具有三维连续网络结构的聚合物基导热复合材料研究进展

郑舒方, 王玉印, 郭兰迪, 靳玉岭

郑舒方, 王玉印, 郭兰迪, 等. 具有三维连续网络结构的聚合物基导热复合材料研究进展[J]. 复合材料学报, 2023, 40(12): 6528-6544. DOI: 10.13801/j.cnki.fhclxb.20230530.004
引用本文: 郑舒方, 王玉印, 郭兰迪, 等. 具有三维连续网络结构的聚合物基导热复合材料研究进展[J]. 复合材料学报, 2023, 40(12): 6528-6544. DOI: 10.13801/j.cnki.fhclxb.20230530.004
ZHENG Shufang, WANG Yuyin, GUO Landi, et al. Research progress of thermally conductive polymer composites with three-dimensional interconnected network structures[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6528-6544. DOI: 10.13801/j.cnki.fhclxb.20230530.004
Citation: ZHENG Shufang, WANG Yuyin, GUO Landi, et al. Research progress of thermally conductive polymer composites with three-dimensional interconnected network structures[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6528-6544. DOI: 10.13801/j.cnki.fhclxb.20230530.004

具有三维连续网络结构的聚合物基导热复合材料研究进展

基金项目: 国家自然科学基金(22201099);山东省自然科学基金青年基金(ZR2021 QB204);济宁学院博士科研启动基金(2018 BSZX04)
详细信息
    通讯作者:

    郑舒方,博士,讲师,研究方向为有机/无机杂化纳米功能复合材料设计 E-mail: zhengsf1988@163.com

  • 中图分类号: TB332

Research progress of thermally conductive polymer composites with three-dimensional interconnected network structures

Funds: National Natural Science Foundation of China (22201099); Shandong Provincial Natural Science Foundation Youth Fund (ZR2021 QB204); Doctoral Research Start-up Fund of Jining University (2018 BSZX04)
  • 摘要: 热界面材料可以有效地将高温电子器件的热量快速传递到热管理元件,以缓解电子器件过热而导致的元件寿命恶化的问题。近年来,由聚合物和高导热填料制成的聚合物基复合材料因其密度低、导热性能可调而受到广泛关注。不同于传统的填料随机分散的复合材料,在聚合物基体中构建三维连续网络结构可以显著增加填料/填料接触、降低导热渗透阈值和界面热阻,显著改善复合材料的导热性能。首先,简要分析了聚合物基导热复合材料的导热机制。其次,总结了具有连续网络结构的聚合物基导热复合材料的构筑工艺,主要包括基于三维导热填料网络的预构筑、基于聚合物颗粒/粉末的后加工、基于聚合物纤维/织物的后加工、基于聚合物胶乳的铸膜或絮凝等工艺。再次,系统总结了不同类型的导热填料对聚合物复合材料导热性能的影响,主要包括金属填料、陶瓷填料、碳基填料及其混杂填料等。最后,对具有三维连续网络结构的聚合物基导热复合材料的发展前景进行了展望。

     

    Abstract: Thermal interface materials could effectively transfer the heat from electronic devices with high temperature to the thermal management components, so as to alleviate the problems of deterioration of component life caused by overheating of electronic devices. In recent years, the polymer-based composites composed of polymer matrix and reinforcing fillers with high thermal conductivities have been widely concerned because of their low density and adjustable thermal conductivities. Different from the conventional composites with randomly dispersed fillers, the construction of three-dimensional (3D) continuous network structure in the polymer matrix could significantly increase the filler/filler contact, reduce the percolation threshold of thermal conductivity and the interfacial thermal resistance, and then significantly improve the thermal conductivities of composites. Firstly, the thermal conductivity mechanisms of polymer-based thermal conductive composites were briefly analyzed. Secondly, the construction processes of polymer-based thermally conductive composites with interconnected network structures were summarized, mainly including the pre-construction of 3D thermally conductive filler network, the post-processing based on polymer particle/powder, the post-processing based on polymer fiber/fabric, and the film casting or flocculation based on polymer latex. The effects of different types of thermal conductive fillers on the thermal conductivities of polymer composites were summarized, mainly including metal fillers, ceramic fillers, carbon-based fillers and their hybrid fillers. Finally, the development prospects of polymer-based thermally conductive composites with interconnected network structures were prospected.

