Research progress of modified epoxy resin anticorrosive composite coatings
-
摘要: 在防腐领域,环氧树脂防腐复合涂层是防止金属腐蚀的优良材料。环氧树脂涂层在金属和腐蚀性离子之间形成了屏障,但环氧树脂在固化期间,由于机械破裂和微孔的形成,防腐效果并不持久。本文介绍了纳米粒子改性环氧树脂防腐涂层、微/纳米容器改性环氧树脂防腐涂层、生物基材料改性环氧树脂防腐涂层这3种提高环氧树脂防腐性能的策略,综述了环氧树脂防腐复合涂层改性的研究进展,并展望了环氧树脂防腐复合涂层未来的发展方向,未来应该开发出兼具智能自预警与自修复、多功能化、成本效益的绿色环氧防腐复合涂层。Abstract: In the field of anti-corrosion, epoxy resin anti-corrosion composite coating is an excellent material to prevent metal corrosion. The epoxy coating forms a barrier between the metal and the corrosive ions, but the anti-corrosion effect of the epoxy resin does not last long during curing due to mechanical breakage and the formation of micropores. Three strategies for enhancing the anticorrosive properties of epoxy resin are introduced in this paper, namely nanoparticle modification, micro/nano container modification, and bio-based material modification. The research progress of epoxy resin anticorrosive composite coating modification is reviewed, and the future development direction of epoxy resin anticorrosive composite coating is prospected. In the future, a green epoxy anticorrosive composite coating with intelligent self-warning and self-repair, multi-function and cost-effective should be developed.
-
Key words:
- epoxy resin /
- anticorrosion /
- composite coating /
- nanoparticle /
- nano container /
- self-warning /
- self-repair
-
图 6 在3.5wt%NaCl (pH=6.8)溶液中浸泡35天后,碳钢基体上不含((a)~(e))和含3% 2-氨基-5-巯基-1, 3, 4-噻二唑@介孔二氧化硅-聚丙烯酸(AMT@MSN-PAA) ((f)~(j))人工划痕环氧涂层的光学图像[47]
Figure 6. Optical images of the artificial scratch epoxy coatings without ((a)-(e)) and with 3% 2-amino-5-mercapto-1, 3, 4-thiadiazole@mesoporous silica-polyacrylic acid (AMT@MSN-PAA) ((f)-(j)) on carbon steel substrate after immersed in 3.5wt%NaCl solution with pH=6.8 for 35 days[47]
图 7 涂层划伤2 h ((a1)~(c1))和24 h ((a2)~(c2))用SKP测量的电位分布图(a—EP/TpPa-1wt%;b—EP/MSNs-1wt%;c—EP/MSNs-CS/TpPa-1wt%;复合涂层a、b未负载BTA,复合涂层c负载BTA)[48]
E—Coating local surface potential; MSNs—Silica nanocontainer; BTA—Benzotriazole; CS—Chitosan; TpPa—Two-dimensional covalent organic skeleton TpPa (1, 3, 5-triformylpyrocatechol (Tp) and p-phenylenediamine (Pa) synthesized by Schiff base reaction); SKP—Skp-kelvin probe scan
Figure 7. Potential profiles measured by SKP at 2 h ((a1)-(c1)) and 24 h ((a2)-(c2)) after scratching (a—EP/TpPa-1wt%; b—EP/MSNs-1wt%; c—EP/MSNs-CS/TpPa-1wt%; Composite coating a, b is not loaded with BTA, and composite coating c is loaded with BTA)[48]
图 9 杂化埃洛石纳米管(HHNTs)的合成(a)和HNT的负载和连续层间的静电吸引((b), (c))示意图[54]
HNTs/IM/PEI/SPEEK/DDA—Alloxite nanotube/imidazole/polyvinyl imide/sulfonated polyether ether ketone/dodecylamine composite material; HHNTs—Hybrid halloysite nanotubes
Figure 9. Schematic of synthesis of HHNTs (a) and loading of HNTs and the electrostatic attraction between the consecutive layers of HHNTs ((b), (c))[54]
图 12 水性环氧复合涂层(WE-PB)的制备示意图[65]
NC514s—Cashew phenol based epoxy resin; PEG—Polyethylene glycol diglycidyl ether; DAPM—1, 8-diamino-p-menthol; PDMS— Polydimethylsiloxane; BTA—Benzotriazole; WCA—Cashew phenol based water-based epoxy curing agent; 2K WE—Two-component water-based epoxy resin; SS—304 stainless steel
Figure 12. Schematic of preparation of waterborne epoxy composite coating (WE-PB)[65]
-
