留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性环氧树脂防腐复合涂层的研究进展

童庆玲 杨建军 吴庆云 吴明元 张建安 刘久逸

童庆玲, 杨建军, 吴庆云, 等. 改性环氧树脂防腐复合涂层的研究进展[J]. 复合材料学报, 2024, 41(8): 3883-3896. doi: 10.13801/j.cnki.fhclxb.20240229.003
引用本文: 童庆玲, 杨建军, 吴庆云, 等. 改性环氧树脂防腐复合涂层的研究进展[J]. 复合材料学报, 2024, 41(8): 3883-3896. doi: 10.13801/j.cnki.fhclxb.20240229.003
TONG Qingling, YANG Jianjun, WU Qingyun, et al. Research progress of modified epoxy resin anticorrosive composite coatings[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 3883-3896. doi: 10.13801/j.cnki.fhclxb.20240229.003
Citation: TONG Qingling, YANG Jianjun, WU Qingyun, et al. Research progress of modified epoxy resin anticorrosive composite coatings[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 3883-3896. doi: 10.13801/j.cnki.fhclxb.20240229.003

改性环氧树脂防腐复合涂层的研究进展

doi: 10.13801/j.cnki.fhclxb.20240229.003
基金项目: 国家自然科学基金(51973001);安徽省科技计划重点项目(1704a0902018)
详细信息
    通讯作者:

    杨建军,硕士,教授,博士生导师,研究方向为水基高分子纳米杂化材料的合成及应用 E-mail: andayjj@163.com

  • 中图分类号: TG174.4;TB332

Research progress of modified epoxy resin anticorrosive composite coatings

Funds: National Natural Science Foundation of China (51973001); Anhui Province Science and Technology Program Key Project (1704a0902018)
  • 摘要: 在防腐领域,环氧树脂防腐复合涂层是防止金属腐蚀的优良材料。环氧树脂涂层在金属和腐蚀性离子之间形成了屏障,但环氧树脂在固化期间,由于机械破裂和微孔的形成,防腐效果并不持久。本文介绍了纳米粒子改性环氧树脂防腐涂层、微/纳米容器改性环氧树脂防腐涂层、生物基材料改性环氧树脂防腐涂层这3种提高环氧树脂防腐性能的策略,综述了环氧树脂防腐复合涂层改性的研究进展,并展望了环氧树脂防腐复合涂层未来的发展方向,未来应该开发出兼具智能自预警与自修复、多功能化、成本效益的绿色环氧防腐复合涂层。

     

  • 图  1  划痕涂层暴露在盐雾中30天的变化情况[17]

    EP—Pure epoxy resin; OMWCNT—Carbon oxide nanotubes; PDA—Polydopamine; CH—Chitosan

    Figure  1.  Visual situation of scratched coatings exposed to salt spray for 30 days[17]

    图  2  (a) 二元和三元纳米复合材料水接触角(WCA)结果[25];(b) MoS2的结构图[26]

    PE—Polyaniline/epoxy resin composite material; rGO—Reduced graphene oxide; PANI—Polyaniline; CS—Chitosan

    Figure  2.  (a) Water contact angle (WCA) results of synthesized binary and ternary nanocomposites[25]; (b) Structure of MoS2[26]

    图  3  通过传统方法和表面活性剂辅助方法制备四羧基苯基卟啉铜纳米片(Cu-TCPP) MOFs的示意图[32]

    Figure  3.  Schematic representation of the preparation for copper tetracarboxyphenyl porphyrin (Cu-TCPP) MOFs via traditional and surfactant-assisted methods[32]

    图  4  ZIF-8与环氧树脂基体反应机制示意图[34]

    Figure  4.  Schematic mechanisms of the reaction between ZIF-8 and epoxy matrices[34]

    图  5  Ti3C2 MXene@PANI复合材料的合成示意图[36]

    ANI+—Protonated aniline ion; APS—Ammonium persulfate

    Figure  5.  Schematic illustration of synthesis of Ti3C2 MXene@PANI composites[36]