     

  • 随着航空航天、5G通信和人工智能等领域高集成化、多功能化和智能化技术的迅猛发展,电路传输功耗和发热量急剧增大,引起严重的材料失效问题,因此需要高效导热耗散热量保障设备的正常工作温度并延长工作寿命。聚合物导热材料由于良好的可加工性、耐腐蚀性和电绝缘性在热管理领域备受关注[1-3]。常见的聚合物导热材料主要包括两种:本征型聚合物导热材料和填充型聚合物导热材料。本征型聚合物导热材料的制备工艺繁琐、成本高昂,在工业应用上不具备优势,而填充型聚合物导热材料制备流程简便、可控程度高,适用于大规模工业生产与应用[4]。但是填充型聚合物导热材料通常需要较高的填充量以达到理想的热导率,严重影响聚合物导热材料的力学性能和可加工性。因此,如何通过结构/功能一体化设计构筑高效导热网络,获得低填充且高导热的聚合物导热材料是目前亟需解决的难题。

    二维纳米材料如氮化硼纳米片(BNNS)、还原氧化石墨烯(rGO)和多壁碳纳米管(MWCNTs)等被广泛用作高导热填料[5-10]。其中,BNNS具有与石墨烯类似的二维片层结构,热导率达到1700~2000 W/(m·K)。Wang等[11]以三聚氰胺泡沫(MF)为三维骨架,通过逐层组装将BNNS包覆其上,并使用环氧树脂(EP)浸渍封装制得MF@BNNS/EP复合材料。当BNNS填充量为1.1vol%时,复合材料的热导率为0.6 W/(m·K)。与纯EP相比,其热导率提高了123%。聚氨酯(PU)开孔泡沫是由聚醚/聚酯多羟基醇与含有氨基的多元异氰酸酯反应并发泡所制得的多孔材料,具有高孔隙率和高弹性,泡棱表面含有大量的极性官能团(如羰基),且制作工艺成熟、成本低、环保可降解,是一种理想的聚合物多孔材料模板[12-16]。Yang等[17]首先将BNNS和碳纳米管(CNTs)包覆于PU开孔泡沫骨架,然后采用牺牲模板法将复合材料在380℃下热解1 h得到三维BNNS/CNT复合材料,并使用EP浸渍封装制得三维BNNS/CNT/EP复合材料。当BNNS/CNT填充量为5wt%时,其热导率为0.33 W/(m·K)。Zeng等[18]使用冰模板法制得BNNS气凝胶,再通过EP封装得到低填充高导热复合材料。上述研究尽管构筑了连续的导热网络,但通过树脂封装后增大了界面热阻,并未充分发挥连续导热网络的优势。

    本文首先通过超声剥离法制备BNNS,并对其进行聚多巴胺(PDA)功能化改性得到BNNS@PDA,然后通过层层氢键组装将BNNS@PDA包覆于PU开孔泡沫的三维骨架表面,再经热压成型制得具有以PU骨架为主要导热网络、以PU骨架表面包覆的BNNS@PDA为次级导热网络的双导热网络BNNS@PDA/PU复合材料。重点研究了导热复合材料的微观结构、导热性能和热稳定性。该方法制备工艺简便,为大规模制备低填充、高导热聚合物导热材料提供了新的思路和方法。

    氮化硼(BN)、盐酸多巴胺(DA)和三(羟甲基)氨基甲烷盐酸盐(Tris),萨恩化学技术(上海)有限公司;异丙醇(IPA),天津市富宇精细化工有限公司;PU开孔泡沫,江西鸿司远特种泡沫材料有限公司。

    BNNS@PDA的制备与功能化改性过程如图1(a)所示。取2 g BN粉末加入单口烧瓶,加入200 mL IPA溶液,在20 kHz、200 W条件下超声搅拌6 h得到乳白色BN和BNNS混合分散液,静置一段时间后以2000 r/min转速离心20 min使BNNS和BN分层,将上层清液真空辅助抽滤后,置于70℃烘箱中干燥4 h得到BNNS。取0.2 g BNNS置于单口烧瓶中,加入200 mL Tris缓冲溶液(pH=8.5),在20 kHz、200 W条件下超声搅拌1 h使BNNS分散均匀,再加入0.6 g DA于60℃水浴条件下搅拌6 h,使DA自聚得到PDA并接枝到BNNS表面,得到棕黑色分散液,静置冷却至室温,使用去离子水多次抽滤洗涤,置于70℃烘箱内干燥,得到BNNS@PDA。

    图  1  聚多巴胺功能化改性氮化硼纳米片(BNNS@PDA) (a)和BNNS@PDA/聚氨酯(PU)复合材料 (b) 的制备示意图
    Figure  1.  Schematic illustration for fabrication of polydopamine functionalized nitride boron nanosheets (BNNS@PDA) (a) and BNNS@PDA/polyurethane (PU) composites (b)
    BN—Boron nitride; IPA—Isopropyl alcohol

