留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超低温作用对超高韧性水泥基复合材料抗弯性能的影响

苏骏 钱维民

苏骏, 钱维民. 超低温作用对超高韧性水泥基复合材料抗弯性能的影响[J]. 复合材料学报, 2022, 39(6): 2844-2854. doi: 10.13801/j.cnki.fhclxb.20210823.001
引用本文: 苏骏, 钱维民. 超低温作用对超高韧性水泥基复合材料抗弯性能的影响[J]. 复合材料学报, 2022, 39(6): 2844-2854. doi: 10.13801/j.cnki.fhclxb.20210823.001
SU Jun, QIAN Weimin. Effect of ultra-low temperature on flexural behavior of ultra-high toughness cementitious composites[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2844-2854. doi: 10.13801/j.cnki.fhclxb.20210823.001
Citation: SU Jun, QIAN Weimin. Effect of ultra-low temperature on flexural behavior of ultra-high toughness cementitious composites[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2844-2854. doi: 10.13801/j.cnki.fhclxb.20210823.001

超低温作用对超高韧性水泥基复合材料抗弯性能的影响

doi: 10.13801/j.cnki.fhclxb.20210823.001
基金项目: 湖北省自然科学基金(2020CFB860)
详细信息
    通讯作者:

    钱维民,硕士,研究方向为纤维混凝土基本性能 E-mail:907415610@qq.com

  • 中图分类号: TB332

Effect of ultra-low temperature on flexural behavior of ultra-high toughness cementitious composites

  • 摘要: 超高韧性水泥基复合材料(UHTCC)作为一种具有良好力学性能和耐久性能的新型复合材料,弯曲韧性是评价其力学性能的重要指标。为探究UHTCC材料在超低温环境下的抗弯性能,设计了5组不同纤维体积掺量的UHTCC新材料,经过深冷处理后进行四点弯曲试验,对其进行等效强度分析,提出一种适用于超低温作用后的韧性评价方式,为UHTCC在超低温领域的广泛应用提供理论基础和技术支持。研究结果表明:超低温作用后UHTCC的弯拉强度显著提升,当温度降低至−160℃,UHTCC的弯拉强度最大可提升67.67%,但表现出明显的脆性;超低温环境下1.5vol%UHTCC的强度及韧性性能提升效果最佳,但超出最优掺量后,UHTCC的性能反而略微降低。

     

  • 图  1  试验设备及试件形态

    Figure  1.  Test equipment and specimen shape

    图  2  不同温度下超高韧性水泥复合材料(UHTCC)受弯荷载-挠度曲线

    Figure  2.  Bending load-deflection curves of ultra-high toughness cementitious composites (UHTCC) at different temperatures

    图  3  不同影响因素下的UHTCC弯曲韧性指数I5

    Figure  3.  Bending toughness index I5 of UHTCC under different influence factors

    图  4  不同PVA掺量UHTCC承载力变异与温度关系

    Figure  4.  Relationship between variation of bearing capacity and temperature of UHTCC with different PVA contents

    图  5  温度对UHTCC等效弯曲强度影响

    Figure  5.  Effect of temperature on equivalent bending strength of UHTCC

    图  6  能量吸收计算示意图

    Figure  6.  Schematic diagram of energy absorption calculation

    Pmax—Peak load

    图  7  不同掺量UHTCC韧性系数与温度关系

    Figure  7.  Relationship between toughness coefficient and temperature of UHTCC with different contents

    图  8  UHTCC孔隙水冰点与孔径关系

    Figure  8.  Relationship between pore water freezing point and pore size of UHTCC

    图  9  UHTCC纤维增强效应系数与温度关系

    Figure  9.  Relationship between fiber reinforcement coefficient of UHTCC and temperature

    表  1  聚乙烯醇(PVA)纤维性能指标

    Table  1.   Polyvinyl alcohol (PVA) fiber performance index

    NameDensity/(g·cm−3)Diameter/mmLength/mmElastic modulus/MPaTensile strength/MPaElongation/%
    REC15×121.30.04121205266
    下载: 导出CSV