[1] LEI Y, QIU Z, TAN N, et al. Polyaniline/CeO2 nanocomposites as corrosion inhibitors for improving the corrosive performance of epoxy coating on carbon steel in 3.5% NaCl solution[J]. Progress in Organic Coatings, 2020, 139: 105430. doi: 10.1016/j.porgcoat.2019.105430 [2] THAI T T, DRUART M E, PAINT Y, et al. Influence of the sol-gel mesoporosity on the corrosion protection given by an epoxy primer applied on aluminum alloy 2024-T3[J]. Progress in Organic Coatings, 2018, 121: 53-63. doi: 10.1016/j.porgcoat.2018.04.013 [3] MANIAM K K, PAUL S. Corrosion performance of electrodeposited zinc and zinc-alloy coatings in marine environment[J]. Corrosion and Materials Degradation, 2021, 2(2): 163-189. doi: 10.3390/cmd2020010 [4] HONARVAR NAZARI M, ZHANG Y, MAHMOODI A, et al. Nanocomposite organic coatings for corrosion protection of metals: A review of recent advances[J]. Progress in Organic Coatings, 2022, 162: 106573. doi: 10.1016/j.porgcoat.2021.106573 [5] WANG S, LIU W, SHI H, et al. Co-modification of nano-silica and lysine on graphene oxide nanosheets to enhance the corrosion resistance of waterborne epoxy coatings in 3.5% NaCl solution[J]. Polymer, 2021, 222: 123665. doi: 10.1016/j.polymer.2021.123665 [6] SARI M G, RAMEZANZADEH B. Epoxy composite coating corrosion protection properties reinforcement through the addition of hydroxyl-terminated hyperbranched polyamide non-covalently assembled graphene oxide platforms[J]. Construction and Building Materials, 2020, 234: 117421. doi: 10.1016/j.conbuildmat.2019.117421 [7] WU Y, JIANG F, QIANG Y, et al. Synthesizing a novel fluorinated reduced graphene oxide-CeO2 hybrid nanofiller to achieve highly corrosion protection for waterborne epoxy coatings[J]. Carbon, 2021, 176: 39-51. doi: 10.1016/j.carbon.2021.01.135 [8] CHENG L, WU H, LI J, et al. Polydopamine modified ultrathin hydroxyapatite nanosheets for anti-corrosion reinforcement in polymeric coatings[J]. Corrosion Science, 2021, 178: 109064. doi: 10.1016/j.corsci.2020.109064 [9] SUN J, TANG Z, MENG G, et al. Silane functionalized plasma-treated boron nitride nanosheets for anticorrosive reinforcement of waterborne epoxy coatings[J]. Progress in Organic Coatings, 2022, 167: 106831. doi: 10.1016/j.porgcoat.2022.106831 [10] LIU T, ZHANG D, MA L, et al. Smart protective coatings with self-sensing and active corrosion protection dual functionality from pH-sensitive calcium carbonate microcontainers[J]. Corrosion Science, 2022, 200: 110254. doi: 10.1016/j.corsci.2022.110254 [11] MENG F, ZHANG T, LIU L, et al. Failure behaviour of an epoxy coating with polyaniline modified graphene oxide under marine alternating hydrostatic pressure[J]. Surface and Coatings Technology, 2019, 361: 188-195. doi: 10.1016/j.surfcoat.2019.01.037 [12] HUANG H, HUANG X, XIE Y, et al. Fabrication of h-BN-rGO@PDA nanohybrids for composite coatings with enhanced anticorrosion performance[J]. Progress in Organic Coatings, 2019, 130: 124-131. doi: 10.1016/j.porgcoat.2019.01.059 [13] BARTOLI M, GIORCELLI M, ROSSO C, et al. Influence of commercial biochar fillers on brittleness/ductility of epoxy resin composites[J]. Applied Sciences, 2019, 9(15): 3109. doi: 10.3390/app9153109 [14] YE Y, ZHANG D, LI J, et al. One-step synthesis of superhydrophobic polyhedral oligomeric silsesquioxane-graphene oxide and its application