    BNNS@PDA/PU复合材料的制备如图1(b)所示。将BNNS@PDA分散于去离子水中配制成2 mg/mL分散液,将PU开孔泡沫逐次在分散液中浸涂并干燥,重复1~5次,使BNNS@PDA负载于PU开孔泡沫的三维骨架表面,得到不同BNNS@PDA填充量的BNNS@PDA/PU复合泡沫,然后将其置于厚0.5 mm的模具中,在175℃、10 MPa条件下热压10 min,冷却至室温取出得到双导热网络BNNS@PDA/PU复合材料。将未浸涂BNNS@PDA的PU开孔泡沫在相同模具和工艺条件下进行热压得到具有单导热网络PU材料。

    使用德国布鲁克公司红外光谱仪(VECTOR-22)对BNNS和BNNS@PDA的化学结构进行表征。通过日本岛津公司X射线光电子能谱仪(AXIS SUPRA)检测BNNS和BNNS@PDA表面元素的变化。使用德国布鲁克公司的X射线衍射仪(D8 QUEST)对BNNS和BNNS@PDA晶格结构进行表征。使用日本日立公司热重分析仪(STA7200RV)对BNNS、BNNS@PDA和BNNS@PDA/PU复合材料进行热重分析。使用美国FEI公司的高分辨场发射扫描电镜(FEI Verios 460)观察BNNS、BNNS@PDA和BNNS@PDA/PU的微观形貌。采用西安夏溪电子科技公司的导热系数仪(TC3000)对复合材料的热导率进行测试。使用红外热成像仪(Fluke Ti300)分析BNNS@PDA/PU复合材料在65℃热台上的表面温度分布变化。

    图2(a)~2(c)分别是BN、BNNS和BNNS@PDA的水分散液数码照片,使用激光笔照射分散液,可以观察到在BNNS和BNNS@PDA分散液中有明显的光路,产生了丁达尔效应,说明BNNS和BNNS@PDA在去离子水中具有良好的分散性。图2(a')~2(c')是静置24 h后的数码照片,BN分散液出现明显沉淀,而BNNS和BNNS@PDA分散液无明显沉淀,且光路清晰。这是由于通过超声剥离和功能化改性得到的BNNS和BNNS@PDA表面存在大量羟基和氨基,使其亲水性增加,能够在去离子水中保持稳定的分散状态。图2(b'')2(c'')分别是BNNS和BNNS@PDA的SEM图像。可以看出,剥离后的BNNS和BNNS@PDA表现出纳米片层结构,并且形貌完整。BNNS@PDA表面较粗糙,说明PDA已成功接枝于BNNS表面[17-19]

    图  2  BN ((a), (a'))、BNNS ((b), (b')) 和BNNS@PDA ((c), (c')) 静置24 h前后的分散液数码照片;BNNS (b'') 和BNNS@PDA (c'') 的SEM图像
    Figure  2.  Digital photographs of BN ((a), (a')), BNNS ((b), (b')) and BNNS@PDA ((c), (c')) dispersion before and after standing for 24 h; SEM images of BNNS (b'') and BNNS@PDA (c'')

    图3(a)是BN、BNNS、BNNS@PDA、PU开孔泡沫和BNNS@PDA/PU复合材料的红外图谱。BNNS在3452 cm−1、1591 cm−1、1375 cm−1和813 cm−1处的特征峰分别是—OH、N—H键的面内弯曲振动及B—N键的面内拉伸振动和面外弯曲振动,这是由于经剥离后得到的BNNS表面形成了—OH。BNNS@PDA在2808 cm−1处产生了亚甲基面内弯曲振动的特征峰,说明DA发生自聚并接枝在BNNS表面[20]。BNNS@PDA/PU复合材料在3302 cm−1、1355 cm−1和763 cm−1处的特征峰分别是酰胺基团中N—H键的面内弯曲振动及N—B键的面内拉伸振动和面外弯曲振动。其中N—H键的特征峰位置较PU开孔泡沫中N—H键的特征峰(3369 cm−1)发生红移,这是由于BNNS@PDA表面的—OH与PU中的N—H形成氢键。因此BNNS@PDA可通过层层氢键组装包覆于PU开孔泡沫的三维骨架表面。

    图  3  (a) BN、BNNS、BNNS@PDA、PU开孔泡沫和BNNS@PDA/PU复合材料的FTIR图谱;(b) BN、BNNS和BNNS@PDA的XRD图谱;BNNS和BNNS@PDA的XPS图谱 (c) 和TGA曲线 (d)
    Figure  3.  (a) FTIR spectras of BN, BNNS, BNNS@PDA, porous PU foams and BNNS@PDA/PU composites; (b) XRD patterns of BN, BNNS and BNNS@PDA; XPS spectras (c) and TGA curves (d) of BNNS and BNNS@PDA