    表  2  试件分组

    Table  2.   Specimen grouping

    GroupPVA content/vol%Temperature/℃Fly ash/(kg·m−3)Cement
    /(kg·m−3)
    Sand/(kg·m−3)Silica fume/(kg·m−3)
    0vol%PVA/C30 0 20/0/−40/−80/−120/−160 533.3 120 133.3 13.3
    0.5vol%PVA/C30 0.5 20/0/−40/−80/−120/−160 533.3 120 133.3 13.3
    1.0vol%PVA/C30 1.0 20/0/−40/−80/−120/−160 533.3 120 133.3 13.3
    1.5vol%PVA/C30 1.5 20/0/−40/−80/−120/−160 533.3 120 133.3 13.3
    2.0vol%PVA/C30 2.0 20/0/−40/−80/−120/−160 533.3 120 133.3 13.3
    下载: 导出CSV

    表  3  UHTCC试件平均弯拉强度试验值

    Table  3.   Test values of average flexural tensile strength of each group UHTCC specimens MPa

    Group20℃0℃−40℃−80℃−120℃−160℃
    0vol%PVA/C30 2.61 3.24 4.81 4.56 2.70 3.15
    0.5vol%PVA/C30 3.46 2.81 3.75 3.81 2.95 4.85
    1.0vol%PVA/C30 4.70 5.48 5.32 6.19 7.32 7.55
    1.5vol%PVA/C30 5.30 6.09 6.32 7.13 7.88 8.88
    2.0vol%PVA/C30 6.15 5.09 3.80 5.24 6.43 6.54
    下载: 导出CSV

    表  4  UHTCC强度及韧性指标

    Table  4.   Strength and toughness index of UHTCC

    GroupTemperature/℃Initial crack load/kNInitial crack deflection/
    mm
    Peak
    load/
    kN
    Equivalent bending strength/MPaEquivalent bending strength I5Toughness coefficient Ci
    i=1i=2i=3i=4
    0vol%PVA/C30 20 8.70 0.27 8.70
    0 10.80 0.54 10.80
    −40 16.02 0.76 16.02
    −80 15.21 0.86 15.21
    −120 9.01 0.64 9.01
    −160 10.49 0.65 10.49
    0.5vol%PVA/C30 20 6.31 0.30 11.52 1.27 6.31 3.41 4.41 5.29 5.55
    0 4.53 0.14 9.35 0.86 6.31 0.48 0.56 0.65 0.68
    −40 7.95 0.24 12.49 1.28 4.57 0.42 0.55 0.64 0.68
    −80 8.96 0.19 12.70 1.47 4.91 0.33 0.46 0.53 0.57
    −120 5.09 0.37 9.82 0.97 6.30 1.50 1.77 2.04 2.16
    −160 9.92 0.34 16.17 2.46 4.47 1.45 1.73 1.91 2.05
    1.0vol%PVA/C30 20 10.06 0.39 15.65 2.11 6.31 6.84 11.31 13.70 16.15
    0 9.57 0.44 18.28 1.58 5.55 3.30 3.86 4.00 4.12
    −40 10.75 0.33 17.72 2.31 6.75 1.11 1.71 2.08 2.45
    −80 11.86 0.44 20.64 2.38 6.46 1.50 2.14 2.38 2.55
    −120 11.36 0.43 24.40 2.11 6.58 4.36 5.17 5.40 5.55
    −160 11.29 0.33 25.17 1.82 6.01 3.20 3.28 3.36 3.43
    1.5vol%PVA/C30 20 12.72 0.74 17.66 2.13 5.80 15.28 18.81 22.50 25.54
    0 12.66 0.58 20.30 1.59 3.97 4.11 4.32 4.53 4.76
    −40 12.74 0.61 21.05 1.68 4.37 2.13 2.26 2.42 2.51
    −80 15.06 0.56 23.78 2.14 4.41 1.95 2.32 2.52 2.71
    −120 18.24 0.64 26.28 2.62 3.88 4.82 6.19 7.04 7.79
    −160 15.01 0.64 29.61 2.15 4.92 6.17 6.30 6.51 6.77
    2.0vol%PVA/C30 20 13.96 0.81 20.50 2.49 5.61 15.13 18.58 23.50 28.26
    0 10.87 0.74 16.97 1.97 5.07 3.64 4.80 5.67 6.72
    −40 9.09 0.58 12.68 1.51 4.46 0.92 1.30 1.52 1.73
    −80 13.11 0.64 17.48 1.79 3.65 1.23 1.60 1.83 2.04
    −120 9.17 0.63 21.43 1.82 7.28 5.70 6.27 6.96 7.21
    −160 10.78 0.37 21.80 2.09 7.08 2.55 2.93 3.34 3.61
    Notes: Since the performance of UHTCC changes after the action of ultra-low temperature, its initial crack deflection increases, and its failure deflection decreases, resulting in that the toughness calculation method in the specification cannot well evaluate its toughness, and its toughness index I5 can only be calculated, while I10 and I20 cannot be evaluated and analyzed because they cannot meet the deflection requirements.
    下载: 导出CSV