    图  6  在3.5wt%NaCl (pH=6.8)溶液中浸泡35天后,碳钢基体上不含((a)~(e))和含3% 2-氨基-5-巯基-1, 3, 4-噻二唑@介孔二氧化硅-聚丙烯酸(AMT@MSN-PAA) ((f)~(j))人工划痕环氧涂层的光学图像[47]

    Figure  6.  Optical images of the artificial scratch epoxy coatings without ((a)-(e)) and with 3% 2-amino-5-mercapto-1, 3, 4-thiadiazole@mesoporous silica-polyacrylic acid (AMT@MSN-PAA) ((f)-(j)) on carbon steel substrate after immersed in 3.5wt%NaCl solution with pH=6.8 for 35 days[47]

    图  7  涂层划伤2 h ((a1)~(c1))和24 h ((a2)~(c2))用SKP测量的电位分布图(a—EP/TpPa-1wt%;b—EP/MSNs-1wt%;c—EP/MSNs-CS/TpPa-1wt%;复合涂层a、b未负载BTA,复合涂层c负载BTA)[48]

    E—Coating local surface potential; MSNs—Silica nanocontainer; BTA—Benzotriazole; CS—Chitosan; TpPa—Two-dimensional covalent organic skeleton TpPa (1, 3, 5-triformylpyrocatechol (Tp) and p-phenylenediamine (Pa) synthesized by Schiff base reaction); SKP—Skp-kelvin probe scan

    Figure  7.  Potential profiles measured by SKP at 2 h ((a1)-(c1)) and 24 h ((a2)-(c2)) after scratching (a—EP/TpPa-1wt%; b—EP/MSNs-1wt%; c—EP/MSNs-CS/TpPa-1wt%; Composite coating a, b is not loaded with BTA, and composite coating c is loaded with BTA)[48]

    图  8  埃洛石纳米管-壳聚糖@苯并三唑(HNT-CS@BTA)纳米容器(a)和复合涂层(b)的制备示意图[53]

    Figure  8.  Schematic diagram of the preparation of allostone nanotubes-chitosan@benzotriazole (HNT-CS@BTA) nanocontainers (a) and composite coatings (b)[53]

    图  9  杂化埃洛石纳米管(HHNTs)的合成(a)和HNT的负载和连续层间的静电吸引((b), (c))示意图[54]

    HNTs/IM/PEI/SPEEK/DDA—Alloxite nanotube/imidazole/polyvinyl imide/sulfonated polyether ether ketone/dodecylamine composite material; HHNTs—Hybrid halloysite nanotubes

    Figure  9.  Schematic of synthesis of HHNTs (a) and loading of HNTs and the electrostatic attraction between the consecutive layers of HHNTs ((b), (c))[54]

    图  10  介孔二氧化硅-苯并三唑@镍钴层状双氢氧化物(MSNs-BTA@ZIF-LDHs)纳米容器的合成路线[55]

    Figure  10.  Synthesis route of mesoporous silica-benzotriazole@nickel cobalt layered double hydroxide (MSNs-BTA@ZIF-LDHs) nanocontainers[55]

    图  11  样品在3.5wt%NaCl溶液中浸泡不同时间的荧光显微图:(a) 0天;(b) 3天;(c) 7天;(d) 10天;(e) 14天;(f) 21天[61]

    Figure  11.  Fluorescence micrographs of the samples after immersion in 3.5wt%NaCl solution for different times: (a) 0 day; (b) 3 days; (c) 7 days; (d) 10 days; (e) 14 days; (f) 21 days[61]

    图  12  水性环氧复合涂层(WE-PB)的制备示意图[65]

    NC514s—Cashew phenol based epoxy resin; PEG—Polyethylene glycol diglycidyl ether; DAPM—1, 8-diamino-p-menthol; PDMS— Polydimethylsiloxane; BTA—Benzotriazole; WCA—Cashew phenol based water-based epoxy curing agent; 2K WE—Two-component water-based epoxy resin; SS—304 stainless steel

    Figure  12.  Schematic of preparation of waterborne epoxy composite coating (WE-PB)[65]

