

改性环氧树脂防腐复合涂层的研究进展

童庆玲 杨建军 吴庆云 吴明元 张建安 刘久逸

Research progress of modified epoxy resin anticorrosive composite coatings TONG Qingling, YANG Jianjun, WU Qingyun, WU Mingyuan, ZHANG Jian'an, LIU Jiuyi 在线阅读 View online: https://doi.org/10.13801/j.cnki.fhclxb.20240229.003

您可能感兴趣的其他文章

Articles you may be interested in

功能化纳米TiO2/环氧树脂超疏水防腐复合涂层的制备与性能

Preparation and properties of functionalized nano-TiO₂/epoxy resin superhydrophobic anticorrosive composite coating 复合材料学报. 2021, 38(12): 3971-3985 https://doi.org/10.13801/j.cnki.fhclxb.20210309.001

共价功能化石墨烯超疏水防腐复合涂层材料的制备

Preparation of covalently functionalized graphene superhydrophobic anticorrosive composite coating materials 复合材料学报. 2021, 38(10): 3236–3246 https://doi.org/10.13801/j.cnki.fhclxb.20210208.002

SiO2或TiO2纳米粒子/含氟聚丙烯酸酯复合涂层的制备及其防腐蚀性能

 $\label{eq:preparation} \mbox{ and corrosion resistance of SiO}_2 \mbox{ or TiO}_2 \mbox{ nano particles/fluorinated polyacrylate polymer composite coatings}$

复合材料学报. 2020, 37(8): 1832-1840 https://doi.org/10.13801/j.cnki.fhclxb.20191206.003

纳米SiO2-氧化石墨烯/环氧涂层的制备及其防腐蚀性能

Preparation and corrosion resistance of nano ${\rm SiO}_2$ -graphene oxide/epoxy composite coating

复合材料学报. 2018, 35(7): 1716-1724 https://doi.org/10.13801/j.cnki.fhclxb.20170911.002

硅烷改性纳米TiO2-Zn-Al/水性环氧涂层的防腐性能

Anticorrosion performance of silane modified nano TiO2-Zn-Al/waterborne epoxy coatings

复合材料学报. 2018, 35(9): 2405-2413 https://doi.org/10.13801/j.cnki.fhclxb.20171220.002

SiO2-竹纤维协同改性对环氧树脂基复合材料摩擦磨损性能的影响

 ${\it Effect of SiO_2-bamboo fiber synergistic modification on friction and wear properties of epoxy resin matrix composites}$

复合材料学报. 2019, 36(7): 1633-1639 https://doi.org/10.13801/j.cnki.fhclxb.20181009.003

扫码关注微信公众号,获得更多资讯信息

DOI: 10.13801/j.cnki.fhc1xb.20240229.003

改性环氧树脂防腐复合涂层的研究进展

童庆玲,杨建军*,吴庆云,吴明元,张建安,刘久逸

(安徽大学 化学化工学院,安徽省水基高分子材料高性能化工程实验室,合肥 230601)

摘 要:在防腐领域,环氧树脂防腐复合涂层是防止金属腐蚀的优良材料。环氧树脂涂层在金属和腐蚀性离 子之间形成了屏障,但环氧树脂在固化期间,由于机械破裂和微孔的形成,防腐效果并不持久。本文介绍了 纳米粒子改性环氧树脂防腐涂层、微/纳米容器改性环氧树脂防腐涂层、生物基材料改性环氧树脂防腐涂层 这3种提高环氧树脂防腐性能的策略,综述了环氧树脂防腐复合涂层改性的研究进展,并展望了环氧树脂防 腐复合涂层未来的发展方向,未来应该开发出兼具智能自预警与自修复、多功能化、成本效益的绿色环氧防 腐复合涂层。

Research progress of modified epoxy resin anticorrosive composite coatings

TONG Qingling , YANG Jianjun^{*} , WU Qingyun , WU Mingyuan , ZHANG Jian'an , LIU Jiuyi (Anhui High Performance Engineering Laboratory of Water-based Polymer Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China)

Abstract: In the field of anti-corrosion, epoxy resin anti-corrosion composite coating is an excellent material to prevent metal corrosion. The epoxy coating forms a barrier between the metal and the corrosive ions, but the anti-corrosion effect of the epoxy resin does not last long during curing due to mechanical breakage and the formation of micropores. Three strategies for enhancing the anticorrosive properties of epoxy resin are introduced in this paper, namely nanoparticle modification, micro/nano container modification, and bio-based material modification. The research progress of epoxy resin anticorrosive composite coating modification is reviewed, and the future development direction of epoxy resin anticorrosive composite coating is prospected. In the future, a green epoxy anticorrosive composite coating with intelligent self-warning and self-repair, multi-function and cost-effective should be developed.

Keywords: epoxy resin; anticorrosion; composite coating; nanoparticle; nano container; self-warning; self-repair

当今人类在日常生产和生活中大量使用各种 金属材料,如碳钢^[1]、铝合金^[2]、锌合金^[3]等,由 于它们具有优异的力学性能而广泛应用于许多工 业领域。在自然环境中,金属材料通常与周围环 境中的腐蚀性介质(包括 H₂O、O₂、CI⁻等)自发发 生反应,导致金属材料损坏或劣化。据研究,在 过去的 50 年里,腐蚀造成的经济损失相当于每个 国家 GDP 的 3%~4%,全球腐蚀成本估计为 2.5 万 亿美元^[4]。为了减少腐蚀造成的损失,人类开发 了许多延缓金属腐蚀的方法,如合金化、热处理、 缓蚀剂、涂层等^[5]。其中有机涂层作为最有效的 防腐方法之一,在金属防护领域得到了广泛的应 用^[6-7]。有机涂层可以通过各种方法附着在金属材 料表面,作为一种有效的物理屏障防止腐蚀介质 渗入金属表面与其他方法相比,利用有机涂层对 金属基材进行防腐保护具有成本低、施工快、耐

网络首发地址: https://doi.org/10.13801/j.cnki.fhclxb.20240229.003

收稿日期: 2023-11-08;修回日期: 2024-01-30;录用日期: 2024-02-08;网络首发时间: 2024-03-02 07:38:01

基金项目: 国家自然科学基金 (51973001); 安徽省科技计划重点项目 (1704a0902018)

National Natural Science Foundation of China (51973001); Anhui Province Science and Technology Program Key Project (1704a0902018) 通信作者:杨建军,硕士,教授,博士生导师,研究方向为水基高分子纳米杂化材料的合成及应用 E-mail: andayjj@163.com

引用格式: 童庆玲,杨建军,吴庆云,等.改性环氧树脂防腐复合涂层的研究进展 [J].复合材料学报,2024,41(8):3883-3896.

TONG Qingling, YANG Jianjun, WU Qingyun, et al. Research progress of modified epoxy resin anticorrosive composite coatings[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 3883-3896(in Chinese).

