留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFRP片材-工程水泥基复合材料-混凝土复合界面单面剪切试验研究

管品武 尚佳琦 范家俊 张普 陈启壮

管品武, 尚佳琦, 范家俊, 等. CFRP片材-工程水泥基复合材料-混凝土复合界面单面剪切试验研究[J]. 复合材料学报, 2022, 39(6): 2810-2820. doi: 10.13801/j.cnki.fhclxb.20210716.001
引用本文: 管品武, 尚佳琦, 范家俊, 等. CFRP片材-工程水泥基复合材料-混凝土复合界面单面剪切试验研究[J]. 复合材料学报, 2022, 39(6): 2810-2820. doi: 10.13801/j.cnki.fhclxb.20210716.001
GUAN Pinwu, SHANG Jiaqi, FAN Jiajun, et al. Single-shear test of CFRP plate-engineered cementitious composites-concrete composite interface[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2810-2820. doi: 10.13801/j.cnki.fhclxb.20210716.001
Citation: GUAN Pinwu, SHANG Jiaqi, FAN Jiajun, et al. Single-shear test of CFRP plate-engineered cementitious composites-concrete composite interface[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2810-2820. doi: 10.13801/j.cnki.fhclxb.20210716.001

CFRP片材-工程水泥基复合材料-混凝土复合界面单面剪切试验研究

doi: 10.13801/j.cnki.fhclxb.20210716.001
基金项目: 交通部重点研发项目(2018-MS5-136);河南省交通厅科技计划项目(2018J2;2019J-2-10)
详细信息
    通讯作者:

    张普,博士,教授,博士生导师,研究方向为高性能纤维增强聚合物复合材料及其结构 E-mail:zhp1243@163.com

  • 中图分类号: TU528

Single-shear test of CFRP plate-engineered cementitious composites-concrete composite interface

  • 摘要: 为解决碳纤维增强树脂复合材料(CFRP)片材加固混凝土结构时CFRP片材易过早剥离及工程水泥基复合材料(ECC)加固混凝土结构极限承载力提高不足等问题,采用CFRP片材-ECC-混凝土复合界面,以同时发挥CFRP片材高抗拉强度和ECC多缝开裂及耐久性较好的优势。设计21个单面剪切试件并进行单面剪切试验,研究不同ECC厚度和混凝土/ECC强度对复合界面承载力、应变分布及粘结滑移曲线等影响规律。试验结果表明:设置ECC层的单面剪切试件破坏模式均为CFRP片材和ECC界面间的剥离破坏,有效延缓了CFRP片材的剥离,并可以有效地传递界面剪应力。与无ECC层的试件相比,设置ECC层试件的极限承载力增加了27.3%~59.6%。基于陆新征等提出的极限承载力计算模型,提出了考虑ECC厚度的复合界面单面剪切试件的极限承载力预测模型,计算值与试验值相吻合。采用不同粘结滑移模型对试验数据进行分析,对比结果表明:Ferracuti等提出的模型考虑的影响因素较全面且模型的拟合结果较好。

     

  • 图  1  ECC拉伸试验及结果

    Figure  1.  Tensile test and results of ECC

    图  3  高压水射法处理ECC-混凝土界面

    Figure  3.  Interface treatment of ECC-concrete by high pressure water jet

    图  2  测试设置和仪器布局

    Figure  2.  Test setup and instrumentation layout

    图  4  CFRP片材-ECC-混凝土试件破坏模式

    Figure  4.  Failure mode of CFRP plate-ECC-concrete specimen

    图  5  被粘下的ECC厚度的比较

    Figure  5.  Comparison of amount of ECC being attached

    图  6  CFRP片材-ECC-混凝土极限承载力-ECC厚度曲线

    Figure  6.  Ultimate load of CFRP plate-ECC-concrete specimen-ECC thickness curves

    图  7  CFRP片材-ECC-混凝土试件中CFRP片材应变分布

    Figure  7.  Strain distribution of CFRP plate in CFRP plate-ECC-concrete specimens