in anti-corrosion and anti-wear fields[J]. Corrosion Science, 2019, 147: 9-21. doi: 10.1016/j.corsci.2018.10.034 [15] CUBIDES Y, CASTANEDA H. Corrosion protection mechanisms of carbon nanotube and zinc-rich epoxy primers on carbon steel in simulated concrete pore solutions in the presence of chloride ions[J]. Corrosion Science, 2016, 109: 145-161. doi: 10.1016/j.corsci.2016.03.023 [16] LI X, LI L, ZHANG W, et al. Grafting of polyaniline onto polydopamine-wrapped carbon nanotubes to enhance corrosion protection properties of epoxy coating[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 670: 131548. doi: 10.1016/j.colsurfa.2023.131548 [17] GHAHREMANI P, MOSTAFATABAR A H, BAHLAKEH G, et al. Rational design of a novel multi-functional carbon-based nano-carrier based on multi-walled-CNT-oxide/polydopamine/chitosan for epoxy composite with robust pH-sensitive active anti-corrosion properties[J]. Carbon, 2022, 189: 113-141. doi: 10.1016/j.carbon.2021.11.067 [18] KALE M B, LUO Z, ZHANG X, et al. Waterborne polyurethane/graphene oxide-silica nanocomposites with improved mechanical and thermal properties for leather coatings using screen printing[J]. Polymer, 2019, 170: 43-53. doi: 10.1016/j.polymer.2019.02.055 [19] DING R, LI W, WANG X, et al. A brief review of corrosion protective films and coatings based on graphene and graphene oxide[J]. Journal of Alloys and Compounds, 2018, 764: 1039-1055. doi: 10.1016/j.jallcom.2018.06.133 [20] NAN D, LI X, LI D, et al. Preparation and anticorrosive performance of waterborne epoxy resin composite coating with amino-modified graphene oxide[J]. Polymers, 2023, 15(1): 27. [21] WANG L, CHEN Y, LUO J, et al. Synthesis of graphene oxide functionalized by phyticacid for anticorrosive reinforcement of waterborne epoxy coating [J]. Journal of Applied Polymer Science, 2022, 139(14): 51910. [22] 黄小庆, 杨建军, 陈春俊, 等. 功能型环氧树脂基防腐涂层的研究进展[J]. 精细化工, 2023, 40(8): 1625-1635.HUANG Xiaoqing, YANG Jianjun, CHEN Chunjun, et al. Research progress on functional epoxy-based anti-corrosion[J]. Fine Chemical, 2023, 40(8): 1625-1635(in Chinese). [23] KULYK B, FREITAS M A, SANTOS N F, et al. A critical review on the production and application of graphene and graphene-based materials in anti-corrosion coatings[J]. Critical Reviews in Solid State and Material Sciences, 2022, 47: 309-355. doi: 10.1080/10408436.2021.1886046 [24] ZHANG X, LI B, CHEN T, et al. Study on CePO4 modified PANI/RGO composites to enhance the anti-corrosion property of epoxy resin[J]. Progress in Organic Coatings, 2023, 178: 107472. doi: 10.1016/j.porgcoat.2023.107472 [25] KUMAR A M, JOSE J, HUSSEIN M A. Novel polyaniline/chitosan/reduced graphene oxide ternary nanocomposites: Feasible reinforcement in epoxy coatings on mild steel for corrosion protection[J]. Progress in Organic Coatings, 2022, 163: 106678. doi: 10.1016/j.porgcoat.2021.106678 [26] WANG Z, MI B. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets[J]. Environmental Science & Technology, 2017, 51(15): 8229-8244. [27] JING Y, WANG P, YANG Q, et al. Molybdenum disulfide with poly(dopamine) and epoxy groups as an efficiently anticorrosive reinforcers in epoxy coating[J]. Synthetic Metals, 2020, 259: 116249. doi: 10.1016/j.synthmet.2019.116249 [28] DING J, ZHAO H, ZHAO X, et al. How semiconductor transition metal dichalcogenides replaced graphene for enhancing anticorrosion[J]. Journal of Materials Chemistry A, 2019, 7(22): 13511-13521. doi: 10.1039/C9TA04033A [29] LI X, LIU X, LIU H, et al. Structure, morphology and anti-corrosion performance of polyaniline modified molybdenum sulfide/epoxy composite coating[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639: 128345. doi: 10.1016/j.colsurfa.2022.128345 [30] ZHANG Y, DIE J, LI F, et al. Polypyrrole-modified molybdenum disulfide nanocomposite epoxy coating inhibits corrosion of mild steel[J]. Coatings, 2023, 13(6): 1046. doi: 10.3390/coatings13061046 [31] LIU X, YUE T, QI K, et al. Probe into metal-organic framework membranes fabricated via versatile polydopamine-assisted approach onto metal surfaces as anticorrosion coatings[J]. Corrosion Science, 2020, 177: 108949. doi: 10.1016/j.corsci.2020.108949 [32] QIU S, SU Y, ZHAO H, et al. Ultrathin metal-organic framework nanosheets prepared via surfactant-assisted method and exhibition of enhanced anticorrosion for composite coatings[J]. Corrosion Science, 2021, 178: 109090. doi: 10.1016/j.corsci.2020.109090 [33] LEE S H, SEO H Y, YEOM Y S, et al. Rational design of epoxy/ZIF-8 nanocomposites for enhanced suppression of copper ion migration[J]. Polymer, 2018, 150: 159-168. doi: 10.1016/j.polymer.2018.05.062 [34] DUAN S, DOU B, LIN X, et al. Influence of active nanofiller ZIF-8 metal-organic framework (MOF) by microemulsion method on anticorrosion of epoxy coatings[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624: 126836. doi: 10.1016/j.colsurfa.2021.126836 [35] AHMED B, ANJUM D H, GOGOTSI Y, et al. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes[J]. Nano Energy, 2017, 34: 249-256. doi: 10.1016/j.nanoen.2017.02.043 [36] LI C, XU J, XU Q, et al. Synthesis of Ti3C2 MXene@PANI composites for excellent anticorrosion performance of waterborne epoxy coating[J]. Progress in Organic Coatings, 2022, 165: 106673. doi: 10.1016/j.porgcoat.2021.106673 [37] CAI M, FENG P, YAN H, et al. Hierarchical Ti3C2T x@MoS2 heterostructures: A first principles calculation and application in corrosion/wear protection[J]. Journal of Materials Science & Technology, 2022, 116: 151-160. [38] YEGANEH M, ASADI N, OMIDI M, et al. An investigation on the corrosion behavior of the epoxy coating embedded with mesoporous silica nanocontainer loaded by sulfamethazine inhibitor[J]. Progress in Organic Coatings, 2019, 128: 75-81. doi: 10.1016/j.porgcoat.2018.12.022 [39] YANG S S, CHEN Z, CHEN T Q, et al. Hollow mesoporous silica nanoparticles decorated with cyclodextrin for inhibiting the corrosion of Mg alloys[J]. ACS Applied Nano Materials, 2020, 3(5): 4542-4552. doi: 10.1021/acsanm.0c00616 [40] HONG C Y, LI X, PAN C Y. Fabrication of smart nanocontainers with a mesoporous core and a pH-responsive shell for controlled uptake and release[J]. Journal of Materials Chemistry, 2009, 19(29): 515551-515560. [41] MIRMOHSENI A, AKBARI M, NAJJAR R, et al. Self-healing waterborne polyurethane coating by pH-dependent triggered-release mechanism[J]. Journal of Applied Polymer Science, 2019, 136(8): 47082. doi: 10.1002/app.47082 [42] CHEN T, FU J. pH-responsive nanovalves based on hollow mesoporous silica spheres for controlled release of corrosion