腐蚀性优异等特点^[8-9]。在各种有机涂料中,环氧 涂料因其对金属表面具有良好的附着力和优异的 化学性能而被广泛用于防腐保护^[10]。纯环氧树脂 涂层(EP)脆性大、致密性低,抗机械冲击和热冲 击性差。涂层在使用过程中不可避免地会被划伤, 导致涂层的损坏和破裂^[11]。此外,涂层固化过程 中有机分子的缩合和交联会影响涂层致密性,导 致大量微孔、微裂纹等缺陷产生^[12-13]。这些缺陷 会成为腐蚀性离子的扩散通道,从而导致涂层失 效。因此,要进一步提高环氧涂料的长期防腐性 能,应克服上述缺点。

研究和制备性能更优异的环氧树脂防腐复合涂 层是当前研究的聚焦点,提高环氧树脂涂层的防腐 性能可以从增加腐蚀介质扩散路径的扭曲度、抑制 腐蚀介质与金属基材的反应、增加涂层的疏水性、 及时修复破损涂层几个方面入手。基于以上几个提 高环氧树脂涂层防腐性能的基本思路,本文介绍了 纳米粒子改性环氧树脂防腐涂层、微/纳米容器改 性环氧树脂防腐涂层、生物基材料改性环氧树脂防 腐涂层这3种提高环氧树脂防腐性能的策略。

1 纳米粒子改性

纳米粒子一方面可以有效填补环氧涂层的孔 洞,另一方面可以在涂层基体中形成"迷宫效应", 即增加腐蚀介质向涂层基体的扩散路径¹⁴⁴,能更 有效地提高复合涂层的阻隔性能。纳米粒子改性 的重点在于提高纳米粒子与环氧树脂涂层基体的 相容性,相容性差会导致纳米粒子在涂层中严重 团聚。因此,需要对纳米材料表面进行物理或化 学改性,制备分散良好的纳米粒子,进一步提高 复合涂层的耐腐蚀性能。下文主要介绍了碳纳米 管、石墨烯衍生物、二硫化钼、MOFs材料、 MXene 材料改性的环氧树脂防腐涂层。

1.1 碳纳米管

碳纳米管 (CNTs) 是一种一维管状材料,具有 优异的电学、热学、力学和化学性能。CNTs 的这 些独特特性使其能够用于制造多功能纳米复合材 料,并显著增强其性能^{115]}。CNTs 的直径小、比表 面积大,因此可以在环氧树脂涂层中紧密分布, 填补孔洞,并且可以吸附微生物、杂质,延缓材 料表面的腐蚀。由于 CNTs 高表面能和天然的电 子构型,有极强的团聚性,与聚合物的相容性较 差,CNTs 与树脂之间的界面间隙会为腐蚀性介质 渗透到涂层/金属基体界面中创造通道,从而导致 涂层的降解和金属基体的腐蚀反应。因此,CNTs 表面改性的关键是提高其在环氧树脂中的分散性 和涂层相容性。

Li 等^[16] 通过在 CNTs 表面自聚合多巴胺 (PDA) 获得聚多巴胺修饰的 CNTs (CNTs-PDA),然后将 聚苯胺 (PANI) 接枝到 CNTs-PDA 表面,成功制备 了 CNTs-PDA-PANI 纳米复合材料。这种方法提高 了 CNTs 的分散性,同时增加了其表面活性位点, 保证了 PANI 在 CNTs 表面均匀接枝。将纳米复合 材料掺入 EP 中,制备了 CNTs-PDA-PANI/EP 复合 涂层。电化学阻抗谱 (EIS) 表明,在 3.5wt%NaCl 溶液中浸泡 50 天后,复合涂层的低频阻抗仍高 达 1.19×10¹⁰ Ω·cm²,比纯 EP 的低频阻抗高出约 2 个数量级,该复合涂层有望为恶劣环境中的金属 部件提供必要的保护。

Ghahremani 等^[17] 合成了一种新型的杂化纳米 复合材料。首先对碳纳米管进行氧化处理得到氧 化碳纳米管 (OMWCNT),然后用 PDA、壳聚糖 (CH)和 Zn(II) 修饰 OMWCNT。在环氧涂层中加 入 OMWCNT-PDA-CH-Zn 纳米复合材料,所制备 的复合涂层 (OMWCNT-PDA-CH-Zn/EP) 具有优异 的阻隔性能,盐雾测试表明(图 1)复合涂层的腐 蚀产物较少,能提供近 9 周的稳定缓蚀性能。

salt spray for 30 days^[17]

1.2 石墨烯衍生物

1.2.1 氧化石墨烯

石墨烯是一种二维层状碳纳米材料,具有优

异的抗渗性、稳定性、力学性能和较高的比表面积。它可以延长水、氧气等腐蚀颗粒的侵入路径,作为防腐涂层的物理屏障^[18]。氧化石墨烯 (GO) 是石墨烯的一种重要的衍生物,其表面和边缘具有羧基、羟基、环氧基等含氧基团,可以作为表面修饰的活性反应位点^[19]。

Nan 等^[20]采用 2,5-二氨基苯磺酸改性的氧化 石墨烯 (DGO),制备了一种具有优异耐腐蚀性的 水性环氧涂料。电化学阻抗谱 (EIS)测试表明, 在 3.5wt%NaCl 中浸泡 48h后,0.2wt%DGO (DGO-10/WEP-20)涂层的阻抗模量仍保持在较高水平, 比纯水性环氧涂层 (WEP)涂层高一个数量级,腐 蚀 电 流 密 度 从 3.76×10⁻¹¹ A/cm²下 降 到 3.62× 10⁻¹² A/cm²。盐雾试验 300 h后,DGO 涂层表面几 乎没有腐蚀产物。该水性环氧复合涂层具有合成 简便、低成本的特点,可以发挥对金属的长期保 护作用。

Wang 等^[21]利用天然的绿色缓蚀剂植酸 (PA) 来修饰 GO。以 PAGO 为填料,制备了具有"阻 隔+缓蚀剂"双重防腐性能的水性环氧复合涂层 (PAGO/WEP),PAGO 可以在树脂中形成更致密的 物理阻隔层,而 GO 表面的 PA 可以释放并迁移到 金属基体上,最终与金属螯合,在金属表面形成 单分子保护膜,有效地防止腐蚀介质的侵入。EIS 测试结果表明,PAGO/WEP 涂层比纯 WEP 涂层 和 GO/WEP 涂层具有更好的防腐性能,且具有长 效防腐效果。

1.2.2 还原氧化石墨烯

还原氧化石墨烯 (rGO) 是石墨烯的另一重要

衍生物,它是通过化学还原或热还原 GO 得到的^[22]。 相较于 GO, rGO 的π网络部分恢复,导电性和热 学性质得到改善^[23]。此外,rGO 表面含氧基团更 少,分子结构缺陷减少,亲水性下降,物理阻隔 作用更明显。

Zhang 等^[24] 首先通过原位聚合反应在 rGO 上 生长 PANI 纳米纤维, 然后通过水热反应将磷酸 铈(CePO₄)纳米颗粒直接修饰在 PANI/rGO 复合材 料上,成功制备了一种新型疏水耐腐蚀 PANI/ rGO/CePO₄ 纳米复合材料。将 PANI/rGO/CePO₄ 纳米材料与环氧树脂混合,交流阻抗谱和盐雾试 验结果表明, PANI/rGO/CePO₄纳米复合材料改 善了环氧树脂的阻隔性能, 耐磨性测试表明复合 涂层的力学性能也明显提升。Kumar 等^[25] 以 rGO 与 PANI/壳聚糖 (CS) 为基体,采用原位氧化聚合 法制备了一种新型防腐环氧复合涂层。水接触角 测试结果表明,添加三元纳米复合材料的环氧涂 层表面疏水性最佳(图 2(a)),腐蚀试验结果表明, 三元环氧复合材料在 NaCl 溶液中暴露 45 天后, 其最低频率阻抗值仍保持在10⁸Ω·cm²,表明其对 钢基体具有较好的防腐性能。

1.3 二硫化钼

二硫化钼 (MoS₂) 是一种过渡金属二硫化物, 具有独特层状结构的半导体材料,单层硫化钼是 由 Mo 原子层夹在两个 S 原子层之间构成的,硫 原子与钼通过共价键相结合,相邻层间以较弱的 范德华力垂直堆叠在一起,构成硫化钼晶体^[26] (图 2(b))。

MoS₂在有机防腐涂层中的应用起步相对较晚,

PE—Polyaniline/epoxy resin composite material; rGO—Reduced graphene oxide; PANI—Polyaniline; CS—Chitosan 图 2 (a) 二元和三元纳米复合材料水接触角 (WCA) 结果^[25]; (b) MoS₂ 的结构图^[26]

Fig. 2 (a) Water contact angle (WCA) results of synthesized binary and ternary nanocomposites^[25]; (b) Structure of $MOS_2^{[26]}$

