis route: Process optimization and potentials[J]. Journal of Composite Materials, 2009, 43(9): 1121-1132. doi: 10.1177/0021998308097737 [15] PIMENTA S, PINHO S T. The effect of recycling on the mechanical response of carbon fibres and their composites[J]. Composite Structures, 2012, 94(12): 3669-3684. doi: 10.1016/j.compstruct.2012.05.024 [16] YANG J, LIU J, LIU W, et al. Recycling of carbon fibre reinforced epoxy resin composites under various oxygen concentrations in nitrogen-oxygen atmosphere[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112: 253-261. doi: 10.1016/j.jaap.2015.01.017 [17] PIMENTA S, PINHO S. Recycling carbon fibre reinforced polymers for structural applications - technology review and market outlook[J]. Waste Management, 2011, 31(2): 378-392. doi: 10.1016/j.wasman.2010.09.019 [18] JOB S, LEEKE G, MATIVENGA P, et al. Composites recycling - Where are we now?[R]. Berkhamsted, UK: Composites UK Ltd, 2016. [19] TITTARELLI F, SHAH S. Effect of low dosages of waste GRP dust on fresh and hardened properties of mortars: Part 1[J]. Construction and Building Materials, 2013, 47: 1532-1538. doi: 10.1016/j.conbuildmat.2013.06.043 [20] ALAM M S, SLATER E, BILLAH M. Green concrete made with RCA and FRP scrap aggregate: fresh and hardened properties[J]. Journal of Materials in Civil Engineering, 2013, 25(12): 1783-1794. doi: 10.1061/(ASCE)MT.1943-5533.0000742 [21] ASOKAN P, OSMANI M, PRICE A D F. Assessing the recycling potential of glass fibre reinforced plastic waste in concrete and cement composites[J]. Journal of Cleaner Production, 2009, 17(9): 821-829. doi: 10.1016/j.jclepro.2008.12.004 [22] MASTALI M, DALVAND A, SATTARIFARD A R. The impact resistance and mechanical properties of reinforced self-compacting concrete with recycled glass fibre reinforced polymers[J]. Journal of Cleaner Production, 2016, 124: 312-324. doi: 10.1016/j.jclepro.2016.02.148 [23] GARCíA D, VEGAS I, CACHO I. Mechanical recycling of GFRP waste as short-fiber reinforcements in microconcrete[J]. Construction and Building Materials, 2014, 64: 293-300. doi: 10.1016/j.conbuildmat.2014.02.068 [24] CRIADO M, DíAZ I, BASTIDAS J M, et al. Effect of recycled glass fiber on the corrosion behavior of reinforced mortar[J]. Construction and Building Materials, 2014, 64: 261-269. doi: 10.1016/j.conbuildmat.2014.04.049 [25] MOHAMMADHOSSEINI H, AWAL A, YATIM J. The impact resistance and mechanical properties of concrete reinforced with waste polypropylene carpet fibres[J]. Construction and Building Materials, 2017, 143: 147-157. doi: 10.1016/j.conbuildmat.2017.03.109 [26] FU B, LIU K C, CHEN J F, et al. Concrete reinforced with macro fibres recycled from waste GFRP[J]. Construction and Building Materials, 2021, 310: 125063. doi: 10.1016/j.conbuildmat.2021.125063 [27] YUAN H, LIN W L, YOU X M, et al. A cost-efficient UHPC incorporated with coarse aggregates and macro fibres recycled from waste GFRP[J]. Journal of Building Engineering, 2023, 73: 106786. doi: 10.1016/j.jobe.2023.106786 [28] FU B, XU G T, PENG W S, et al. Performance enhancement of recycled coarse aggregate concrete by incorporating with macro fibers processed from waste GFRP[J]. Construction and Building Materials, 2024, 411: 134166. doi: 10.1016/j.conbuildmat.2023.134166 [29] FU B, LIN L B, ZHOU X, et al. Effect of incorporating recycled macro fibres on the properties of ultra-high-performance seawater sea-sand concrete[J]. Journal of Building Engineering, 2024, 83: 108460. doi: 10.1016/j.jobe.2024.108460 [30] XU G T, LIU M J, XIANG Y, et al. Valorization of macro fibers recycled from decommissioned turbine blades as discrete reinforcement in concrete[J]. Journal of Cleaner Production, 2022, 379: 134550. doi: 10.1016/j.jclepro.2022.134550 [31] YOU X M, LIN L B, FU B, et al. Ultra-high performance concrete reinforced with macro fibres recycled from waste GFRP composites[J]. Case Studies in Construction Materials, 2023, 18: e02120. doi: 10.1016/j.cscm.2023.e02120 [32] ASTM. Standard test method for tensile properties of polymer matrix composite materials: D3039/D3039M-14: D3039/D3039M-14 [S]. Philadelphia, USA: ASTM, 2017. [33] YUAN H, FU X H, FAN Y C, et al. Flexural performance of layered macro fiber reinforced concrete beams[J]. Construction and Building Materials, 2022, 357: 129314. doi: 10.1016/j.conbuildmat.2022.129314 [34] 中华人民共和国行业标准. 