inhibitor[J]. Nanotechnology, 2012, 23(23): 235605. doi: 10.1088/0957-4484/23/23/235605 [43] DING C, LIU Y, WANG M, et al. Self-healing, superhydrophobic coating based on mechanized silica nanoparticles for reliable protection of magnesium alloys[J]. Journal of Materials Chemistry A, 2016, 4(21): 8041-8052. doi: 10.1039/C6TA02575G [44] MA X, FENG H, LIANG C, et al. Mesoporous silica as micro/nano-carrier: From passive to active cargo delivery, a mini review[J]. Journal of Materials Science & Technology, 2017, 33(10): 1067-1074. [45] HE Q, CUI X, CUI F, et al. Size-controlled synthesis of monodispersed mesoporous silica nano-spheres under a neutral condition[J]. Microporous and Mesoporous Materials, 2009, 117(3): 609-616. doi: 10.1016/j.micromeso.2008.08.004 [46] FENG Y, CHEN S, FRANK C Y. Fabrication of SiO2 nanoparticle-polyelectrolyte nanocontainers with preloaded benzotriazole inhibitors and their self-releasing mechanism and kinetics[J]. Journal of Materials Science, 2017, 52(14): 8576-8590. doi: 10.1007/s10853-017-1074-x [47] ZHANG Y Y, WANG X J, TIAN H, et al. Epoxy composite coating with excellent anti-corrosion and self-healing properties based on mesoporous silica nano-containers[J]. Journal of Molecular Structure, 2023, 1294: 136538. doi: 10.1016/j.molstruc.2023.136538 [48] ZHANG C, LI W, GUO Z, et al. Controllable construction of mesoporous silica/2D-COF nanocomposites reinforced epoxy coatings with excellent self-repairing and long-lasting anticorrosion performances[J]. Progress in Organic Coatings, 2023, 177: 107441. doi: 10.1016/j.porgcoat.2023.107441 [49] LIU M, JIA Z, JIA D, et al. Recent advance in research on halloysite nanotubes-polymer nanocomposite[J]. Progress in Polymer Science, 2014, 39(8): 1498-1525. doi: 10.1016/j.progpolymsci.2014.04.004 [50] VIJAYAN P P, HANY EL-GAWADY Y M, AL-MAADEED M A S A. Halloysite nanotube as multifunctional component in epoxy protective coating[J]. Industrial & Engineering Chemistry Research, 2016, 55(42): 11186-11192. [51] ABDULLAYEV E, PRICE R, SHCHUKIN D, et al. Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole[J]. ACS Applied Materials & Interfaces, 2009, 1(7): 1437-1443. [52] BERTOLINO V, CAVALLARO G, MILIOTO S, et al. Polysaccharides/halloysite nanotubes for smart bionanocomposite materials[J]. Carbohydrate Polymers, 2020, 245: 116502. doi: 10.1016/j.carbpol.2020.116502 [53] YANG T, WANG T, FENG H, et al. Construction of smart halloysite nanocontainers for active long-term anticorrosion of epoxy coatings[J]. Progress in Organic Coatings, 2024, 187: 108146. doi: 10.1016/j.porgcoat.2023.108146 [54] KHAN A, HASSANEIN A, HABIB S, et al. Hybrid halloysite nanotubes as smart carriers for corrosion protection[J]. ACS Applied Materials & Interfaces, 2020, 12(33): 37571-37584. [55] ZHOU C, ZHANG H, PAN X, et al. Smart waterborne composite coating with passive/active protective performances using nanocontainers based on metal organic frameworks derived layered double hydroxides[J]. Journal of Colloid and Interface Science, 2022, 619: 132-147. doi: 10.1016/j.jcis.2022.03.088 [56] PAN X, LUO X, LI J, et al. Enhanced corrosion resistance of ammonium heptamolybdate (AHM) sealed LiAl LDHs conversion coating on aluminum alloy[J]. Surface and Coatings Technology, 2023, 474: 130043. doi: 