但其自身具有超疏水性、高化学稳定性、半导体 性质及片层结构的空间屏蔽作用等,近年来备受 关注。MoS₂与GO具有相似的二维层状结构,但 与GO相比,MoS₂具有较高的带隙,当加入 MoS₂时,对涂层的导电性没有影响^[27]。因此,在 复合涂层表面出现缺陷时,MoS₂基防腐涂层不会 引起微电偶腐蚀^[28]。

Li 等^[29] 采用原位聚合法制备了一种新型聚苯 胺改性二硫化钼纳米粒子 (i-PANI@MoS₂),并制 备了环氧树脂复合涂层。电化学分析结果表明, 8%i-PANI@MoS₂-7/EP 具有最优异的防腐性能。 Ding 等^[28] 指出, 与单层 MoS₂ (5.26 eV) 相比, 少 层 MoS₂ (4.5 eV) 的功函数低于铁 (4.73 eV), 在防 腐过程中能够形成肖特基势垒(n型势垒),因此, 少层 MoS,更有利于防腐应用。Zhang 等^[30]采用 液相超声法制备少层 MoS。纳米片,采用化学氧 化聚合法在 MoS₂ 表面接枝聚吡咯 (PPv),并在环 氧树脂中加入 MoS₂@PPy,制备复合涂层。在盐 溶液中浸泡 360h后,纯 EP 涂层的低频阻抗值从 8.35×10⁶ Ω·cm² 降低至 3.07×10³ Ω·cm², 防腐能力 大幅下降。而由于 MoS2@PPy 在 EP 涂层中起到了 物理阻隔作用,提高了 EP 涂层的抗电荷转移性, 加入 MoS₂@PPy 的复合涂层从 $1 \times 10^7 \Omega \cdot cm^2$ 仅降低 至 $1 \times 10^6 \Omega \cdot cm^2$ 。

1.4 MOFs 材料

以金属离子为前驱体、有机化合物为配体的 MOFs 是一类新型的纳米材料。由于 MOFs 材料 中有机化合物的活性位点(官能团)能够与涂层基 质中的官能团形成共价键或非共价键相互作用 (如氢键、π-π相互作用、配位和疏水相互作用), 许多类型的 MOFs 材料与各种有机涂层具有优异 的相容性。二维 MOFs 纳米填料具有层状结构、 丰富的活性位点和独特的化学组成,可同时为涂 层基体带来优异的抗渗性和相容性。此外, MOFs 材料可以赋予防腐涂层各种特性,如增强的抗渗 性、自愈性和特殊的表面性能。一些传统的纳米 材料只是作为被动的纳米填充物,阻断了有机涂 层中腐蚀介质的扩散路径,而 MOFs 的多功能性 为开发具有多种防腐效果的自适应材料提供了巨 大的机会,以保护金属基底免受各种腐蚀成分的 侵害[31]。

Qiu等^[32]通过表面活性剂辅助方法合成了超薄Cu-MOFs纳米片四羧基苯基卟啉铜(Cu-TCPP),

得到的超薄纳米片比传统剥离方法合成的具有更 均匀的鳞片和更高的产率(图 3)。Cu-TCPP纳米 片/环氧复合涂层能显著阻止水的渗透,且由于 Cu-TCPP纳米片的均匀分散有效地减少了腐蚀介 质的渗透路径,加入Cu-TCPP填料的环氧复合涂 层的防腐性能比纯环氧涂层有所提升。

沸石咪唑酸盐框架-8 (ZIF-8) 是一种热门的 MOFs 材料, ZIF-8 是由锌 (II) 盐与 2-甲基咪唑相 互作用得到的,具有菱形十二面体结构。咪唑等 有机配体可以有效地与环氧树脂等聚合物的基体 相互作用,提高聚合物的热力学性能。此外,咪 唑基连接剂可以提高交联密度,降低环氧树脂的 介电常数^[33]。

Duan 等^[34] 采用微乳液法合成了 ZIF-8,并成 功制备了一系列不同质量分数的 ZIF-8 改性的环 氧涂层 (Z0、Z1、Z3、Z5)。ZIF-8 中的氨基与环氧 基反应 (图 4),使 ZIF-8 与环氧基具有良好的相容 性,从而防止了 ZIF-8 的团聚,提高了涂层的交 联密度。电化学测试显示浸泡 3 500 h 后 Z0 (纯

图 4 ZIF-8 与环氧树脂基体反应机制示意图^[34]

Fig. 4 Schematic mechanisms of the reaction between ZIF-8 and epoxy matrices^[34]

EP 涂层)的低频阻抗值|Z|_{0.01 Hz}在 8.95×10⁸ Ω·cm² 左右,而 8 000 h后 Z1 的|Z|_{0.01 Hz}依旧达到 6.63× 10⁹ Ω·cm², Z3 和 Z5 在整个浸泡时间内|Z|_{0.01 Hz}都 保持在 1.01×10¹¹ Ω·cm² 左右, ZIF-8 的引入显著增 强了复合涂层的防腐性能。此外,通过掺杂 ZIF-8 纳米填料,复合涂层的力学性能也得到了显著 地改善,耐磨性实验表明,在干滑动条件下,Z5 的磨损率为 11.1×10⁻⁵ mm⁻³·N⁻¹·m⁻¹,仅为纯 EP 涂 层 (61.5×10⁻⁵ mm⁻³·N⁻¹·m⁻¹) 的 18.05%。该研究为今 后 MOFs 材料在防腐涂料中的应用提供了重要参考。

1.5 MXene 材料

MXene 是一种二维过渡金属碳化物/氮化物材 料^[35],其化学式通常描述为 M_{n+1}X_nT_x (*n*=1、2 或 3),其中 M 为过渡金属,X 为碳或氮,T_x 为表面 官能团,例如一O、一F或一OH基团。MXene材料如Ti₂C₂T_x、Ti₃C₂是研究最多的防腐材料,由于它们具有较大的表面积、优异的力学性能、特殊的层状结构(可以作为氧气和其他腐蚀性介质的扩散屏障)、与环氧树脂基体有优异的界面相互作用、可调节的表面功能而成为防腐涂层的研究热点。Li等^[36]通过LiF和HCl处理蚀刻前驱体Ti₃AlC₂合成了多层Ti₃C₂MXene纳米片,并将质子化苯胺离子(ANI⁺)与Ti₃C₂MXene纳米片静电吸附后,通过原位插层聚合合成了Ti₃C₂MXene纳米片的阻隔效应和PANI钝化效应的协同作用,较低电导率的Ti₃C₂MXene@PANI/WEP复合涂层在Q235钢铁表面可以实现长期有效的防腐效果。

Fig. 5 Schematic illustration of synthesis of Ti₃C₂ MXene@PANI composites^[36]

Ti₃C₂T_x具有天然的再堆积倾向,在水中的稳 定性相对较差,且Ti₃C₂T_xMXene纳米片在空气和 水中都容易氧化,这种氧化反应会导致MXene层 状结构的进一步降解,降低了MXene纳米片的防 腐效果。研究人员为了提高MXene的防腐性能, 尝试将MXenes与其他几种材料结合,比如碳点 (CD)、GO、层状双金属氢氧化物(LDHs)、六方 氮化硼(h-BN)、MoS₂和导电聚合物,形成复合材 料或异质结构。例如,Cai等^[37]利用MoS₂增强 MXenes的防腐性能,通过形成层次化的 Ti₃C₂T_x/MoS₂异质结构,可以减少MXenes的再堆 积,相互连接的MoS₂纳米片被固定在MXene纳 米片上,从而有效地防止了MXene和MoS₂纳米 片的重新堆积。将该异质结构作为填料应用于水 性环氧涂料中,盐水浸渍9天后,Ti₃C₂T_x@MoS₂- 0.1 的涂层电阻值 R_c 为 1.12×10⁶ Ω·cm², 几乎比 EP 的 R_c 值 (9.08×10⁴ Ω·cm²) 大两个数量级;在 10 N 载 荷下, Ti₃C₂T_x@MoS₂-0.1 的磨损率为0.09µm³/(N·µm) (比 EP (0.17 µm³/(N·µm)) 降低了约 50%),表明复 合涂层具有良好的耐腐蚀和抗磨性能。

