留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

明胶@左旋聚乳酸核壳结构纳米纤维的制备与性能

成锡婷 辜鹏程 胡辉 董宇涵 姜强 范佳 杨旋 白燕

成锡婷, 辜鹏程, 胡辉, 等. 明胶@左旋聚乳酸核壳结构纳米纤维的制备与性能[J]. 复合材料学报, 2023, 41(0): 1-9
引用本文: 成锡婷, 辜鹏程, 胡辉, 等. 明胶@左旋聚乳酸核壳结构纳米纤维的制备与性能[J]. 复合材料学报, 2023, 41(0): 1-9
Xiting CHENG, Pengcheng GU, Hui HU, Yuhan DONG, Qiang JIANG, Jia FAN, Xuan YANG, Yan BAI. Preparation and properties of gelatin@Poly (L-lactic acid) core-shell nanofibers[J]. Acta Materiae Compositae Sinica.
Citation: Xiting CHENG, Pengcheng GU, Hui HU, Yuhan DONG, Qiang JIANG, Jia FAN, Xuan YANG, Yan BAI. Preparation and properties of gelatin@Poly (L-lactic acid) core-shell nanofibers[J]. Acta Materiae Compositae Sinica.

明胶@左旋聚乳酸核壳结构纳米纤维的制备与性能

基金项目: 重庆市自然科学基金面上项目(cstc2017 jcyjAX0029);重庆医科大学青年创新团队发展支持计划(W0055);重庆市研究生科研创新项目(CYS22370);重庆医科大学大学生科学研究与创新实验项目(SIEP202194,202229)。
详细信息
    通讯作者:

    白燕,博士,副教授,硕士生导师,研究方向为组织工程与再生医学、药物缓控释递送系统 E-mail: baiyan@cqmu.edu.cn

  • 中图分类号: TQ340.64;R318

Preparation and properties of gelatin@Poly (L-lactic acid) core-shell nanofibers

Funds: Chongqing Natural Science Foundation General Project (NO.cstc2017 jcyjAX0029); Chongqing Medical University Youth Innovation Team Development Support Program (NO.W0055); Chongqing Graduate Research and Innovation Project (NO.CYS22370); Chongqing Medical University College Student Science Research and Innovation Experimental Project (NO.SIEP202194202229).
  • 摘要: 通过静电纺丝技术制备的纤维膜具有高比表面积、高孔隙率等优点,在生物医学、环境、能源等领域被广泛应用。但由于传统的静电纺丝的局限性,即混合体系均一,仅能纺出实心单一组分的纤维,使得纳米纤维在临床应用中受到了限制。同轴静电纺丝技术是基于传统静电纺丝技术改进,采用同轴喷头,将两种及以上的高分子材料制备成不同形态结构的纤维。一方面,可以将不具可纺性的材料包覆在核内,提高高分子材料的性能。另一方面,核内载药,可以保护药物防止失活。其次还能借助其特殊结构,控制药物释放。本文通过同轴静电纺丝技术成功制备了核壳结构的GEL@PLLA纳米纤维膜,探究了纺丝工艺参数对纤维形貌的影响,评价了核壳结构纳米纤维膜细胞相容性,为该膜在骨组织工程领域的应用提供理论依据,并为新型骨生物材料的研发提供新思路。GEL@PLLA 核壳纤维激光共聚焦图GEL@PLLA Core shell fiber laser confocal imageBMSC在纳米纤维膜上的形态Morphology of BMSC on nanofiber membrane(a) Nanofiber membrane × 1000; (b) Nanofiber membrane × 3000; (c) Nanofiber membrane × 10000; (a)纳米纤维膜×1000;(b)纳米纤维膜×3000;(c)纳米纤维膜×10000;

     

  • 图  1  不同核壳溶液推进速度比下GEL@PLLA核壳纤维的SEM图

    Figure  1.  Under Different Propulsion Velocity Ratios of Core Shell Solutions GEL@PLLA SEM images of core-shell fibers

    图  2  不同电压下GEL@PLLA核壳纤维的SEM图

    Figure  2.  Under different voltages GEL@PLLA SEM images of core-shell fibers

    图  3  不同接收距离下GEL@PLLA核壳纤维的SEM图

    Figure  3.  Under different reception distances GEL@PLLA SEM images of core-shell fibers