    图  8  CFRP片材-ECC-混凝土极限承载力与ECC厚度关系拟合曲线

    Figure  8.  Fitting curves of relationship between ultimate load of CFRP plate-ECC-concrete specimen and ECC thickness

    图  9  CFRP片材-ECC-混凝土复合界面应力分布示意图

    Figure  9.  Schematic diagram of interface stress distribution between CFRP plate-ECC-concrete composite

    P—External force applied; εf—Strain of CFRP plate; σf(x), σc(x)—Stresses of CFRP plate and ECC, respectively; xi—Bonding position for strain gauges of CFRP plate; τ(x)—Interfacial shear stress

    图  10  典型CFRP片材-ECC-混凝土试件粘结-滑移曲线

    Figure  10.  Bond-slip curves of typical CFRP plate-ECC-concrete specimens

    图  11  CFRP片材-ECC-混凝土试件粘结-滑移数据拟合曲线

    Figure  11.  Bond-slip data fitting curves of CFRP plate-ECC-concrete specimens

    τ—Corresponding shear stress when the slip is S(Sp); τmax, $\bar \tau$—Peak shear stress; $S_0 $, $\bar S $—Slip corresponding to τmax; Sp—Slip; Su, Sf—Maximum slip; fc, ft—Compressive strength, tensile strength of concrete; βw, Gf—Size influence coefficient and fracture energy; Ef, tf—Elastic modulus and thickness of CFRP plate; bf, bc—Width of CFRP plate and concrete; Ga, ta—Shear modulus and thickness of the adhesive; n—Coefficient

    图  12  CFRP片材-ECC-混凝土Ferracuti等[18]的模型拟合曲线

    Figure  12.  Ferracuti et al[18] model fitting curves of CFRP plate-ECC-concrete specimens

    表  1  工程水泥基复合材料(ECC)配合比

    Table  1.   Proportion of engineered cementitious composites (ECC)

    ECCCementFly ashSilica fumeQuartz sandWaterPVAWater reducerThickener
    C30 1 3.0 0.3 0.4 1.37 2.00% 0.2% 0.08%
    C50 1 2.0 0.3 0.4 0.92 2.00% 0.2% 0.05%
    Notes: Fly ash, silica fume, quartz sand, water—Relative mass ratios to cement; PVA, water reducer, thickener—Relative volume ratios to ECC; PVA—Polyvinyl alcohol.
    下载: 导出CSV

    表  2  聚乙烯醇(PVA)纤维的材料性能

    Table  2.   Material properties of polyvinyl alcohol (PVA) fibers

    Diameter/μmLength/mmTensile strength/MPaYoung’s modulus/GPaDensity/(g·cm−3)
    40121560411.3
    下载: 导出CSV

    表  3  混凝土配合比

    Table  3.   Proportion of concrete kg/m3

    ConcreteWaterCementFly ashSandGravel
    C30 165 281 70 678 1206
    C50 165 376 95 565 1199
    下载: 导出CSV

    表  4  CFRP片材-ECC-混凝土试件设计

    Table  4.   Design of CFRP plate-ECC-concrete specimens

    SpecimenConcrete/ECC strength/MPaECC thickness/mm
    C30-E10 30 10
    C30-E20 30 20
    C30-E30 30 30
    C50-E10 50 10
    C50-E20 50 20
    C50-E30 50 30
    C30 30
    下载: 导出CSV