2 微/纳米容器改性

为了减少损坏涂层的影响,在涂层中添加缓 蚀剂等修复材料是延长其使用寿命的有效方法。 但是,缓蚀剂的释放速度太快,无法实现长期保 护,且当缓蚀剂直接添加到涂料中时,它们可能 能够与涂料树脂发生化学反应,使涂层的阻隔性 能变差^[39]。许多研究表明,将缓蚀剂封装在纳米 容器中可以减缓其释放速度,且缓蚀剂可以与金 属基体发生物理或化学相互作用,阻止腐蚀的继 续,修复受损的涂层并延长涂层的使用寿命^[11]。 此外,考虑到环氧涂层的力学性能较差,纳米容 器还能够增强环氧涂层的力学性能。用于制备纳 米容器的材料具有多孔结构,如介孔二氧化硅、 埃洛石碳纳米管、二氧化钛、金属有机框架、环 糊精、类双层氢氧化物等。装载在纳米容器中的 缓蚀剂通常由于纳米结构的解吸或环境变化(如 pH值、光和热)的刺激而缓慢释放。下文主要介 绍了3种常见的微/纳米容器即介孔二氧化硅、埃 洛石纳米管、类双层氢氧化物在环氧树脂防腐复 合涂层中的研究进展。

2.1 介孔二氧化硅微/纳米容器

SiO₂纳米容器具有体积小、承载能力高、生物相容性好、表面易修饰等优点^[39]。早在 2009 年, 有研究表明它们可以作为缓蚀剂载体,可以改善 有机涂层的化学和力学性能^[40]。负载缓蚀剂的 SiO₂纳米容器的制备方法主要有预聚体法^[41]、共 模板法^[42]和微乳液聚合^[43]等。通常采用纳米介孔 材料作为核心材料,通过层层自组装技术(LBL)^[44] 或超分子阀门技术^[45]对其表面进行修饰,从而提 高其与涂层的相容性。同时,还可以实现对介质 pH 和盐溶液(NaCl)浓度的响应^[46],刺激缓蚀剂 的释放。

Zhang 等^[47] 制备了具有大孔径的介孔二氧化 硅 (MSN),通过 MSN 与聚丙烯酸 (PAA) 之间的静 电相互作用,设计了以2-氨基-5-巯基-1,3,4-噻二 唑 (AMT) 为缓蚀剂的 SiO₂ 纳米容器 (AMT@MSN-PAA)。制备的纳米容器不仅具有酸响应释放能力, 且大大提高了缓蚀剂的负载能力。通过紫外-可见 光谱检测了纳米容器中缓蚀剂的释放过程,随着 体系 pH 值的逐渐降低, AMT 缓蚀剂的负载量达 到 36%,其从 SiO2 基纳米容器中的释放量逐渐增 加,验证了掺杂纳米容器的环氧复合涂层在不同 酸性条件下均能表现出自愈性能。腐蚀浸泡试验 表明,浸泡35天后,环氧复合涂层(EP/AMT@介 孔二氧化硅 -聚丙烯酸 (MSN-PAA)) 的损伤程度明 显轻于 EP 涂层 (图 6)。该研究在一定程度上成功 地解决了目前报道的纳米容器所表现出的承载能 力有限的问题,并且进一步证明了制备的 SiO₂纳 米容器在防腐方面具有重要的应用潜力和进一步 的研究价值。

Zhang 等^[48] 采用溶胶-凝胶法制备了介孔二氧 化硅纳米容器 (MSNs)。将缓蚀剂苯并三唑 (BTA)

图 6 在 3.5wt%NaCl (pH=6.8) 溶液中浸泡 35 天后,碳钢基体上不含 ((a)~(e)) 和含 3% 2-氨基-5-巯基-1, 3, 4-噻二唑@介孔二氧化硅-聚丙烯 酸 (AMT@MSN-PAA) ((f)~(j)) 人工划痕环氧涂层的光学图像^[47]

Fig. 6 Optical images of the artificial scratch epoxy coatings without ((a)-(e)) and with 3% 2-amino-5-mercapto-1, 3, 4-thiadiazole@ mesoporous silica-polyacrylic acid (AMT@MSN-PAA) ((f)-(j)) on carbon steel substrate after immersed in 3.5wt%NaCl solution with pH=6.8 for 35 days^[47]

负载到 MSNs 中后,通过戊二醛交联将壳聚糖 (CS)包覆在纳米容器表面。最后,通过范德华力 等非键合力将复合材料负载到二维共价有机骨架 TpPa (1, 3, 5-三甲酰基邻苯三酚 (Tp) 和对苯二胺 (Pa) 通过 Schiff 碱反应合成) 纳米薄片表面,制备 了 MSNs-CS/TpPa 自修复纳米复合材料。实验结 果表明, CS 可以作为 pH 响应阀来控制 BTA 的释 放,使涂层具有自愈能力。TpPa不仅可以提高 MSNs 在环氧涂料中的分散能力,还可以作为物 理屏障,防止腐蚀性介质的扩散。采用开尔文探 针扫描 (SKP) 测试划痕涂层的局部表面电位, 监 测划痕区域的局部腐蚀进程,验证了环氧复合涂 层的自修复性能(图7)。此外,在耐磨性测试中, 含 MSNs-CS/TpPa-1wt% 环氧涂层的平均摩擦系数 低至 0.35 左右,最小磨损面积为 125 µm²,表明复 合涂层具有良好的耐磨性能。该研究为增强环氧 涂料的长期保护性能提供了一种新的思路,在极 端海洋环境中有一定的应用价值。

2.2 埃洛石纳米管微/纳米容器

埃洛石纳米管 (HNTs) 是一种天然材料,具有 独特的空心管状结构,由层状高岭石卷曲而成。 它由内表面的 Al—O 构成的八面体和外表面的 Si—O 构成的四面体组成,表现出优异的韧性、 热稳定性和较高的长径比^[49]。由于 HNTs 的独特 结构,将这些纳米管掺入环氧树脂基体中可以有 效提高力学性能^[50]。此外,HNTs 的中空结构为 负载缓蚀剂提供了理想的纳米载体,减轻了对树 脂性能的不利影响^[51]。HNTs 作为一种天然矿物,

E—Coating local surface potential; MSNs—Silica nanocontainer; BTA—Benzotriazole; CS—Chitosan; TpPa—Two-dimensional covalent organic skeleton TpPa (1, 3, 5-triformylpyrocatechol (Tp) and p-phenylenediamine (Pa) synthesized by Schiff base reaction); SKP—Skp-kelvin probe scan 图 7 涂层划伤 2 h ((a₁)-(c₁)) 和 24 h ((a₂)-(c₂)) 用 SKP 测量的电位分布图 (a—EP/TpPa-1wt%; b—EP/MSNs-1wt%; c—EP/MSNs-CS/TpPa-1wt%; 复合涂层 a、b 未负载 BTA, 复合涂层 c 负载 BTA)^[40]

Fig. 7 Potential profiles measured by SKP at 2 h ((a_1) - (c_1)) and 24 h ((a_2) - (c_2)) after scratching (a—EP/TpPa-1wt%; b—EP/MSNs-1wt%; c—EP/MSNs-CS/TpPa-1wt%; Composite coating a, b is not loaded with BTA, and composite coating c is loaded with BTA)^[40]