  • [1] LEI Y, QIU Z, TAN N, et al. Polyaniline/CeO2 nanocomposites as corrosion inhibitors for improving the corrosive performance of epoxy coating on carbon steel in 3.5% NaCl solution[J]. Progress in Organic Coatings, 2020, 139: 105430. doi: 10.1016/j.porgcoat.2019.105430
    [2] THAI T T, DRUART M E, PAINT Y, et al. Influence of the sol-gel mesoporosity on the corrosion protection given by an epoxy primer applied on aluminum alloy 2024-T3[J]. Progress in Organic Coatings, 2018, 121: 53-63. doi: 10.1016/j.porgcoat.2018.04.013
    [3] MANIAM K K, PAUL S. Corrosion performance of electrodeposited zinc and zinc-alloy coatings in marine environment[J]. Corrosion and Materials Degradation, 2021, 2(2): 163-189. doi: 10.3390/cmd2020010
    [4] HONARVAR NAZARI M, ZHANG Y, MAHMOODI A, et al. Nanocomposite organic coatings for corrosion protection of metals: A review of recent advances[J]. Progress in Organic Coatings, 2022, 162: 106573. doi: 10.1016/j.porgcoat.2021.106573
    [5] WANG S, LIU W, SHI H, et al. Co-modification of nano-silica and lysine on graphene oxide nanosheets to enhance the corrosion resistance of waterborne epoxy coatings in 3.5% NaCl solution[J]. Polymer, 2021, 222: 123665. doi: 10.1016/j.polymer.2021.123665
    [6] SARI M G, RAMEZANZADEH B. Epoxy composite coating corrosion protection properties reinforcement through the addition of hydroxyl-terminated hyperbranched polyamide non-covalently assembled graphene oxide platforms[J]. Construction and Building Materials, 2020, 234: 117421. doi: 10.1016/j.conbuildmat.2019.117421
    [7] WU Y, JIANG F, QIANG Y, et al. Synthesizing a novel fluorinated reduced graphene oxide-CeO2 hybrid nanofiller to achieve highly corrosion protection for waterborne epoxy coatings[J]. Carbon, 2021, 176: 39-51. doi: 10.1016/j.carbon.2021.01.135
    [8] CHENG L, WU H, LI J, et al. Polydopamine modified ultrathin hydroxyapatite nanosheets for anti-corrosion reinforcement in polymeric coatings[J]. Corrosion Science, 2021, 178: 109064. doi: 10.1016/j.corsci.2020.109064
    [9] SUN J, TANG Z, MENG G, et al. Silane functionalized plasma-treated boron nitride nanosheets for anticorrosive reinforcement of waterborne epoxy coatings[J]. Progress in Organic Coatings, 2022, 167: 106831. doi: 10.1016/j.porgcoat.2022.106831
    [10] LIU T, ZHANG D, MA L, et al. Smart protective coatings with self-sensing and active corrosion protection dual functionality from pH-sensitive calcium carbonate microcontainers[J]. Corrosion Science, 2022, 200: 110254. doi: 10.1016/j.corsci.2022.110254
    [11] MENG F, ZHANG T, LIU L, et al. Failure behaviour of an epoxy coating with polyaniline modified graphene oxide under marine alternating hydrostatic pressure[J]. Surface and Coatings Technology, 2019, 361: 188-195. doi: 10.1016/j.surfcoat.2019.01.037
    [12] HUANG H, HUANG X, XIE Y, et al. Fabrication of h-BN-rGO@PDA nanohybrids for composite coatings with enhanced anticorrosion performance[J]. Progress in Organic Coatings, 2019, 130: 124-131. doi: 10.1016/j.porgcoat.2019.01.059
    [13] BARTOLI M, GIORCELLI M, ROSSO C, et al. Influence of commercial biochar fillers on brittleness/ductility of epoxy resin composites[J]. Applied Sciences, 2019, 9(15): 3109. doi: 10.3390/app9153109
    [14] YE Y, ZHANG D, LI J, et al. One-step synthesis of superhydrophobic polyhedral oligomeric silsesquioxane-graphene oxide and its application in anti-corrosion and anti-wear fields[J]. Corrosion Science, 2019, 147: 9-21. doi: 10.1016/j.corsci.2018.10.034
    [15] CUBIDES Y, CASTANEDA H. Corrosion protection mechanisms of carbon nanotube and zinc-rich epoxy primers on carbon steel in simulated concrete pore solutions in the presence of chloride ions[J]. Corrosion Science, 2016, 109: 145-161. doi: 10.1016/j.corsci.2016.03.023
    [16] LI X, LI L, ZHANG W, et al. Grafting of polyaniline onto polydopamine-wrapped carbon nanotubes to enhance corrosion protection properties of epoxy coating[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 670: 131548. doi: 10.1016/j.colsurfa.2023.131548
    [17] GHAHREMANI P, MOSTAFATABAR A H, BAHLAKEH G, et al. Rational design of a novel multi-functional carbon-based nano-carrier based on multi-walled-CNT-oxide/polydopamine/chitosan for epoxy composite with robust pH-sensitive active anti-corrosion properties[J]. Carbon, 2022, 189: 113-141. doi: 10.1016/j.carbon.2021.11.067
    [18] KALE M B, LUO Z, ZHANG X, et al. Waterborne polyurethane/graphene oxide-silica nanocomposites with improved mechanical and thermal properties for leather coatings using screen printing[J]. Polymer, 2019, 170: 43-53. doi: 10.1016/j.polymer.2019.02.055
    [19] DING R, LI W, WANG X, et al. A brief review of corrosion protective films and coatings based on graphene and graphene oxide[J]. Journal of Alloys and Compounds, 2018, 764: 1039-1055. doi: 10.1016/j.jallcom.2018.06.133
    [20] NAN D, LI X, LI D, et al. Preparation and anticorrosive performance of waterborne epoxy resin composite coating with amino-modified graphene oxide[J]. Polymers, 2023, 15(1): 27.
    [21] WANG L, CHEN Y, LUO J, et al. Synthesis of graphene oxide functionalized by phyticacid for anticorrosive reinforcement of waterborne epoxy coating [J]. Journal of Applied Polymer Science, 2022, 139(14): 51910.
    [22] 黄小庆, 杨建军, 陈春俊, 等. 功能型环氧树脂基防腐涂层的研究进展[J]. 精细化工, 2023, 40(8): 1625-1635.