    图  4  GEL@PLLA 核壳纤维激光共聚焦图

    Figure  4.  GEL@PLLA Core shell fiber laser confocal image

    图  5  GEL@PLLA 核壳纤维傅里叶红外光谱图

    Figure  5.  GEL@PLLA Fourier transform infrared spectroscopy of core-shell fibers

    图  6  GEL@PLLA纳米纤维膜的应力-应变曲线

    Figure  6.  Stress-strain curve of GEL@PLLA nanofiber membrane

    图  7  纳米纤维膜接触角结果图

    (a)GEL膜;(b)GEL@PLLA膜;(c)PLLA膜;(d)纳米纤维膜接触角量化结果

    Figure  7.  Contact Angle Results of Nanofiber Membrane

    (a) GEL membrane; (b) GEL@PLLA Membrane; (c) PLLA membrane; (d) Quantitative results of contact angle of nanofiber membrane

    图  8  BMSC在纳米纤维膜上的形态

    (a)纳米纤维膜×1000;(b)纳米纤维膜×3000;(c)纳米纤维膜×10000;

    Figure  8.  Morphology of BMSC on nanofiber membrane

    (a) Nanofiber membrane × 1000; (b) Nanofiber membrane × 3000; (c) Nanofiber membrane × 10000;

    图  9  纯GEL膜、纯PLLA膜和GEL@PLLA膜的CCK-8检测结果

    Figure  9.  Pure GEL membrane, pure PLLA membrane, and GEL@PLLA CCK-8 detection results of membrane

    表  1  明胶(GEL)@左旋聚乳酸(PLLA)静电纺丝工艺参数表

    Table  1.   gelatin (GEL)@poly (L-lactic acid) (PLLA) Electrospinning Process Parameters Table

    Sample numberVelocity of flow
    (core/shell)/
    (mm·s−1)
    Voltage/kVNeedle-collector
    distance/cm
    S11∶31715
    S21∶41715
    S31∶51715
    S41∶41915
    S51∶41515
    S61∶41710
    S71∶41720
    下载: 导出CSV

    表  2  纤维的断裂伸长率、拉伸强度及断裂伸长率

    Table  2.   Elongation at break, tensile strength, and elongation at break of fibers

    SampleElongation at break /%Tensile strength /MPa
    GEL10.33831.7544
    PLLA 9.22042.2772
    GEL@PLLA18.29571.8158
    下载: 导出CSV
  • [1] GE J C, KIM J Y, YOON S K, et al. Fabrication of low-cost and high-performance coal fly ash nanofibrous membranes via electrospinning for the control of harmful substances[J]. Fuel,2019,237:236-244. doi: 10.1016/j.fuel.2018.09.068
    [2] MIN L L, YANG L M, WU R X, et al. Enhanced adsorption of arsenite from aqueous solution by an iron-doped electrospun chitosan nanofiber mat: Preparation, characterization and performance[J]. Journal of Colloid and Interface Science,2019,535:255-264. doi: 10.1016/j.jcis.2018.09.073
    [3] TONG H W, ZHANG X, WANG M. A new nanofiber fabrication technique based on coaxial electrospinning[J]. Materials Letters,2012,66(1):257-260. doi: 10.1016/j.matlet.2011.08.095
    [4] ZhANG K, LI Z, KANG W, et al. Preparation and characterization of tree-like cellulose nanofiber membranes via the electrospinning method[J]. Carbohydrate Polymers,2018,183:62-69. doi: 10.1016/j.carbpol.2017.11.032
    [5] LI W, SHI L, ZHOU K, et al. Facile fabrication of porous polymer fibers via cryogenic electrospinning system[J]. Journal of Materials Processing Technology,2019,266:551-557. doi: 10.1016/j.jmatprotec.2018.11.035
    [6] 李超, 宦思琪, 李庆德, 等. 纤维素纳米晶体对同轴电纺PMMA/PAN复合纳米纤维性能的影响[J]. 林业工程学报, 2017, 2(2):107-113.