与各种实验室合成的纳米容器相比,具有成本优势和优越的环境效益。这些固有优势使 HNTs 在防腐涂料中的应用有一定的前景^[52]。

Yang 等^[53] 将缓蚀剂 BTA 加载到 HNTs 中,并 使用壳聚糖包封 BTA 负载的 HNTs 得到 HNT-CS@BTA 材料,并与环氧树脂复合制备复合涂层 (图 8)。BTA 释放曲线表明 BTA 可以在酸性环境中 释放,CS 的包封不仅起到缓蚀剂控释的作用,而 且促进了 HNT 与环氧树脂的结合。实验结果表明: HNT-CS@BTA 材料可以作为纳米容器赋予涂层自 修复性能和长期防腐性能,提高环氧涂层的耐水 性、附着力和力学性能。然而,HNT-CS@BTA 材

图 8 埃洛石纳米管-壳聚糖@苯并三唑 (HNT-CS@BTA) 纳米容器 (a) 和 复合涂层 (b) 的制备示意图^[53]

Fig. 8 Schematic diagram of the preparation of allostone nanotubeschitosan@benzotriazole (HNT-CS@BTA) nanocontainers (a) and composite coatings (b)^[53]

料缺乏碱性条件下的缓蚀能力,可以通过负载多 种缓蚀剂来提高自愈性能。

Khan 等^[54] 开发了新型杂化埃洛石纳米管 (HHNTs),负载了多种缓蚀剂。先在真空条件下将 缓蚀剂咪唑 (IM) 封装在 HNTs 中。然后采用逐层 技术在聚乙烯亚胺 (PEI) 和磺化聚醚醚酮 (SPEEK) 的聚电解质层中嵌入另一种缓蚀剂十二烷基胺 (DDA),从而形成 HHNTs。将 HHNTs (wt%)分散 到环氧树脂基体中,制备智能杂化自修复聚合物 涂层 (图 9)。咪唑 (IM) 在酸性和碱性介质中都表 现出积极的释放,适合保护低碳钢的早期损伤阶 段,而 DDA 在酸性介质中有效释放可能有助于在 损伤后期阻止低碳钢的腐蚀。由于两种缓蚀剂之 间的协同作用和 HNTs 纳米容器的 pH 响应性能, HNTs 纳米容器基环氧复合涂层表现出优异的防 腐性能,这种新型 HHNTs 纳米管在石油和天然气 工业中对钢铁的腐蚀保护具有一定的应用价值。

2.3 类双层氢氧化物纳米容器

LDHs 是一种二维层状纳米材料,由带正电的 混合金属氢氧化物层 (M²⁺/M³⁺)、层间吸附的阴离 子 (Aⁿ⁻)和水分子组成,当掺入有机涂层中时,具 有良好的阻隔性能。此外,由于其阴离子交换特 性,LDHs 作为防腐材料得到了广泛的研究^[55]。 LDHs 的层间间距中可以插入各种阴离子缓蚀剂, 这为阴离子缓蚀剂的释放和交换提供了前景。在 阴离子交换过程中,LDHs 释放阴离子缓蚀剂,

HNTs/IM/PEI/SPEEK/DDA—Alloxite nanotube/imidazole/polyvinyl imide/sulfonated polyether ether ketone/dodecylamine composite material; HHNTs—Hybrid halloysite nanotubes

图 9 杂化埃洛石纳米管 (HHNTs)的合成 (a)和 HNT 的负载和连续层间 的静电吸引 ((b), (c))示意图^[54]

Fig. 9 Schematic of synthesis of HHNTs (a) and loading of HNTs and the electrostatic attraction between the consecutive layers of HHNTs $((b), (c))^{[54]}$

而腐蚀性离子如 CI⁻被拦截^[56],进而提高涂层的耐腐蚀性能^[57]和自愈性能^[58]。

Chhetri 等^[59] 通过离子交换法将缓蚀剂钼酸盐 阴离子嵌入到 Mg-Al-LDHs 的层间中,并使用 3-氨丙基三乙氧基硅烷 (APTES) 对插层后的 LDHs 表面功能化。LDHs 层间钼酸盐阴离子的释放为 环氧涂层提供更长的使用寿命, APTES 改善 LDHs 与环氧树脂基体之间的相容性。电化学结 果表明,改性后的 LDHs 显著增强了环氧复合涂 层的防护性能,其防腐效率达到了 98% 以上。

Zhou 等^[55]开发了一种基于 MOFs 衍生的 LDHs 的新型纳米容器,在室温下将沸石咪唑酸盐骨架 (ZIF)部分转化为 Ni-Co LDHs,用于包封负载 BTA 缓蚀剂的介孔二氧化硅纳米颗粒,从而获得 MSNs-BTA@ZIF-LDHs 纳米容器 (图 10),该纳米

MSNs-BTZ@ZIF-LDHs

图 10 介孔二氧化硅-苯并三唑@镍钴层状双氢氧化物 (MSNs-BTA@ZIF-LDHs) 纳米容器的合成路线^[55]

Fig. 10 Synthesis route of mesoporous silica-benzotriazole@nickel cobalt layered double hydroxide (MSNs-BTA@ZIF-LDHs) nanocontainers^[55]

容器在水性环氧复合涂层中起着双重作用。在腐 蚀发生之前,由于 LDHs 外层的存在,改善了复 合涂层的阻隔性能,有利于 MSNs-BTA@ZIF-LDHs 在水性环氧树脂基体中的分散,增强了 CI-的抗渗 透性。腐蚀发生后, MSNs-BTA@ZIF-LDHs 纳米 容器可以响应局部腐蚀区域的 pH 值变化,释放 BTA 缓蚀剂,防止钢基材进一步损坏。这项研究 为开发用于各种工程应用的多功能防腐涂层提供 了新的见解。

然而,许多腐蚀通常发生在涂层/金属基体界 面,由于表面涂层的遮盖作用,不易目视化检测 到基体的腐蚀。因此,在"智能"防腐涂层体系 中,既需要主动防腐,又需要底层金属的早期腐 蚀检测。在涂层失效早中期实现其老化状态的可 视化快速检测,为预防性维修提供指导,具有重 要的现实意义^[60]。Zhao 等^[61] 开发了一种负载 8-羟 基喹啉 (8 HQ) 的 LDH 纳米容器膜, 有机化合物 8 HQ 不仅是一种有效的缓蚀剂,也可作为铝合金 腐蚀的荧光传感器探针,因此该纳米容器膜具有 自预警和自修复的双重功能。负载8HO复合材料 的 LDH 膜可以根据需要释放缓蚀剂,从而提高膜 的防腐性能。同时,由于8HQ和Al³⁺的络合作用, LDH 膜在紫外光照射下初期呈荧光, 随后在腐蚀 部位变为非荧光,表明涂层的腐蚀演变过程(图11)。 负载8HQ的LDH纳米容器膜由于其具有智能和 多功能的特性,为铝合金的腐蚀保护提供了一定 的研究思路。

图 11 样品在 3.5wt%NaCl 溶液中浸泡不同时间的荧光显微图: (a) 0 天;(b) 3 天;(c) 7 天;(d) 10 天;(e) 14 天;(f) 21 天^[61] Fig. 11 Fluorescence micrographs of the samples after immersion in 3.5wt%NaCl solution for different times:(a) 0 day;(b) 3 days;(c) 7 days;

(d) 10 days; (e) 14 days; (f) 21 days^[61]

3 生物基材料改性

目前,广泛使用的双酚A环氧树脂及其常用 的固化剂,如二乙烯三胺、异福尔酮二胺和聚酰 胺,都来源于石油,会带来一些环境和健康问题。 随着石油资源的日益枯竭和环境问题的不断加剧, 研究人员以一些绿色、可再生的生物基材料作为 替代前驱体,如腰果酚、木质素、松香、儿茶素、 植物油,将其应用于环保型环氧树脂基涂料。下 文介绍了腰果酚、木质素改性的环氧树脂防腐复 合涂层的研究进展。