    表  5  CFRP片材-ECC-混凝土试验结果汇总

    Table  5.   Summary of test results of CFRP plate-ECC-concrete specimens

    SpecimenUltimate load/kNAverage/kNTheoretical/kNE/TYANG yongxin et al[14]Neubauer et al[15]LU xinzheng et al[16]
    C30-1 9.2
    C30-2 9.6 9.9 12.5 20.8 15.4
    C30-3 10.8
    C30-E10-1 12.3 0.88
    C30-E10-2 12.4 12.6 13.9 0.89 27.9 42.3 28.2
    C30-E10-3 13.0 0.94
    C30-E20-1 14.8 0.89
    C30-E20-2 14.6 14.8 16.6 0.88 27.9 42.3 28.2
    C30-E20-3 14.9 0.90
    C30-E30-1 15.3 0.86
    C30-E30-2 15.8 15.8 18.3 0.84 27.9 42.3 28.2
    C30-E30-3 16.2 0.89
    C50-E10-1 15.9 1.14
    C50-E10-2 16.8 16.4 13.9 1.20 30.3 45.2 29.2
    C50-E10-3 16.4 1.17
    C50-E20-1 20.4 1.22
    C50-E20-2 21.5 20.5 16.6 1.19 30.3 45.2 29.2
    C50-E20-3 19.6 1.18
    C50-E30-1 22.3 1.21
    C50-E30-2 20.5 20.9 18.3 1.12 30.3 45.2 29.2
    C50-E30-3 20.0 1.09
    Notes: E—Experimental value; T—Theoretical value.
    下载: 导出CSV
  • [1] 李向民, 张富文, 许清风. 粘贴不同FRP布加固预制空心板的试验研究和计算分析[J]. 土木工程学报, 2014, 47(2):71-81.

    LI Xiangmin, ZHANG Fuwen, XU Qingfeng. Experimental study and computational analysis on PC hollow-core slabs strengthened with different FRP strips[J]. China Civil Engineering Journal,2014,47(2):71-81(in Chinese).
    [2] 施嘉伟, 朱虹, 吴智深, 等. FRP片材-混凝土界面应变率效应试验研究[J]. 土木工程学报, 2012, 45(12):99-107.

    SHI Jiawei, ZHU Hong, WU Zhishen, et al. Experimental study of the strain rate effect of FRP sheet-concrete interface[J]. China Civil Engineering Journal,2012,45(12):99-107(in Chinese).
    [3] WU T, SUN Y J, LIU X. Comparative study of the flexural behavior of steel fiber-reinforced lightweight aggregate concrete beams reinforced and prestressed with CFRP tendons[J]. Engineering Structures,2021,233:111901. doi: 10.1016/j.engstruct.2021.111901
    [4] 江佳斐, 隋凯. 纤维网格增强超高韧性水泥复合材料加固混凝土圆柱受压性能试验[J]. 复合材料学报, 2019, 36(8):1957-1967.

    JIANG Jiafei, SUI Kai. Experimental study of compression performance of concrete cylinder strengthened by textile reinforced engineering cement composites[J]. Acta Materiae Compositae Sinica,2019,36(8):1957-1967(in Chinese).
    [5] 樊健生, 刘入瑞, 张君. 采用混杂纤维ECC的叠合板组合梁负弯矩受力性能试验研究[J]. 土木工程学报, 2021, 54(4):57-67.

    FAN Jiansheng, LIU Rurui, ZHANG Jun. Experimental research on mechanical behavior of composite beams with precast slabs and hybrid fiber ECC under negative momen[J]. China Civil Engineering Journal,2021,54(4):57-67(in Chinese).
    [6] 葛文杰, 虞佳敏, 高培琦. 碳纤维布加固玄武岩纤维复材筋工程用水泥基复合材料混凝土梁的受弯性能[J]. 工业建筑, 2020, 50(2):163-168.

    GE Wenjie, YU Jiamin, GAO Peiqi. Experimental research on the flexural behavior of FRP reinforced ECC-concrete composite beams strengthened with carbon fiber sheet[J]. Industrial Construction,2020,50(2):163-168(in Chinese).
    [7] WU C, LI V. CFRP-ECC hybrid for strengthening of the concrete structures[J]. Composite Structures,2017,178:372-382. doi: 10.1016/j.compstruct.2017.07.034
    [8] 李趁趁, 于爱民, 高丹盈, 等. 侵蚀环境下FRP条带加固锈蚀钢筋混凝土圆柱轴心受压试验[J]. 复合材料学报, 2020, 37(8):2015-2028.