    表  5  不同温度下各UHTCC试验组纤维增强效应系数

    Table  5.   Fiber reinforcement effect coefficients of each UHTCC test group at different temperatures

    GroupTemperature/℃Fiber reinforcement effect coefficient
    0.5vol%PVA/C30 20 5.20
    0 0.67
    −40 0.68
    −80 0.56
    −120 2.05
    −160 1.94
    1.0vol%PVA/C30 20 15.54
    0 4.07
    −40 2.57
    −80 2.43
    −120 5.35
    −160 3.16
    1.5vol%PVA/C30 20 24.55
    0 5.21
    −40 2.69
    −80 2.56
    −120 7.71
    −160 6.47
    2.0vol%PVA/C30 20 30.85
    0 7.24
    −40 1.85
    −80 2.18
    −120 7.23
    −160 3.67
    下载: 导出CSV
  • [1] LIU X M, ZHANG M H, CHIA K S, et al. Mechanical properties of ultra-lightweight cement composite at low tempera-tures of 0 to −60℃[J]. Cement and Concrete Composites,2016,73:289-298. doi: 10.1016/j.cemconcomp.2016.05.014
    [2] DAHMANI L, KHENANE A, KACI S. The behavior of the reinforced concrete at cryogenic temperatures[J]. Cryogenics,2007,47(9):517-525.
    [3] GERWICK B. Eighth international congress of the FIP[J]. Engineering Structures, 1978, 1(1): 55.
    [4] 程旭东, 朱兴吉. LNG储罐外墙温度应力分析及预应力筋设计[J]. 石油学报, 2012, 33(3):499-505.

    CHENG X D, ZHU X J. Thermal stress analysis and prestressed reinforcement design of external wall of LNG storage tank[J]. Petroleum Journal,2012,33(3):499-505(in Chinese).
    [5] 吴中伟. 纤维增强──水泥基材料的未来[J]. 混凝土与水泥制品, 1999, 1:3-4.

    WU Z W. Fiber reinforcement-future of cement based materials[J]. Concrete and Cement Products,1999,1:3-4(in Chinese).
    [6] 李贺东, 徐世烺. 超高韧性水泥基复合材料弯曲性能及韧性评价方法[J]. 土木工程学报, 2010, 43(3):32-39.