3.1 腰果酚

腰果酚是从天然腰果壳油中经先进技术提炼 而成,是一种具有长不饱和烷基链的酚类化合物^[62], 已经被研究用于合成生物基材料,如聚氯乙烯 (PVC)的增塑剂、聚氨酯涂料与环氧树脂涂料的 固化剂、用于防腐的纳米复合材料及在热固性材 料中部分或全部替代苯酚,如酚醛树脂。腰果酚 结构中有3个活性位点:酚羟基、芳香环和长脂 肪族碳链^[63],可以根据实际应用需求对其化学改 性,使复合材料具有良好的耐热性、柔韧性、耐 水性、耐腐蚀性^[64]。

Li 等^[65] 用 1, 8-二氨基对薄荷烷和聚乙二醇二 缩水甘油醚通过环氧胺加成反应对腰果酚基环氧 树脂进行改性,制备生物基水性环氧固化剂,以 提高与水性环氧树脂的相容性。采用聚二甲基硅 氧烷 (PDMS) 作为防水剂, 使涂层具有较低的表 面能; 采用苯并三唑 (BTA) 作为有效的缓蚀剂, 对钢基体进行钝化保护。将 PDMS-BTA 掺入水性 环氧涂料中, 形成钢基材的物理屏障,所制得的 生物基水性环氧涂料 (WE-PB) 具有优异的耐腐蚀 性 (图 12)。Zhang等^[66] 采用环氧树脂、腰果酚基 活性稀释剂 (602A) 和 602A 功能化氧化石墨烯纳 米片 (A-GO) 制备了一种新型防腐复合涂层。 A-GO/602A/环氧复合涂层的阻抗模量 (0.01 Hz) 下比 纯石油基环氧涂层高 3 个数量级, 三者协同作用 可以显著增强复合涂层的腐蚀性能。研究结果表 明,腰果酚基环氧涂层在环氧防腐涂料领域具有 很大的发展潜力,对高性能防腐环氧涂料的设计 具有一定的指导意义。

NC514s—Cashew phenol based epoxy resin; PEG—Polyethylene glycol diglycidyl ether; DAPM—1, 8-diamino-p-menthol; PDMS— Polydimethylsiloxane; BTA—Benzotriazole; WCA—Cashew phenol based water-based epoxy curing agent; 2K WE—Two-component waterbased epoxy resin; SS—304 stainless steel 图 12 水性环氧复合涂层 (WE-PB) 的制备示意图^[65] Fig. 12 Schematic of preparation of waterborne epoxy composite

coating (WE-PB)[65]

3.2 木质素

木质素是地球上含量最丰富的天然芳香族聚 合物,由3种苯丙烷单元通过醚键和碳碳键相互 连接形成的具有三维网状结构的生物高分子,含 有丰富的芳环结构、脂肪族和芳香族羟基及醌基 等活性基团^[67],为芳香多元醇和多酚提供了潜在 的可再生来源^[68]。

Wang 等^[69] 用生物乙醇分馏法获得了低分子 量的木质素,并将其作为双酚 A 的替代品用于制 备木质素基环氧树脂 (LEP)。结果表明,添加量 为 20wt%LEP 的环氧复合涂层具有均匀的涂层微 观结构和连续的聚合物网络,涂层缺陷较少,具 有最高的耐腐蚀性。Tan 等^[70]采用简单的方法制 备了负载 BTA 的木质素微球 (LMS),释放实验表 明 BTA 的释放具有 pH 响应性, 电化学阻抗谱 (EIS) 和盐雾试验表明复合涂层 (LMS@BTA/WEP) 在腐蚀发生改变涂层 pH 值时会响应释放 BTA, 该复合涂层具有优异的自修复和长期防腐性能。 这项研究制备的 LMS 具有重要的应用价值,不仅 扩大了生物质木质素的高附加值利用,而且可以 为金属提供长期防腐保护作用。

4 总结与展望

环氧树脂防腐复合涂层是一种优良的金属防 腐材料,广泛应用于航空航天、汽车、建筑、电 子设备和生物医学等领域,但其防腐能力还存在 一定的缺陷,未来需要在以下几个方面进行更深 入和具体的研究:

(1)对于纳米粒子改性的环氧树脂防腐复合涂 层,纳米材料的制造成本较高,未来可以开发出 廉价的合成方法,可以采用共价和非共价结合的 方法修饰纳米材料,提高其在环氧树脂中的分散 性和相容性;

(2) 基于微/纳米容器的环氧树脂自修复环氧 防腐复合涂层可以不同程度地修复受损涂层,但 缓蚀剂的作用只是在一定时间内抑制腐蚀反应, 并不能完全修复涂层的物理屏蔽作用。为了提高 微/纳米容器智能自修复涂层的综合性能,未来应 该朝着以下几个方面发展:

(a) 严格选择缓蚀剂类型,合理设计微/纳米 容器,提高涂层的长期自修复能力,涂层的自愈 效果可以通过模拟或实际使用环境中的长期腐蚀 试验来评估;

(b)目前,大多数装载缓蚀剂的智能微/纳米 容器的制备工艺复杂且要求苛刻,难以实现大规 模工业化生产。未来应该充分利用一些材料的结 构特性(如层状双金属氢氧化物(LDHs)对 Cl⁻的敏 感性)来减少复杂的表面改性或后处理步骤;

(c) 在微/纳米容器的尺寸控制、缓蚀剂的有效加载与控释、缓蚀剂在涂层内的均匀分布等方面仍存在许多挑战。这些问题是智能自修复涂料成功应用的关键;

(d) 赋予自修复涂层腐蚀自预警功能具有重要 的研究意义,未来可以将自修复与自预警功能相 结合,实现涂层自预警与自修复功能一体化。当 缓蚀剂耗尽、涂层自愈功能失效时,需要及时进 行自诊断和预警,对涂层受损部位进行维护;

(3) 相对于石油基原料, 生物基材料可生物降

解、具有成本效益、毒性更低且易于加工,制备 出的生物基环氧树脂涂层可以有效地用于保护金 属表面免受腐蚀。但其应用存在一定的缺陷,如 腰果酚基环氧树脂由于其结构柔韧性而表现出较 低的玻璃化转变温度,不适合用作独立的结构和 工程材料。目前,对于生物基环氧树脂防腐涂层 研究比较有限,未来可以通过纳米技术与生物基 环氧树脂的融合,提高生物基环氧防腐涂层的 性能;

(4)现阶段,制备的防腐涂层性能比较单一, 未来可以探索出具有多功能化的防腐复合涂层, 以便应用于实际情形,例如超疏水防腐涂层、自 清洁防腐涂层等。

参考文献:

- [1] LEI Y, QIU Z, TAN N, et al. Polyaniline/CeO₂ nanocomposites as corrosion inhibitors for improving the corrosive performance of epoxy coating on carbon steel in 3.5% NaCl solution[J]. Progress in Organic Coatings, 2020, 139: 105430.
- THAI T T, DRUART M E, PAINT Y, et al. Influence of the sol-gel mesoporosity on the corrosion protection given by an epoxy primer applied on aluminum alloy 2024-T3[J].
 Progress in Organic Coatings, 2018, 121: 53-63.
- [3] MANIAM K K, PAUL S. Corrosion performance of electrodeposited zinc and zinc-alloy coatings in marine environment[J]. Corrosion and Materials Degradation, 2021, 2(2): 163-189.
- [4] HONARVAR NAZARI M, ZHANG Y, MAHMOODI A, et al. Nanocomposite organic coatings for corrosion protection of metals: A review of recent advances[J]. Progress in Organic Coatings, 2022, 162: 106573.
- [5] WANG S, LIU W, SHI H, et al. Co-modification of nanosilica and lysine on graphene oxide nanosheets to enhance the corrosion resistance of waterborne epoxy coatings in 3.5% NaCl solution[J]. Polymer, 2021, 222: 123665.
- [6] SARI M G, RAMEZANZADEH B. Epoxy composite coating corrosion protection properties reinforcement through the addition of hydroxyl-terminated hyperbranched polyamide non-covalently assembled graphene oxide platforms[J]. Construction and Building Materials, 2020, 234: 117421.
- [7] WU Y, JIANG F, QIANG Y, et al. Synthesizing a novel fluorinated reduced graphene oxide-CeO₂ hybrid nanofiller to achieve highly corrosion protection for waterborne epoxy coatings[J]. Carbon, 2021, 176: 39-51.