    HUANG Xiaoqing, YANG Jianjun, CHEN Chunjun, et al. Research progress on functional epoxy-based anti-corrosion[J]. Fine Chemical, 2023, 40(8): 1625-1635(in Chinese).
    [23] KULYK B, FREITAS M A, SANTOS N F, et al. A critical review on the production and application of graphene and graphene-based materials in anti-corrosion coatings[J]. Critical Reviews in Solid State and Material Sciences, 2022, 47: 309-355. doi: 10.1080/10408436.2021.1886046
    [24] ZHANG X, LI B, CHEN T, et al. Study on CePO4 modified PANI/RGO composites to enhance the anti-corrosion property of epoxy resin[J]. Progress in Organic Coatings, 2023, 178: 107472. doi: 10.1016/j.porgcoat.2023.107472
    [25] KUMAR A M, JOSE J, HUSSEIN M A. Novel polyaniline/chitosan/reduced graphene oxide ternary nanocomposites: Feasible reinforcement in epoxy coatings on mild steel for corrosion protection[J]. Progress in Organic Coatings, 2022, 163: 106678. doi: 10.1016/j.porgcoat.2021.106678
    [26] WANG Z, MI B. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets[J]. Environmental Science & Technology, 2017, 51(15): 8229-8244.
    [27] JING Y, WANG P, YANG Q, et al. Molybdenum disulfide with poly(dopamine) and epoxy groups as an efficiently anticorrosive reinforcers in epoxy coating[J]. Synthetic Metals, 2020, 259: 116249. doi: 10.1016/j.synthmet.2019.116249
    [28] DING J, ZHAO H, ZHAO X, et al. How semiconductor transition metal dichalcogenides replaced graphene for enhancing anticorrosion[J]. Journal of Materials Chemistry A, 2019, 7(22): 13511-13521. doi: 10.1039/C9TA04033A
    [29] LI X, LIU X, LIU H, et al. Structure, morphology and anti-corrosion performance of polyaniline modified molybdenum sulfide/epoxy composite coating[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639: 128345. doi: 10.1016/j.colsurfa.2022.128345
    [30] ZHANG Y, DIE J, LI F, et al. Polypyrrole-modified molybdenum disulfide nanocomposite epoxy coating inhibits corrosion of mild steel[J]. Coatings, 2023, 13(6): 1046. doi: 10.3390/coatings13061046
    [31] LIU X, YUE T, QI K, et al. Probe into metal-organic framework membranes fabricated via versatile polydopamine-assisted approach onto metal surfaces as anticorrosion coatings[J]. Corrosion Science, 2020, 177: 108949. doi: 10.1016/j.corsci.2020.108949
    [32] QIU S, SU Y, ZHAO H, et al. Ultrathin metal-organic framework nanosheets prepared via surfactant-assisted method and exhibition of enhanced anticorrosion for composite coatings[J]. Corrosion Science, 2021, 178: 109090. doi: 10.1016/j.corsci.2020.109090
    [33] LEE S H, SEO H Y, YEOM Y S, et al. Rational design of epoxy/ZIF-8 nanocomposites for enhanced suppression of copper ion migration[J]. Polymer, 2018, 150: 159-168. doi: 10.1016/j.polymer.2018.05.062
    [34] DUAN S, DOU B, LIN X, et al. Influence of active nanofiller ZIF-8 metal-organic framework (MOF) by microemulsion method on anticorrosion of epoxy coatings[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624: 126836. doi: 10.1016/j.colsurfa.2021.126836