    LI Chao, HUAN Siqi, LI Qingde, et al. Effect of cellulose nanocrystals on the properties of coaxial electrospun PMMA/PAN composite nanofibers[J]. Journal of Forestry Engineering,2017,2(2):107-113(in Chinese).
    [7] DZIEMIDOWICZ K, SANG Q, WU J, et al. Electrospinning for healthcare: recent advancements[J]. Journal of Materials Chemistry B,2021,9(4):939-951. doi: 10.1039/D0TB02124E
    [8] DING Y, LI W, CORREIA A, et al. Electrospun Polyhydroxybutyrate/Poly(epsilon-caprolactone)/Sol-Gel-Derived Silica Hybrid Scaffolds with Drug Releasing Function for Bone Tissue Engineering Applications[J]. Acs Applied Materials & Interfaces,2018,10(17):14540-14548.
    [9] WEN P, WEN Y, ZONG M H, et al. Encapsulation of Bioactive Compound in Electrospun Fibers and Its Potential Application[J]. Journal of Agricultural and Food Chemistry,2017,65(42):9161-9179. doi: 10.1021/acs.jafc.7b02956
    [10] GARLOTTA D. A literature review of poly(lactic acid)[J]. Journal of Polymers and the Environment,2001,9(2):63-84. doi: 10.1023/A:1020200822435
    [11] WU J, LIU S, ZHANG M, et al. Coaxial electrospinning preparation and antibacterial property of polylactic acid/tea polyphenol nanofiber membrane[J]. Journal of Industrial Textiles,2022,51(2_SUPPL):1778S-1792S. doi: 10.1177/15280837211054219
    [12] LIU J, LI T, ZHANG H, et al. Electrospun strong, bioactive, and bioabsorbable silk fibroin/poly (L-lactic-acid) nanoyarns for constructing advanced nanotextile tissue scaffolds[J]. Materials Today Bio,2022,14:100243. doi: 10.1016/j.mtbio.2022.100243
    [13] XIONG F, WEI S, SHENG H, et al. In situ polydopamine functionalized poly-L-lactic acid nanofibers with near-infrared-triggered antibacterial and reactive oxygen species scavenging capability[J]. International Journal of Biological Macromolecules,2022,201:338-350. doi: 10.1016/j.ijbiomac.2022.01.024
    [14] GUO J, SU W, JIANG J, et al. Enhanced tendon to bone healing in rotator cuff tear by PLLA/CPS composite films prepared by a simple melt-pressing method: An in vitro and in vivo study[J]. Composites Part B-Engineering,2019,165:526-536. doi: 10.1016/j.compositesb.2019.02.003
    [15] LV Y, XU Y, SANG X, et al. PLLA-gelatin composite fiber membranes incorporated with functionalized CeNPs as a sustainable wound dressing substitute promoting skin regeneration and scar remodeling[J]. Journal of Materials Chemistry B,2022,10(7):1116-1127. doi: 10.1039/D1TB02677A
    [16] SINGH Y P, DASGUPTA S, BHASKAR R. Preparation, characterization and bioactivities of nano anhydrous calcium phosphate added gelatin-chitosan scaffolds for bone tissue engineering[J]. Journal of Biomaterials Science-Polymer Edition,2019,30(18):1756-1778. doi: 10.1080/09205063.2019.1663474
    [17] XU Z, LIU P, LI H, et al. In vitro study on electrospun lecithin-based poly (L-lactic acid) scaffolds and their biocompatibility[J]. Journal of Biomaterials Science-Polymer Edition,2020,31(17):2285-2298. doi: 10.1080/09205063.2020.1802837
    [18] JUNKA R, YU X. Polymeric nanofibrous scaffolds laden with cell-derived extracellular matrix for bone regeneration[J]. Materials Science and Engineering C-Materials for Biological Applications,2020,113:110981. doi: 10.1016/j.msec.2020.110981
    [19] PORRELLI D, MARDIROSSIAN M, MUSCIACCHIO L, et al. Antibacterial Electrospun Polycaprolactone Membranes Coated with Polysaccharides and Silver Nanoparticles for Guided Bone and Tissue Regeneration[J]. Acs Applied Materials & Interfaces,2021,13(15):17255-17267.
    [20] MIGUEZ M, SABAROTS M G, CID M P, et al. Fabrication and Characterization of Gelatin/Calcium Phosphate Electrospun Composite Scaffold for Bone Tissue Engineering[J]. Fibers and Polymers,2022,23(7):1915-1923. doi: 10.1007/s12221-022-4166-4
    [21] LV Y, SANG X, TIAN Z, et al. Electrospun hydroxyapatite loaded L-polylactic acid aligned nanofibrous membrane patch for rotator cuff repair[J]. International Journal of Biological Macromolecules,2022,217:180-187. doi: 10.1016/j.ijbiomac.2022.07.061
    [22] 张晓莉, 汤克勇, 郑学晶. 同轴静电纺丝法制备PVA-胶原微纳米纤维[J]. 丝绸, 2016, 53(6):6-10.