    LI Chenchen, YU Aimin, GAO Danying, et al. Experimental study on axial compression of corroded reinforced concretecolumns strengthened with FRP strips under erosion environment[J]. Acta Materiae Compositae Sinica,2020,37(8):2015-2028(in Chinese).
    [9] 谷倩, 董格. 喷射FRP加固震损钢筋混凝土柱抗震性能试验[J]. 复合材料学报, 2016, 33(5):1009-1019.

    GU Qian, DONG Ge. Test of seismic performance of earthquake damaged reinforced concrete columns strengthened with sprayed FRP[J]. Acta Materiae Compositae Sinica,2016,33(5):1009-1019(in Chinese).
    [10] ASLAM H M U, KHAN Q Z, SAMI A, et al. Axial compressive behavior of damaged steel and GFRP bars reinforced concrete columns retrofitted with CFRP laminates[J]. Composite Structures,2021,258:113206. doi: 10.1016/j.compstruct.2020.113206
    [11] NIE X F, ZHANG S S, YU T. Strengths of RC beams with a fibre-reinforced polymer (FRP)-strengthened web opening[J]. Composite Structures,2021,258:113380. doi: 10.1016/j.compstruct.2020.113380
    [12] CORRADI M, VEMURY C M, EDMONDSON V, et al. Local FRP reinforcement of existing timber beams[J]. Compo-site Structures,2021,258:113363. doi: 10.1016/j.compstruct.2020.113363
    [13] SUI L, LUO M, YU K, et al. Effect of engineered cementitious composite on the bond behavior between fiber-reinforced polymer and concrete[J]. Composite Structures,2018,184:775-788. doi: 10.1016/j.compstruct.2017.10.050
    [14] 杨勇新, 岳清瑞, 胡云昌. 碳纤维布与混凝土粘结性能的试验研究[J]. 建筑结构学报, 2001(3):36-42. doi: 10.3321/j.issn:1000-6869.2001.03.007

    YANG Yongxin, YUE Qingrui, HU Yunchang. Experimental study on bond performance between carbon fiber sheets and concrete[J]. Journal of Building Structures,2001(3):36-42(in Chinese). doi: 10.3321/j.issn:1000-6869.2001.03.007
    [15] NEUBAUER U, ROSTASY F S. Debonding mechanism and model for CFRP-plates as external reinforcement for concrete members[C]//International Conference Composites in Construction. Oporto, 2001.
    [16] LU X Z, YE L, TENG J, et al. Meso-scale finite element model for FRP sheets/plates bonded to concrete[J]. Engineering Structures,2005,27:564-575. doi: 10.1016/j.engstruct.2004.11.015
    [17] ZHANG P, WU G, ZHU H, et al. Mechanical performance of the wet-bond interface between FRP plates and cast-in-place concrete[J]. Journal of Composites for Construction,2014,18(6):04014016.
    [18] FERRACUTI B, SAVOIA M, MAZZOTTI C. Interface law for FRP-concrete delamination[J]. Composite Structures,2007,80:523-531. doi: 10.1016/j.compstruct.2006.07.001
    [19] DAI J G, UEDA T. Local bond stress slip relations for frp sheets-concrete interfaces[J]. Fibre-Reinforced Polymer Reinforcement for Concrete Structures,2003,2:143-152.
    [20] LU X Z, JIANG J J, TENG J G, et al. Finite element simulation of debonding in FRP-to-concrete bonded joints[J]. Construction and Building Materials,2006,20:412-424. doi: 10.1016/j.conbuildmat.2005.01.033
    [21] 陆新征. FRP-混凝土界面行为研究[D]. 北京: 清华大学, 2005.

    LU Xinzheng. Studies on FRP-concrete interface[D]. Beijing: Tsinghua University, 2005(in Chinese).
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  1029
  • HTML全文浏览量:  393
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-22
  • 修回日期:  2021-06-24
  • 录用日期:  2021-07-09
  • 网络出版日期:  2021-07-16
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回