    [35] AHMED B, ANJUM D H, GOGOTSI Y, et al. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes[J]. Nano Energy, 2017, 34: 249-256. doi: 10.1016/j.nanoen.2017.02.043
    [36] LI C, XU J, XU Q, et al. Synthesis of Ti3C2 MXene@PANI composites for excellent anticorrosion performance of waterborne epoxy coating[J]. Progress in Organic Coatings, 2022, 165: 106673. doi: 10.1016/j.porgcoat.2021.106673
    [37] CAI M, FENG P, YAN H, et al. Hierarchical Ti3C2T x@MoS2 heterostructures: A first principles calculation and application in corrosion/wear protection[J]. Journal of Materials Science & Technology, 2022, 116: 151-160.
    [38] YEGANEH M, ASADI N, OMIDI M, et al. An investigation on the corrosion behavior of the epoxy coating embedded with mesoporous silica nanocontainer loaded by sulfamethazine inhibitor[J]. Progress in Organic Coatings, 2019, 128: 75-81. doi: 10.1016/j.porgcoat.2018.12.022
    [39] YANG S S, CHEN Z, CHEN T Q, et al. Hollow mesoporous silica nanoparticles decorated with cyclodextrin for inhibiting the corrosion of Mg alloys[J]. ACS Applied Nano Materials, 2020, 3(5): 4542-4552. doi: 10.1021/acsanm.0c00616
    [40] HONG C Y, LI X, PAN C Y. Fabrication of smart nanocontainers with a mesoporous core and a pH-responsive shell for controlled uptake and release[J]. Journal of Materials Chemistry, 2009, 19(29): 515551-515560.
    [41] MIRMOHSENI A, AKBARI M, NAJJAR R, et al. Self-healing waterborne polyurethane coating by pH-dependent triggered-release mechanism[J]. Journal of Applied Polymer Science, 2019, 136(8): 47082. doi: 10.1002/app.47082
    [42] CHEN T, FU J. pH-responsive nanovalves based on hollow mesoporous silica spheres for controlled release of corrosion inhibitor[J]. Nanotechnology, 2012, 23(23): 235605. doi: 10.1088/0957-4484/23/23/235605
    [43] DING C, LIU Y, WANG M, et al. Self-healing, superhydrophobic coating based on mechanized silica nanoparticles for reliable protection of magnesium alloys[J]. Journal of Materials Chemistry A, 2016, 4(21): 8041-8052. doi: 10.1039/C6TA02575G
    [44] MA X, FENG H, LIANG C, et al. Mesoporous silica as micro/nano-carrier: From passive to active cargo delivery, a mini review[J]. Journal of Materials Science & Technology, 2017, 33(10): 1067-1074.
    [45] HE Q, CUI X, CUI F, et al. Size-controlled synthesis of monodispersed mesoporous silica nano-spheres under a neutral condition[J]. Microporous and Mesoporous Materials, 2009, 117(3): 609-616. doi: 10.1016/j.micromeso.2008.08.004
    [46] FENG Y, CHEN S, FRANK C Y. Fabrication of SiO2 nanoparticle-polyelectrolyte nanocontainers with preloaded benzotriazole inhibitors and their self-releasing mechanism and kinetics[J]. Journal of Materials Science, 2017, 52(14): 8576-8590. doi: 10.1007/s10853-017-1074-x
    [47] ZHANG Y Y, WANG X J, TIAN H, et al. Epoxy composite coating with excellent anti-corrosion and self-healing properties based on mesoporous silica nano-containers[J]. Journal of Molecular Structure, 2023, 1294: 136538. doi: 10.1016/j.molstruc.2023.136538