10.1016/j.surfcoat.2023.130043 [57] ZHANG Y, LI Y, REN Y, et al. Double-doped LDH films on aluminum alloys for active protection[J]. Materials Letters, 2017, 192: 33-35. doi: 10.1016/j.matlet.2017.01.038 [58] LI J, LIN K, LUO X, et al. Enhanced corrosion protection property of Li-Al layered double hydroxides (LDHs) film modified by 2-guanidinosuccinic acid with excellent self-repairing and self-antibacterial properties[J]. Applied Surface Science, 2019, 480: 384-394. doi: 10.1016/j.apsusc.2019.02.164 [59] CHHETRI S, SAMANTA P, MURMU N C, et al. Anticorrosion properties of epoxy composite coating reinforced by molybdate-intercalated functionalized layered double hydroxide[J]. Journal of Composites Science, 2019, 3(1): 11. doi: 10.3390/jcs3010011 [60] 胡云飞, 曹祥康, 马小泽, 等. 采用荧光纳米填料改性环氧涂层实现缺陷可视化[J]. 中国腐蚀与防护学报, 2023, 43(3): 460-470. doi: 10.11902/1005.4537.2022.202HU Yunfei, CAO Xiangkang, MA Xiaoze, et al. Fluorescent nanofiller modified epoxy coatings for visualization of coating degradation[J]. Journal of Chinese Society for Corrosion and Protection, 2023, 43(3): 460-470(in Chinese). doi: 10.11902/1005.4537.2022.202 [61] ZHAO X, YUAN Y, WEI Y, et al. LDH-based "Smart" films for corrosion sensing and protection[J]. Materials, 2023, 16(9): 3483. doi: 10.3390/ma16093483 [62] WANG H, ZHANG C, ZENG W, et al. Making alkyd greener: Modified cardanol as bio-based reactive diluents for alkyd coating[J]. Progress in Organic Coatings, 2019, 135: 281-290. doi: 10.1016/j.porgcoat.2019.06.018 [63] DARROMAN E, DURAND N, BOUTEVIN B, et al. Improved cardanol derived epoxy coatings[J]. Progress in Organic Coatings, 2016, 91: 9-16. doi: 10.1016/j.porgcoat.2015.11.012 [64] PARASKAR P M, PRABHUDESAI M S, HATKAR V M, et al. Vegetable oil based polyurethane coatings—A sustainable approach: A review[J]. Progress in Organic Coatings, 2021, 156: 106267. doi: 10.1016/j.porgcoat.2021.106267 [65] LI C, XIA Z, YAN H, et al. Benzotriazole functionalized polydimethylsiloxane for reinforcement water-repellency and corrosion resistance of bio-based waterborne epoxy coatings in salt environment[J]. Corrosion Science, 2022, 199: 110150. doi: 10.1016/j.corsci.2022.110150 [66] ZHANG Y, CHU L, DAI Z, et al. Synergistically enhancing the performance of cardanol-rich epoxy anticorrosive coatings using cardanol-based reactive diluent and its functionalized graphene oxide[J]. Progress in Organic Coatings, 2022, 171: 107060. doi: 10.1016/j.porgcoat.2022.107060 [67] RAHMAN O U, SHI S, DING J, et al. Lignin nanoparticles: Synthesis, characterization and corrosion protection performance[J]. New Journal of Chemistry, 2018, 42(5): 3415-3425. doi: 10.1039/C7NJ04103A [68] VAN DE PAS D J, TORR K M. Biobased epoxy resins from deconstructed native softwood lignin[J]. Biomacromolecules, 2017, 18(8): 2640-2648. doi: 10.1021/acs.biomac.7b00767 [69] WANG X, LENG W, NAYANATHARA R M O, et al. Anticorrosive epoxy coatings from direct epoxidation of bioethanol fractionated lignin[J]. International Journal of Biological Macromolecules, 2022, 221: 268-277. doi: 10.1016/j.ijbiomac.2022.08.177 [70] TAN Z, WANG S, HU Z, et al. pH-responsive self-healing anticorrosion coating based on a lignin microsphere encapsulating inhibitor[J]. Industrial & Engineering Chemistry Research, 2020, 59(7): 2657-2666.