    图3(b)是BN、BNNS和BNNS@PDA的XRD图谱。图中的衍射峰从左到右分别对应(002)、(100)、(101)、(102)、(004)、(110)和(112)晶面衍射峰(JCPDS:01-073-2095)。剥离后得到的BNNS与BN有相似的衍射特征峰,并且BNNS的(002)晶面对应的衍射峰位置发生左移。这是由于BNNS晶面间距增大,衍射角减小,说明从BN上成功剥离出BNNS且并未破坏BNNS的晶面结构。BNNS@PDA的晶面衍射峰位置与BNNS相近,说明功能化改性未破坏BNNS的晶面结构,且未明显改变晶面间距。

    图3(c)是BNNS和BNNS@PDA的XPS图谱。BNNS@PDA的O1s、N1s和C1s的峰值强度比BNNS有所增加,表明PDA成功接枝在BNNS表面。图3(d)是BNNS和BNNS@PDA的热失重(TGA)曲线。在800℃时,BNNS质量下降3.8%,BNNS@PDA质量下降8.9%。这是由于BNNS表面官能团较少,在800℃时仅有少量分解。BNNS@PDA的表面接枝了PDA,因其氧化和降解导致质量下降。再次证明PDA成功接枝于BNNS表面。

    图4(a)~4(a'')分别是PU开孔泡沫的数码照片、SEM图像及单导热网络PU材料的断面SEM图像。可以看到,PU开孔泡沫骨架表面光滑平整,经过热压得到的单导热网络PU材料依然保留了泡沫的三维网络结构,该结构可作为主导热通路进行热量的传递。图4(b)~4(b'')是BNNS@PDA含量为16.3wt%的BNNS@PDA/PU复合泡沫的数码照片、SEM图像和B元素的EDS分布图像。可以看出,BNNS@PDA通过层层氢键组装均匀包覆于PU开孔泡沫骨架上。包覆在PU泡沫骨架上的BNNS@PDA紧密排列并在骨架上相互连接形成次级三维连续导热网络结构。图4(c)~4(c'')是BNNS@PDA/PU复合材料的数码照片和断面SEM图像。所得复合材料既可以通过连续三维PU骨架进行热量的传递,也能通过BNNS@PDA连续网络进行热量的传递,具有双导热网络结构。

    图  4  PU开孔泡沫的数码照片 (a) 和SEM图像 (a') 及单导热网络PU材料的SEM图像 (a'');BNNS@PDA/PU复合泡沫数码照片 (b)、SEM图像 (b') 和B元素EDS分布图像 (b'');BNNS@PDA/PU复合材料数码照片 (c) 和断面SEM图像 ((c'), (c''))
    Figure  4.  Digital photo (a) and SEM image of porous PU foams (a') and SEM image of PU with single heat-conduction network (a''); Digital photo (b), SEM image (b') and EDS mapping image of B (b'') of BNNS@PDA/PU composite foams; Digital photo (c), SEM images ((c'), (c'')) of BNNS@PDA/PU composites

    图5为不同BNNS@PDA含量的BNNS@PDA/PU复合材料的热导率。可以看出,BNNS@PDA/PU复合材料的热导率随着BNNS@PDA含量的增加而增大,其中单导热网络PU材料的热导率为0.387 W/(m·K),与纯PU(0.21 W/(m·K))相比提高了45.7%[21]。当BNNS@PDA的含量为16.3wt%时,复合材料的热导率达到0.783 W/(m·K),与单导热网络PU材料相比提高了102.3%。这是由于引入BNNS@PDA后,包覆在PU开孔泡沫三维骨架表面的BNNS@PDA形成连续导热网络,与PU三维骨架共同形成双导热网络进行热量的传输,进一步提高了BNNS@PDA/PU复合材料的热导率。

    图  5  BNNS@PDA/PU复合材料的热导率
    Figure  5.  Thermal conductivity of BNNS@PDA/PU composites

    BNNS@PDA/PU复合材料的导热机制通过图6进行阐述。图6(a)是单导热网络PU材料的导热机制。PU在发泡时泡棱延长受到局部拉伸应力,诱导分子链沿泡棱方向发生取向,从而增强热量在PU骨架上的传递[22]。PU开孔泡沫经热压后仍保留了原三维骨架中的有序取向结构,可作为主导热网络进行热量的传输。图6(b)是BNNS@PDA通过氢键作用层层组装在PU三维骨架上的导热机制,通过热压使复合材料内部形成“PU三维骨架—BNNS@PDA”双重导热网络结构,PU三维骨架上紧密包覆的BNNS@PDA作为次级导热网络进一步增强热量在复合材料内部的传输能力,从而使复合材料的热导率提高。