    ZHANG Xiaoli, TANG Keyong, ZHENG Xuejing. Preparation of PVA-collagen micro and nano fibers by coaxial electrospinning[J]. Silk,2016,53(6):6-10(in Chinese).
    [23] ANAYA MANCIPE J M, BOLDRINI PEREIRA L C, DE MIRANDA BORCHIO P G, et al. Novel polycaprolactone (PCL)-type I collagen core-shell electrospun nanofibers for wound healing applications[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials,2023,111(2):366-381. doi: 10.1002/jbm.b.35156
    [24] HAJIKHANI M, EMAM-DJOMEH Z, ASKARI G. Fabrication and characterization of mucoadhesive bioplastic patch via coaxial polylactic acid (PLA) based electrospun nanofibers with antimicrobial and wound healing application[J]. International Journal of Biological Macromolecules,2021,172:143-153. doi: 10.1016/j.ijbiomac.2021.01.051
    [25] 崔志香, 涂建炳, 司军辉, 等. 同轴静电纺丝制备PCL-PLA芯-壳结构复合纤维及其形态分析[J]. 材料科学与工程学报, 2015, 33(6):786-790+830.

    CUI Zhixiang, TU Jianbing, SI Junhui, et al. Preparation and morphology analysis of PCL-PLA core-shell composite fiber by coaxial electrospinning[J]. Journal of Materials Science and Engineering,2015,33(6):786-790+830(in Chinese).
    [26] 董宇涵, 辜鹏程, 张子阳, 等. 肌腱仿生用定向PLLA微纳米纤维的静电纺丝工艺参数研究[J]. 材料科学与工艺, 2022, 30(5):10-17.

    DONG Yuhan, GU Pengcheng, ZHANG Ziyang, et al. Study on Electrospinning Process Parameters of Directional PLLA Micronanofibers for Tendon Bionics[J]. Materials Science and Technology,2022,30(5):10-17(in Chinese).
    [27] HE Z, RAULT F, VISHWAKARMA A, et al. High-Aligned PVDF Nanofibers with a High Electroactive Phase Prepared by Systematically Optimizing the Solution Property and Process Parameters of Electrospinning[J]. Coatings,2022,12(9):1310. doi: 10.3390/coatings12091310
    [28] BUCHKO C J, CHEN L C, SHEN Y, et al. Processing and microstructural characterization of porous biocompatible protein polymer thin films[J]. Polymer,1999,40(26):7397-7407. doi: 10.1016/S0032-3861(98)00866-0
    [29] 杜馨禹, 魏亮, 孙润军, 等. 工艺参数对PLA/CA复合纳米纤维形貌与直径的影响[J]. 合成纤维, 2022, 51(5):26-32.

    DU Xinyu, WEI Liang, SUN Runjun, et al. Process parameters on the CA/PLA composite nanofibers morphology and diameter of[J]. The influence of synthetic fiber,2022,51(5):26-32(in Chinese).
    [30] 杜江华, 杨婷婷, 郭生伟, 等. 有序PEO/PHB核壳超细纤维的制备及性能[J]. 材料工程, 2021, 49(10):123-131.

    DU Jianghua, YANG Tingting, GUO Shengwei, et al. Preparation and properties of ordered PEO/PHB core-shell microfiber[J]. Materials Engineering,2021,49(10):123-131(in Chinese).
    [31] 仲宣树, 刘宗建, 耿雪, 等. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5):1153-1165.

    ZHONG Xuanshu, LIU Zongjian, GENG Xue, et al. Surface properties of materials regulate cell adhesion[J]. Progress in Chemistry,2022,34(5):1153-1165(in Chinese).
  • 加载中
计量
  • 文章访问数:  43
  • HTML全文浏览量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-16
  • 修回日期:  2023-03-27
  • 录用日期:  2023-04-18
  • 网络出版日期:  2023-05-04

目录

    /

    返回文章
    返回