- [8] CHENG L, WU H, LI J, et al. Polydopamine modified ultrathin hydroxyapatite nanosheets for anti-corrosion reinforcement in polymeric coatings[J]. Corrosion Science, 2021, 178: 109064.
- [9] SUN J, TANG Z, MENG G, et al. Silane functionalized plasma-treated boron nitride nanosheets for anticorrosive reinforcement of waterborne epoxy coatings[J]. Progress in Organic Coatings, 2022, 167: 106831.
- [10] LIU T, ZHANG D, MA L, et al. Smart protective coatings with self-sensing and active corrosion protection dual functionality from pH-sensitive calcium carbonate microcontainers[J]. Corrosion Science, 2022, 200: 110254.
- [11] MENG F, ZHANG T, LIU L, et al. Failure behaviour of an epoxy coating with polyaniline modified graphene oxide under marine alternating hydrostatic pressure [J]. Surface and Coatings Technology, 2019, 361: 188-195.
- [12] HUANG H, HUANG X, XIE Y, et al. Fabrication of h-BNrGO@PDA nanohybrids for composite coatings with enhanced anticorrosion performance[J]. Progress in Organic Coatings, 2019, 130: 124-131.
- [13] BARTOLI M, GIORCELLI M, ROSSO C, et al. Influence of commercial biochar fillers on brittleness/ductility of epoxy resin composites [J]. Applied Sciences, 2019, 9(15): 3109.
- [14] YE Y, ZHANG D, LI J, et al. One-step synthesis of superhydrophobic polyhedral oligomeric silsesquioxane-graphene oxide and its application in anti-corrosion and anti-wear fields[J]. Corrosion Science, 2019, 147: 9-21.
- [15] CUBIDES Y, CASTANEDA H. Corrosion protection mechanisms of carbon nanotube and zinc-rich epoxy primers on carbon steel in simulated concrete pore solutions in the presence of chloride ions[J]. Corrosion Science, 2016, 109: 145-161.
- [16] LI X, LI L, ZHANG W, et al. Grafting of polyaniline onto polydopamine-wrapped carbon nanotubes to enhance corrosion protection properties of epoxy coating[J].
 Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 670: 131548.
- [17] GHAHREMANI P, MOSTAFATABAR A H, BAHLAKEH G, et al. Rational design of a novel multi-functional carbonbased nano-carrier based on multi-walled-CNToxide/polydopamine/chitosan for epoxy composite with robust pH-sensitive active anti-corrosion properties[J]. Carbon, 2022, 189: 113-141.
- [18] KALE M B, LUO Z, ZHANG X, et al. Waterborne polyurethane/graphene oxide-silica nanocomposites with improved mechanical and thermal properties for leather coatings using screen printing[J]. Polymer, 2019, 170: 43-53.
- [19] DING R, LI W, WANG X, et al. A brief review of corrosion

protective films and coatings based on graphene and graphene oxide[J]. Journal of Alloys and Compounds, 2018, 764: 1039-1055.

- [20] NAN D, LI X, LI D, et al. Preparation and anticorrosive performance of waterborne epoxy resin composite coating with amino-modified graphene oxide[J]. Polymers, 2023, 15(1): 27.
- [21] WANG L, CHEN Y, LUO J, et al. Synthesis of graphene oxide functionalized by phyticacid for anticorrosive reinforcement of waterborne epoxy coating [J]. Journal of Applied Polymer Science, 2022, 139(14): 51910.
- [22] 黄小庆,杨建军,陈春俊,等.功能型环氧树脂基防腐涂层的研究进展[J].精细化工,2023,40(8):1625-1635.
 HUANG Xiaoqing, YANG Jianjun, CHEN Chunjun, et al. Research progress on functional epoxy-based anti-corrosion[J]. Fine Chemical, 2023, 40(8): 1625-1635(in Chinese).
- [23] KULYK B, FREITAS M A, SANTOS N F, et al. A critical review on the production and application of graphene and graphene-based materials in anti-corrosion coatings[J].
 Critical Reviews in Solid State and Material Sciences, 2022, 47: 309-355.
- [24] ZHANG X, LI B, CHEN T, et al. Study on CePO₄ modified PANI/RGO composites to enhance the anti-corrosion property of epoxy resin[J]. Progress in Organic Coatings, 2023, 178: 107472.
- [25] KUMAR A M, JOSE J, HUSSEIN M A. Novel polyaniline/chitosan/reduced graphene oxide ternary nanocomposites: Feasible reinforcement in epoxy coatings on mild steel for corrosion protection [J]. Progress in Organic Coatings, 2022, 163: 106678.
- [26] WANG Z, MI B. Environmental applications of 2D molybdenum disulfide (MoS₂) nanosheets[J]. Environmental Science & Technology, 2017, 51(15): 8229-8244.
- [27] JING Y, WANG P, YANG Q, et al. Molybdenum disulfide with poly(dopamine) and epoxy groups as an efficiently anticorrosive reinforcers in epoxy coating[J]. Synthetic Metals, 2020, 259: 116249.
- [28] DING J, ZHAO H, ZHAO X, et al. How semiconductor transition metal dichalcogenides replaced graphene for enhancing anticorrosion[J]. Journal of Materials Chemistry A, 2019, 7(22): 13511-13521.
- [29] LI X, LIU X, LIU H, et al. Structure, morphology and anticorrosion performance of polyaniline modified molybdenum sulfide/epoxy composite coating[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639: 128345.
- [30] ZHANG Y, DIE J, LI F, et al. Polypyrrole-modified molyb-

denum disulfide nanocomposite epoxy coating inhibits corrosion of mild steel[J]. Coatings, 2023, 13(6): 1046.

- [31] LIU X, YUE T, QI K, et al. Probe into metal-organic framework membranes fabricated via versatile polydopamineassisted approach onto metal surfaces as anticorrosion coatings[J]. Corrosion Science, 2020, 177: 108949.
- [32] QIU S, SU Y, ZHAO H, et al. Ultrathin metal-organic framework nanosheets prepared via surfactant-assisted method and exhibition of enhanced anticorrosion for composite coatings[J]. Corrosion Science, 2021, 178: 109090.
- [33] LEE S H, SEO H Y, YEOM Y S, et al. Rational design of epoxy/ZIF-8 nanocomposites for enhanced suppression of copper ion migration [J]. Polymer, 2018, 150: 159-168.
- [34] DUAN S, DOU B, LIN X, et al. Influence of active nanofiller ZIF-8 metal-organic framework (MOF) by microemulsion method on anticorrosion of epoxy coatings[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624: 126836.
- [35] AHMED B, ANJUM D H, GOGOTSI Y, et al. Atomic layer deposition of SnO₂ on MXene for Li-ion battery anodes[J].
 Nano Energy, 2017, 34: 249-256.
- [36] LI C, XU J, XU Q, et al. Synthesis of Ti₃C₂ MXene@PANI composites for excellent anticorrosion performance of waterborne epoxy coating[J]. Progress in Organic Coatings, 2022, 165: 106673.
- [37] CAI M, FENG P, YAN H, et al. Hierarchical Ti₃C₂T_x@MoS₂ heterostructures: A first principles calculation and application in corrosion/wear protection [J]. Journal of Materials Science & Technology, 2022, 116: 151-160.
- [38] YEGANEH M, ASADI N, OMIDI M, et al. An investigation on the corrosion behavior of the epoxy coating embedded with mesoporous silica nanocontainer loaded by sulfamethazine inhibitor[J]. Progress in Organic Coatings, 2019, 128: 75-81.
- [39] YANG S S, CHEN Z, CHEN T Q, et al. Hollow mesoporous silica nanoparticles decorated with cyclodextrin for inhibiting the corrosion of Mg alloys[J]. ACS Applied Nano Materials, 2020, 3(5): 4542-4552.
- [40] HONG C Y, LI X, PAN C Y. Fabrication of smart nanocontainers with a mesoporous core and a pH-responsive shell for controlled uptake and release[J]. Journal of Materials Chemistry, 2009, 19(29): 515551-515560.
- [41] MIRMOHSENI A, AKBARI M, NAJJAR R, et al. Self-healing waterborne polyurethane coating by pH-dependent triggered-release mechanism[J]. Journal of Applied Polymer Science, 2019, 136(8): 47082.
- [42] CHEN T, FU J. pH-responsive nanovalves based on hollow mesoporous silica spheres for controlled release of corro-

sion inhibitor[J]. Nanotechnology, 2012, 23(23): 235605.