    图  6  BNNS@PDA/PU复合材料的单导热网络 (a) 与双导热网络 (b) 导热机制
    Figure  6.  Heat conduction mechanism of single (a) and double (b) heat-conduction networks of BNNS@PDA/PU composites

    图7为BNNS@PDA/PU复合材料在65℃热板上受热升温的红外热成像图像。从图7(a)中可以看到单导热网络PU材料受热6 s后,表面温度从42℃上升到55.3℃。图7(b)中BNNS@PDA含量为16.3wt%的BNNS@PDA/PU复合材料受热6 s后,表面温度从42℃上升到60.6℃。图8为BNNS@PDA/PU复合材料受热温度变化曲线,与单导热网络PU材料相比,BNNS@PDA含量为16.3wt%的BNNS@PDA/PU复合材料在初始阶段升温速率更快,并且迅速达到热稳定状态,说明引入BNNS@PDA后,复合材料热响应时间更快,导热能力更强,能够将热板的温度快速传递到复合材料表面。

    图  7  单导热网络PU (a) 和BNNS@PDA/PU复合材料 (b) 的红外热成像图像
    Figure  7.  Infrared thermal images of PU with single heat-conduction network (a) and BNNS@PDA/PU composites (b)
    图  8  单导热网络PU与BNNS@PDA/PU复合材料受热温度变化曲线
    Figure  8.  Heating temperature curves of PU with single heat-conduction network and BNNS@PDA/PU composites

    图9为BNNS@PDA/PU复合材料的TGA曲线。可知,BNNS@PDA/PU复合材料的热失重温度达到近300℃,引入BNNS@PDA并未降低复合材料的热降解温度,表明所制备的BNNS@PDA/PU复合材料具有良好的热稳定性。复合材料的残余质量与BNNS@PDA含量有关,随着BNNS@PDA含量增大而增大。

    图  9  BNNS@PDA/PU复合材料的TGA曲线
    Figure  9.  TGA curves of BNNS@PDA/PU composites

    (1) 基于层层氢键组装,以聚氨酯(PU)开孔泡沫为模板,以聚多巴胺功能化改性氮化硼纳米片(BNNS@PDA)为导热填料,采用浸涂-热压成型法制得低填充、高导热BNNS@PDA/PU复合材料。

    (2) 通过多巴胺对BNNS进行表面功能化改性能够使其良好地负载于PU开孔泡沫的三维骨架表面,并通过热压成型形成以PU骨架为主要导热网络、以PU骨架表面包覆的BNNS@PDA为次级导热网络的高效双重三维导热网络结构,从而降低导热复合材料的界面热阻。

    (3) BNNS@PDA/PU复合材料的热导率随着BNNS@PDA含量增加而增大。当BNNS@PDA含量为16.3wt%时,BNNS@PDA/PU复合材料的热导率达到0.783 W/(m·K),与单导热网络PU的热导率(0.387 W/(m·K))相比提高了102.3%。

  • 图  1   (a) 低填料含量下形成的“海-岛”结构;(b) 高填料含量下形成的热传导路径;(c) 导热阈渗现象;(d) 热弹性系数理论[27]

    Figure  1.   (a) “Sea-island” in low fillers loading; (b) Thermal conduction paths in high fillers loading; (c) Percolation phenomenon; (d) Thermoelastic coefficient theory[27]

    λ—Thermal conductivity coefficient

    图  2   (a) 流化床化学气相沉积(CVD)工艺制备氮化硼纳米粒子(BNNS)/碳纳米管(CNTs)示意图和三维BNNS/CNTs/环氧树脂(EP)复合材料制备示意图;(b) 三维泡沫骨架上沉积的BNNS/CNTs的SEM图像;(c) 三维导热网络结构对BNNS/CNTs/EP复合材料导热系数的增强作用[39]

    Figure  2.   (a) Schematic illustration of the fluidized bed chemical vapor deposition (CVD) process for the fabrication of boron nitride nanoparticles (BNNS)/carbon nanotubes (CNTs) and the preparation process of 3D BNNS/CNTs/epoxy (EP) composie; (b) SEM image of BNNS/CNTs deposited on 3D foam skeleton; (c) Enhancement of 3D network structure on thermal conductivity of BNNS/CNTs/EP composite[39]