    [48] ZHANG C, LI W, GUO Z, et al. Controllable construction of mesoporous silica/2D-COF nanocomposites reinforced epoxy coatings with excellent self-repairing and long-lasting anticorrosion performances[J]. Progress in Organic Coatings, 2023, 177: 107441. doi: 10.1016/j.porgcoat.2023.107441
    [49] LIU M, JIA Z, JIA D, et al. Recent advance in research on halloysite nanotubes-polymer nanocomposite[J]. Progress in Polymer Science, 2014, 39(8): 1498-1525. doi: 10.1016/j.progpolymsci.2014.04.004
    [50] VIJAYAN P P, HANY EL-GAWADY Y M, AL-MAADEED M A S A. Halloysite nanotube as multifunctional component in epoxy protective coating[J]. Industrial & Engineering Chemistry Research, 2016, 55(42): 11186-11192.
    [51] ABDULLAYEV E, PRICE R, SHCHUKIN D, et al. Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole[J]. ACS Applied Materials & Interfaces, 2009, 1(7): 1437-1443.
    [52] BERTOLINO V, CAVALLARO G, MILIOTO S, et al. Polysaccharides/halloysite nanotubes for smart bionanocomposite materials[J]. Carbohydrate Polymers, 2020, 245: 116502. doi: 10.1016/j.carbpol.2020.116502
    [53] YANG T, WANG T, FENG H, et al. Construction of smart halloysite nanocontainers for active long-term anticorrosion of epoxy coatings[J]. Progress in Organic Coatings, 2024, 187: 108146. doi: 10.1016/j.porgcoat.2023.108146
    [54] KHAN A, HASSANEIN A, HABIB S, et al. Hybrid halloysite nanotubes as smart carriers for corrosion protection[J]. ACS Applied Materials & Interfaces, 2020, 12(33): 37571-37584.
    [55] ZHOU C, ZHANG H, PAN X, et al. Smart waterborne composite coating with passive/active protective performances using nanocontainers based on metal organic frameworks derived layered double hydroxides[J]. Journal of Colloid and Interface Science, 2022, 619: 132-147. doi: 10.1016/j.jcis.2022.03.088
    [56] PAN X, LUO X, LI J, et al. Enhanced corrosion resistance of ammonium heptamolybdate (AHM) sealed LiAl LDHs conversion coating on aluminum alloy[J]. Surface and Coatings Technology, 2023, 474: 130043. doi: 10.1016/j.surfcoat.2023.130043
    [57] ZHANG Y, LI Y, REN Y, et al. Double-doped LDH films on aluminum alloys for active protection[J]. Materials Letters, 2017, 192: 33-35. doi: 10.1016/j.matlet.2017.01.038
    [58] LI J, LIN K, LUO X, et al. Enhanced corrosion protection property of Li-Al layered double hydroxides (LDHs) film modified by 2-guanidinosuccinic acid with excellent self-repairing and self-antibacterial properties[J]. Applied Surface Science, 2019, 480: 384-394. doi: 10.1016/j.apsusc.2019.02.164
    [59] CHHETRI S, SAMANTA P, MURMU N C, et al. Anticorrosion properties of epoxy composite coating reinforced by molybdate-intercalated functionalized layered double hydroxide[J]. Journal of Composites Science, 2019, 3(1): 11. doi: 10.3390/jcs3010011
    [60] 胡云飞, 曹祥康, 马小泽, 等. 采用荧光纳米填料改性环氧涂层实现缺陷可视化[J]. 中国腐蚀与防护学报, 2023, 43(3): 460-470. doi: 10.11902/1005.4537.2022.202