普通混凝土配合比设计规程: JGJ55-2011[S]. 北京: 中国建筑工业出版社, 2011.Industry standard of the People's Republic of China. Specification for mix proportion design of ordinary concrete: JGJ55-2011[S]. Beijing: China Architecture and Building Press, 2011. (in Chinese) [35] ASTM. Standard test method for compressive strength of cylindrical concrete specimens: C39/C39M−14a[S]. West Conshohocken, PA: ASTM, 2015. [36] ASTM. Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression: C469/C469M−14[S]. West Conshohocken, PA: ASTM, 2014. [37] ASTM. Standard test method for splitting tensile strength of cylindrical concrete specimens: C496/C496M−11[S]. West Conshohocken, PA: ASTM, 2011. [38] WILLE K, EL TAWIL S, NAAMAN A E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading[J]. Cement and Concrete Composites, 2014, 48: 53-66. doi: 10.1016/j.cemconcomp.2013.12.015 [39] WAFA F, ASHOUR S. Mechanical properties of high-strength fiber reinforced concrete[J]. ACI Materials Journal, 1992, 89: 449-455. [40] SONG P S, HWANG S J C, MATERIALS B. Mechanical properties of high-strength steel fiber-reinforced concrete[J]. Construction and Building Materials, 2004, 18(9): 669-673. doi: 10.1016/j.conbuildmat.2004.04.027 [41] BAE B I, CHOI H K, LEE M S, et al. Indirect tensile strength of UHSC reinforced with steel fibres and its correlation with compressive strength[J]. Magazine of Concrete Research, 2017, 69(15): 772-786. doi: 10.1680/jmacr.15.00545 [42] AL AZZAWI Z, SARSAM K. Mechanical properties of high-strength fiber reinforced concrete[J]. Engineering and Technology Journal, 2010, 28: 2442. doi: 10.30684/etj.28.12.13 [43] MUSMAR M. Tensile strength of steel fiber reinforced concrete[J]. Contemporary Engineering Sciences, 2013, 6: 225-237. doi: 10.12988/ces.2013.3531 [44] EL DIN H, MOHAMED H, KHATER M, et al. Effect of steel fibers on behavior of ultra high performance concrete[C]// First International Interactive Symposium on UHPC, Des Moines, IA, USA: 2016: 1-10. [45] LE HOANG A. Evaluation of the splitting tensile strength of ultra-high performance concrete[C]// Serna P, Llano-Torre, A. , Martí-Vargas, J. R. , Navarro-Gregori, J. Fibre Reinforced Concrete: Improvements and Innovations: RILEM-fib International Symposium on FRC (BEFIB). Berlin/Heidelberg, Germany: Springer, 2021: 1149-1160. [46] THOMAS J, RAMASWAMY A. Mechanical properties of steel fiber-reinforced concrete[J]. Journal of Materials in Civil Engineering, 2007, 19(5): 385-392. doi: 10.1061/(ASCE)0899-1561(2007)19:5(385) [47] NARAYANAN R, DARWISH I Y S. Use of steel fibers as shear reinforcement[J]. ACI Structural Journal, 1987, 84(23): 216-227. [48] OH Y H. Evaluation of flexural strength for normal and high strength concrete with hooked steel fibers[J]. Journal of the Korea Concrete Institute, 2008, 20(4): 531-539. doi: 10.4334/JKCI.2008.20.4.531 [49] JSCE. Standard specifications for concrete structures – design[S]. Tokyo, Japan: JSCE, 2007. [50] FIB. Model code for concrete structures 2010[S]. Lausanne, Switzerland: FIB, 2013. [51] ACI. Building code requirements for structural concrete (ACI 318-14) and commentary (ACI 318R-14)[S]. Farmington Hills, MI, USA: ACI, 2014. [52] ACI. ACI 363R-10: Report on high-strength concrete[R]. Farmington Hills, MI, USA: ACI, 2010. [53] CHU S H, LI L G, KWAN A K H. Fibre factors governing the fresh and hardened properties of steel FRC[J]. Construction and Building Materials, 2018, 186(20): 1228-1238.
计量
- 文章访问数: 47
- HTML全文浏览量: 24
- 被引次数: 0