    PU—Polyurethane; CNTs15%—Mass fraction (15wt%) of CNTs in BNNS/CNTs samples

    图  3   (a) 具有连续网络结构的(CNT+BN)@聚偏二氟乙烯(PVDF)复合材料制备示意图;(b) 均匀分散的CNT/BN/PVDF复合材料和具有连续网络结构的(CNT+BN)@PVDF复合材料在不同混杂填料配比下的导热系数的对比; (c) (CNT+BN)@PVDF复合材料在不同热压温度下的导热系数变化,插图显示了混杂填料网络形貌[18]

    Figure  3.   (a) Schematic representation showing the preparation of interconnected (CNT+BN)@polyvinylidene fluoride (PVDF) composites; (b) Thermal conductivities of uniformly dispersed CNT/BN/PVDF and interconnected (CNT+BN)@PVDF composites as a function of the volume ratio of hybrid fillers; (c) Thermal conductivities of (CNT+BN)@PVDF composites molded at varied compression temperature, the insets exhibited the morphologies of hybrid filler network[18]

    TC—Thermal conductivity

    图  4   (a) 热塑性聚氨酯(TPU)/聚多巴胺(PDA)/Ag复合材料制备示意图;(b) TPU/PDA/Ag纤维膜表面 SEM图像;(c) 热流沿面内方向的连续Ag粒子路径的传导示意图;(d) 不同Ag含量下TPU/PDA/Ag复合膜的导热系数[53]

    Figure  4.   (a) Schematic illustration of the preparation process of thermoplastic polyurethane (TPU)/polydopamine (PDA)/Ag composites; (b) SEM image of the surface of TPU/PDA/Ag fiber membrane; (c) Schematic illustration of heat flow transfer along continuous silver particles pathways in-plane direction; (d) Thermal conductivities of TPU/PDA/Ag composite films versus mass fraction of Ag[53]

    TPU/PDA/Ag-x—Mass fraction (xwt%) of Ag loading in TPU/PDA/Ag (polyurethane/polydopamine/argentum) composite films

    图  5   (a) 通过胶乳共混-铸膜工艺制备具有连续网络的天然橡胶(NR)-羧基化多壁碳纳米管(MWCNTR)复合材料的制备示意图;(b) NR-MWCNTR复合材料的TEM图像[56]

    Figure  5.   (a) Schematic representation of the preparation of natural rubber (NR)-carboxylated multi-walled carbon nanotubes (MWCNTR) composites with interconnected network by latex blending-solution casting process; (b) TEM images of NR-MWCNTR composite film[56]

    MWCNT—Multi-walled carbon nanotube

    图  6   聚合物和导热填料(包括金属填料、碳基填料和陶瓷填料)的导热系数[10]

    Figure  6.   Thermal conductivity of common materials including polymers and fillers (Metals, ceramics and carbon materials)[10]

    BNNT—Boron nitride nanotube; h-BN—Hexagonal boron nitride; BAs—Cubic boron arsenide; AlN—Aluminum nitride; BNNS—Boron nitride nanosheet

    图  7   (a) Cu@TPU复合材料制备和Cu2+在TPU颗粒表面还原的示意图[71];(b) PVDF@PDA@Ag/低熔点合金(LMPA)、PVDF/LMPA和PVDF@PDA/LMPA复合材料制备示意图[74]

    Figure  7.   (a) Schematic illustration of preparation process of Cu@TPU composites and Cu2+ reduction process on TPU granules[71]; (b) Schematic diagram of fabrication process of PVDF@PDA@Ag/low melting point alloy (LMPA), PVDF/LMPA and PVDF@PDA/LMPA composites[74]

    图  8   (a) BN@聚苯硫醚(PPS)和BN/PPS复合材料的制备示意图;(b) 30vol%BN含量下BN@PPS颗粒的OM图像;(c) 具有连续网络结构的BN/PPS复合材料和PPS/BN共混复合材料的导热系数[85]

    Figure  8.   (a) Schematic illustrating the synthesis process of BN@polyphenylene sulfide (PPS) and BN/PPS composite; (b) OM image of BN@PPS particles with 30vol%BN loading; (c) Thermal conductivity of the interconnected architecture BN/PPS composites and PPS/BN blend composites[85]

    APTES—3-aminopropyltriethoxysilane; S-PPS—Segregated polyphenylene sulfide; A-BN—APTES functionalized BN; PEI—Polyethylenimine

    图  9   (a) 具有连续网络结构的还原氧化石墨烯(RGO)/TPU复合材料的制备过程示意图;(b) RGO/TPU复合材料切片的OM图像;(c) 连续网络结构RGO/TPU的导热系数[20]

    Figure  9.   (a) Schematic illustration of fabrication process of reduced graphene oxide (RGO)/TPU composite with interconnected structure; (b) Optical microscope images of RGO/TPU composite sections; (c) Thermal conductivities of RGO/TPU with interconnected structure[20]