    HU Yunfei, CAO Xiangkang, MA Xiaoze, et al. Fluorescent nanofiller modified epoxy coatings for visualization of coating degradation[J]. Journal of Chinese Society for Corrosion and Protection, 2023, 43(3): 460-470(in Chinese). doi: 10.11902/1005.4537.2022.202
    [61] ZHAO X, YUAN Y, WEI Y, et al. LDH-based "Smart" films for corrosion sensing and protection[J]. Materials, 2023, 16(9): 3483. doi: 10.3390/ma16093483
    [62] WANG H, ZHANG C, ZENG W, et al. Making alkyd greener: Modified cardanol as bio-based reactive diluents for alkyd coating[J]. Progress in Organic Coatings, 2019, 135: 281-290. doi: 10.1016/j.porgcoat.2019.06.018
    [63] DARROMAN E, DURAND N, BOUTEVIN B, et al. Improved cardanol derived epoxy coatings[J]. Progress in Organic Coatings, 2016, 91: 9-16. doi: 10.1016/j.porgcoat.2015.11.012
    [64] PARASKAR P M, PRABHUDESAI M S, HATKAR V M, et al. Vegetable oil based polyurethane coatings—A sustainable approach: A review[J]. Progress in Organic Coatings, 2021, 156: 106267. doi: 10.1016/j.porgcoat.2021.106267
    [65] LI C, XIA Z, YAN H, et al. Benzotriazole functionalized polydimethylsiloxane for reinforcement water-repellency and corrosion resistance of bio-based waterborne epoxy coatings in salt environment[J]. Corrosion Science, 2022, 199: 110150. doi: 10.1016/j.corsci.2022.110150
    [66] ZHANG Y, CHU L, DAI Z, et al. Synergistically enhancing the performance of cardanol-rich epoxy anticorrosive coatings using cardanol-based reactive diluent and its functionalized graphene oxide[J]. Progress in Organic Coatings, 2022, 171: 107060. doi: 10.1016/j.porgcoat.2022.107060
    [67] RAHMAN O U, SHI S, DING J, et al. Lignin nanoparticles: Synthesis, characterization and corrosion protection performance[J]. New Journal of Chemistry, 2018, 42(5): 3415-3425. doi: 10.1039/C7NJ04103A
    [68] VAN DE PAS D J, TORR K M. Biobased epoxy resins from deconstructed native softwood lignin[J]. Biomacromolecules, 2017, 18(8): 2640-2648. doi: 10.1021/acs.biomac.7b00767
    [69] WANG X, LENG W, NAYANATHARA R M O, et al. Anticorrosive epoxy coatings from direct epoxidation of bioethanol fractionated lignin[J]. International Journal of Biological Macromolecules, 2022, 221: 268-277. doi: 10.1016/j.ijbiomac.2022.08.177
    [70] TAN Z, WANG S, HU Z, et al. pH-responsive self-healing anticorrosion coating based on a lignin microsphere encapsulating inhibitor[J]. Industrial & Engineering Chemistry Research, 2020, 59(7): 2657-2666.
  • 加载中
图(12)
计量
  • 文章访问数:  457
  • HTML全文浏览量:  145
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-08
  • 修回日期:  2024-01-30
  • 录用日期:  2024-02-08
  • 网络出版日期:  2024-03-02
  • 刊出日期:  2024-08-15

目录

    /

    返回文章
    返回