    LI H D, XU S L. The evaluation method of flexural prop-erties and toughness of ultra-high toughness cementitious composites[J]. Journal of Civil Engineering,2010,43(3):32-39(in Chinese).
    [7] 徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008(6):45-60. doi: 10.3321/j.issn:1000-131X.2008.06.008

    XU S L, LI H D. Research progress and engineering application of ultra-high toughness cementitious composites[J]. Journal of Civil Engineering,2008(6):45-60(in Chinese). doi: 10.3321/j.issn:1000-131X.2008.06.008
    [8] 张秀芳, 徐世烺, 侯利军. 采用超高韧性水泥基复合材料提高钢筋混凝土梁弯曲抗裂性能研究(II): 试验研究[J]. 土木工程学报, 2009, 42(10):53-66. doi: 10.3321/j.issn:1000-131X.2009.10.008

    ZHANG X F, XU S L, HOU L J. Using ultra-high toughness cementitious composites to improve the flexural crack re-sistance of reinforced concrete beams (II): Experimental study[J]. Journal of Civil Engineering,2009,42(10):53-66(in Chinese). doi: 10.3321/j.issn:1000-131X.2009.10.008
    [9] MIURA T. The properties of concrete at very low tempera-tures[J]. Materials and Structures,1989,22(4):243-254. doi: 10.1007/BF02472556
    [10] ELHACHA R, GREEN M F, WIGHT R G. Flexural behaviour of concrete beams strengthened with prestressed carbon fibre reinforced polymer sheets subjected to sustained loading and low temperature[J]. Canadian Journal of Civil Engineering,2004,31(2):239-252. doi: 10.1139/l03-091
    [11] XIE J, LI X M, WU H H. Experimental study on the axial-compression performance of concrete at cryogenic tem-peratures[J]. Construction and Building Materials,2014,72:380-388. doi: 10.1016/j.conbuildmat.2014.09.033
    [12] DANILLE D, HOULT N A, GREEN M F. Effects of varying temperature on the performance of reinforced concrete[J]. Springer Netherlands,2015,48(4):1109-1123.
    [13] YAN J B, XIE J. Behaviours of reinforced concrete beams under low temperatures[J]. Construction and Building Materials,2017,141:410-425. doi: 10.1016/j.conbuildmat.2017.03.029
    [14] TOGNON G. Behavior of mortars and concretes in the temperature range from 20℃ to −196℃[R]. 5th International Congress on the Chemistry of Cement, 1969: 229-249.
    [15] 中国工程建设协会标准. 纤维混凝土试验方法标准: CECS 13—2010[S]. 北京: 计划出版社, 2010.

    China Association for Engineering Construction Standardization. Fiber reinforced concrete test method standard: CECS 13—2010[S]. Beijing: Planning Press, 2010(in Chinese).
    [16] 中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T 50152—2012[S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing Urban-Rural Development of the People's Republic of China. Concrete structure test method standard: GB/T 50152—2012[S]. Beijing: China Architecture & Building Press, 2012(in Chinese)
    [17] LEE G C, SHIH T S, CHANG K C. Mechanical properties of concrete at low temperature[J]. Journal of Cold Regions Engineering,1988,2(1):13-24. doi: 10.1061/(ASCE)0887-381X(1988)2:1(13)
    [18] YAMANA S, KASAMI H, OKUNO T. Properties of concrete at very low temperatures[J]. ACI Special Publication,1978,55:1-12.
    [19] CAI X P, YANG W C, YUAN J, et al. Mechanics properties of concrete at low temperature[J]. Advanced Materials Research,2011,1278:389-393.
    [20] 史占崇, 苏庆田, 邵长宇, 等. 粗骨料UHPC的基本力学性能及弯曲韧性评价方法[J]. 土木工程学报, 2020, 53(12):86-97.

    SHI Z C, SU Q T, SHAO C Y, et al. The basic mechanical properties and flexural toughness evaluation method of coarse aggregate UHPC[J]. Journal of Civil Engineering,2020,53(12):86-97(in Chinese).
    [21] American Concrete Institute Committee. Measurement of properties of fiber reinforced concrete: 544.2R—89[S]. Dtroit: American Concrete Institute, 2002.
    [22] SKAPSKI A, BILLUPS R, ROONEY A. Capillary cone method for determination of surface tension of solids[J]. Jour-nal of Chemical Physics, 1957, 26(5): 1350-1351.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  729
  • HTML全文浏览量:  414
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-25
  • 修回日期:  2021-08-04
  • 录用日期:  2021-08-12
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回