    GO—Graphene oxide

    图  10   (a) 具有三维连续网络结构的聚苯乙烯(PS)/氧化石墨烯(GO)-PDA复合材料制备示意图,插图为PS/GO-PDA薄膜照片;((b), (b’)) PS/GO-PDA微球的SEM图像;(c) 不同填料含量下PS/GO-PDA复合材料的面内和面外导热系数;(d) 不同填料含量下PS/GO和PS/GO-PDA体积电阻率[103]

    Figure  10.   (a) Schematic illustration of preparation of the polystyrene (PS)/graphene oxide (GO)-PDA composites with a continuous three-dimensional network. Inset: photograph of the PS/GO-PDA thin film; ((b), (b’)) SEM images of the PS/GO-PDA microspheres; (c) In-plane and through-plane thermal conductivities of the PS/GO-PDA composites with different filler loadings; (d) Volume electrical resistivity of the PS/GO and PS/GO-PDA with different filler loadings[103]

  • [1]

    DOAN V C, VU M C, THIEU N A T, et al. Copper flake-coated cellulose scaffold to construct segregated network for enhancing thermal conductivity of epoxy composites[J]. Composites Part B: Engineering,2019,165:772-778. DOI: 10.1016/j.compositesb.2019.02.015

    [2]

    GUO Y Q, YANG X T, RUAN K P, et al. Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites[J]. ACS Applied Materials & Interfaces,2019,11(28):25465-25473.

    [3]

    AL-AHMED A, MAZUMDER M A J, SALHI B, et al. Effects of carbon-based fillers on thermal properties of fatty acids and their eutectics as phase change materials used for thermal energy storage: A Review[J]. Journal of Energy Storage,2021,35:102329. DOI: 10.1016/j.est.2021.102329

    [4]

    ARBOLEDA-CLEMENTE L, GARCÍA-FONTE X, ABAD M J, et al. Role of rheology in tunning thermal conductivity of polyamide 12/polyamide 6 composites with a segregated multiwalled carbon nanotube network[J]. Journal of Composite Materials,2018,52(18):2549-2557. DOI: 10.1177/0021998317749715

    [5] 石嵩, 张传琪, 张达, 等. 碳纳米管填充聚合物基导热复合材料的研究进展[J]. 科学通报, 2022, 67(30):3531-3545. DOI: 10.1360/TB-2022-0318

    SHI Song, ZHANG Chuanqi, ZHANG Da, et al. Progress on carbon nanotube filled polymer-based thermal conductive composites[J]. Chinese Science Bulletin,2022,67(30):3531-3545(in Chinese). DOI: 10.1360/TB-2022-0318

    [6]

    MENG X G, YU H J, WANG L, et al. Recent progress on fabrication and performance of polymer composites with highly thermal conductivity[J]. Macromolecular Materials and Engineering,2021,306(11):2100434. DOI: 10.1002/mame.202100434

    [7] 王世民, 温变英. 模压氮化硼/聚对苯二甲酸乙二醇酯复合材料的导热机制与散热效果[J]. 复合材料学报, 2023, 40(1):160-170. DOI: 10.13801/j.cnki.fhclxb.20211215.002

    WANG Shimin, WEN Bianying. Thermal conduction mechanism and heat dissipation effect of compression molded boron nitride/polyethylene terephthalate composites[J]. Acta Materiae Compositae Sinica,2023,40(1):160-170(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20211215.002

    [8]

    WU W T, ZHENG M S, LU K J, et al. Thermally conductive composites based on hexagonal boron nitride nanosheets for thermal management: Fundamentals to applications[J]. Composites Part A: Applied Science and Manufacturing,2023,169:107533. DOI: 10.1016/j.compositesa.2023.107533

    [9]

    LI J P, CHENG R, CHENG Z, et al. Silver-nanoparticle-embedded hybrid nanopaper with significant thermal conductivity enhancement[J]. ACS Applied Materials & Interfaces,2021,13(30):36171-36181.

    [10]

    HE X H, WANG Y C. Recent advances in the rational design of thermal conductive polymer composites[J]. Industrial & Engineering Chemistry Research,2021,60(3):1137-1154.