- [43] DING C, LIU Y, WANG M, et al. Self-healing, superhydrophobic coating based on mechanized silica nanoparticles for reliable protection of magnesium alloys[J]. Journal of Materials Chemistry A, 2016, 4(21): 8041-8052.
- [44] MA X, FENG H, LIANG C, et al. Mesoporous silica as micro/nano-carrier: From passive to active cargo delivery, a mini review[J]. Journal of Materials Science & Technology, 2017, 33(10): 1067-1074.
- [45] HE Q, CUI X, CUI F, et al. Size-controlled synthesis of monodispersed mesoporous silica nano-spheres under a neutral condition[J]. Microporous and Mesoporous Materials, 2009, 117(3): 609-616.
- [46] FENG Y, CHEN S, FRANK C Y. Fabrication of SiO₂ nanoparticle-polyelectrolyte nanocontainers with preloaded benzotriazole inhibitors and their self-releasing mechanism and kinetics[J]. Journal of Materials Science, 2017, 52(14): 8576-8590.
- [47] ZHANG Y Y, WANG X J, TIAN H, et al. Epoxy composite coating with excellent anti-corrosion and self-healing properties based on mesoporous silica nano-containers[J]. Journal of Molecular Structure, 2023, 1294: 136538.
- [48] ZHANG C, LI W, GUO Z, et al. Controllable construction of mesoporous silica/2D-COF nanocomposites reinforced epoxy coatings with excellent self-repairing and longlasting anticorrosion performances[J]. Progress in Organic Coatings, 2023, 177: 107441.
- [49] LIU M, JIA Z, JIA D, et al. Recent advance in research on halloysite nanotubes-polymer nanocomposite[J]. Progress in Polymer Science, 2014, 39(8): 1498-1525.
- [50] VIJAYAN P P, HANY EL-GAWADY Y M, AL-MAADEED M A S A. Halloysite nanotube as multifunctional component in epoxy protective coating[J]. Industrial & Engineering Chemistry Research, 2016, 55(42): 11186-11192.
- [51] ABDULLAYEV E, PRICE R, SHCHUKIN D, et al. Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole[J]. ACS Applied Materials & Interfaces, 2009, 1(7): 1437-1443.
- [52] BERTOLINO V, CAVALLARO G, MILIOTO S, et al. Polysaccharides/halloysite nanotubes for smart bionanocomposite materials[J]. Carbohydrate Polymers, 2020, 245: 116502.
- [53] YANG T, WANG T, FENG H, et al. Construction of smart halloysite nanocontainers for active long-term anticorrosion of epoxy coatings[J]. Progress in Organic Coatings, 2024, 187: 108146.
- [54] KHAN A, HASSANEIN A, HABIB S, et al. Hybrid halloysite nanotubes as smart carriers for corrosion protection[J].

ACS Applied Materials & Interfaces, 2020, 12(33): 37571-37584.

- [55] ZHOU C, ZHANG H, PAN X, et al. Smart waterborne composite coating with passive/active protective performances using nanocontainers based on metal organic frameworks derived layered double hydroxides[J]. Journal of Colloid and Interface Science, 2022, 619: 132-147.
- [56] PAN X, LUO X, LI J, et al. Enhanced corrosion resistance of ammonium heptamolybdate (AHM) sealed LiAl LDHs conversion coating on aluminum alloy[J]. Surface and Coatings Technology, 2023, 474: 130043.
- [57] ZHANG Y, LI Y, REN Y, et al. Double-doped LDH films on aluminum alloys for active protection[J]. Materials Letters, 2017, 192: 33-35.
- [58] LI J, LIN K, LUO X, et al. Enhanced corrosion protection property of Li-Al layered double hydroxides (LDHs) film modified by 2-guanidinosuccinic acid with excellent self-repairing and self-antibacterial properties[J]. Applied Surface Science, 2019, 480: 384-394.
- [59] CHHETRI S, SAMANTA P, MURMU N C, et al. Anticorrosion properties of epoxy composite coating reinforced by molybdate-intercalated functionalized layered double hydroxide[J]. Journal of Composites Science, 2019, 3(1): 11.
- [60] 胡云飞,曹祥康,马小泽,等.采用荧光纳米填料改性环氧涂层 实现缺陷可视化 [J].中国腐蚀与防护学报,2023,43(3):460-470.

HU Yunfei, CAO Xiangkang, MA Xiaoze, et al. Fluorescent nanofiller modified epoxy coatings for visualization of coating degradation[J]. Journal of Chinese Society for Corrosion and Protection, 2023, 43(3): 460-470(in Chinese).

- [61] ZHAO X, YUAN Y, WEI Y, et al. LDH-based "Smart" films for corrosion sensing and protection[J]. Materials, 2023, 16(9): 3483.
- [62] WANG H, ZHANG C, ZENG W, et al. Making alkyd greener: Modified cardanol as bio-based reactive diluents for alkyd coating[J]. Progress in Organic Coatings, 2019, 135: 281-290.
- [63] DARROMAN E, DURAND N, BOUTEVIN B, et al. Improved cardanol derived epoxy coatings[J]. Progress in Organic Coatings, 2016, 91: 9-16.
- [64] PARASKAR P M, PRABHUDESAI M S, HATKAR V M, et al. Vegetable oil based polyurethane coatings—A sustainable approach: A review[J]. Progress in Organic Coatings, 2021, 156: 106267.
- [65] LI C, XIA Z, YAN H, et al. Benzotriazole functionalized polydimethylsiloxane for reinforcement water-repellency and corrosion resistance of bio-based waterborne epoxy

coatings in salt environment[J]. Corrosion Science, 2022, 199: 110150.

- [66] ZHANG Y, CHU L, DAI Z, et al. Synergistically enhancing the performance of cardanol-rich epoxy anticorrosive coatings using cardanol-based reactive diluent and its functionalized graphene oxide[J]. Progress in Organic Coatings, 2022, 171: 107060.
- [67] RAHMAN O U, SHI S, DING J, et al. Lignin nanoparticles: Synthesis, characterization and corrosion protection performance[J]. New Journal of Chemistry, 2018, 42(5): 3415-3425.
- [68] VAN DE PAS D J, TORR K M. Biobased epoxy resins from deconstructed native softwood lignin[J]. Biomacromolecules, 2017, 18(8): 2640-2648.
- [69] WANG X, LENG W, NAYANATHARA R M O, et al. Anticorrosive epoxy coatings from direct epoxidation of bioethanol fractionated lignin[J]. International Journal of Biological Macromolecules, 2022, 221: 268-277.
- [70] TAN Z, WANG S, HU Z, et al. pH-responsive self-healing anticorrosion coating based on a lignin microsphere encapsulating inhibitor[J]. Industrial & Engineering Chemistry Research, 2020, 59(7): 2657-2666.