    [11]

    WANG Y, WU W, DRUMMER D, et al. Improvement of thermal conductivity and mechanical properties for polybenzoxazine composites via incorporation of epoxy resin and segregated structure[J]. Materials Research Express,2020,7(9):095301. DOI: 10.1088/2053-1591/abb263

    [12]

    LIU R P, HAN H, WU X T, et al. Construction of “core-shell” structure for improved thermal conductivity and mechanical properties of polyamide 6 composites[J]. Polymer Bulletin,2021,78(5):2791-2803. DOI: 10.1007/s00289-020-03242-z

    [13]

    LI Z L, KONG J J, JU D D, et al. Thermal conductivity enhancement of poly(3-hydroxylbutyrate) composites by constructing segregated structure with the aid of poly(ethylene oxide)[J]. Composites Science and Technology,2017,149:185-191. DOI: 10.1016/j.compscitech.2017.06.028

    [14] 林夏泽, 温变英. 界面效应对功能复合材料热传导行为的影响[J]. 复合材料学报, 2022, 39(4):1498-1510. DOI: 10.13801/j.cnki.fhclxb.20211009.002

    LIN Xiaze, WEN Bianying. Influence of interfacial effect on heat conduction behavior of functional composites[J]. Acta Materiae Compositae Sinica,2022,39(4):1498-1510(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20211009.002

    [15]

    BURGER N, LAACHACHI A, FERRIOL M, et al. Review of thermal conductivity in composites: Mechanisms, parameters and theory[J]. Progress in Polymer Science,2016,61:1-28. DOI: 10.1016/j.progpolymsci.2016.05.001

    [16]

    LIU B C, LI Y B, FEI T, et al. Highly thermally conductive polystyrene/polypropylene/boron nitride composites with 3D segregated structure prepared by solution-mixing and hot-pressing method[J]. Chemical Engineering Journal,2020,385:123829. DOI: 10.1016/j.cej.2019.123829

    [17]

    ZHAO F W, ZHANG G F, ZHAO S, et al. Fabrication of pristine graphene-based conductive polystyrene compo-sites towards high performance and light-weight[J]. Composites Science and Technology,2018,159:232-239. DOI: 10.1016/j.compscitech.2018.02.013

    [18]

    WANG Z G, HUANG Y F, ZHANG G Q, et al. Enhanced thermal conductivity of segregated poly (vinylidene fluoride) composites via forming hybrid conductive network of boron nitride and carbon nanotubes[J]. Industrial & Engineering Chemistry Research,2018,57(31):10391-10397.

    [19]

    HU S F, XU B F, ZHAO Y, et al. Preparation of CNTs/PP@Gr composites with a segregated structure and enhanced electrical and thermal conductive properties by the Pickering emulsion method[J]. Composites Science and Technology,2022,222:109374.

    [20]

    LI A, ZHANG C, ZHANG Y F. RGO/TPU composite with a segregated structure as thermal interface material[J]. Composites Part A: Applied Science and Manufacturing,2017,101:108-114. DOI: 10.1016/j.compositesa.2017.06.009

    [21]

    HAN Z D, FINA A. Thermal conductivity of carbon nano-tubes and their polymer nanocomposites: A review[J]. Progress in Polymer Science,2011,36(7):914-944. DOI: 10.1016/j.progpolymsci.2010.11.004

    [22]

    CHEN H Y, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science,2016,59:41-85. DOI: 10.1016/j.progpolymsci.2016.03.001

    [23]

    HUANG Y, ELLINGFORD C, BOWEN C, et al. Tailoring the electrical and thermal conductivity of multi-component and multi-phase polymer composites[J]. International Materials Reviews,2020,65(3):129-163. DOI: 10.1080/09506608.2019.1582180

    [24]

    PIETRAK K, WIŚNIEWSKI T S. A review of models for effective thermal conductivity of composite materials[J]. Journal of Power Technologies,2014,95(1):14-24.

    [25]

    CALLAWAY J. Model for lattice thermal conductivity at low temperatures[J]. Physical Review,1959,113(4):1046-1051. DOI: 10.1103/PhysRev.113.1046

    [26]

    ZHOU W X, CHENG Y A, CHEN K Q, et al. Thermal conductivity of amorphous materials[J]. Advanced Functional Materials,2020,30(8):1903829. DOI: 10.1002/adfm.201903829

    [27]

    GUO Y Q, RUAN K P, SHI X T, et al. Factors affecting thermal conductivities of the polymers and polymer composites: A review[J]. Composites Science and Technology,2020,193:108134. DOI: 10.1016/j.compscitech.2020.108134

    [28]

    YANG X T, LIANG C B, MA T B, et al. A review on thermally conductive polymeric composites: Classification, measurement, model and equations, mechanism and fabrication methods[J]. Advanced Composites and Hybrid Materials,2018,1(2):207-230. DOI: 10.1007/s42114-018-0031-8

    [29]

    OLUWALOWO A, NGUYEN N, ZHANG S L, et al. Electrical and thermal conductivity improvement of carbon nano-tube and silver composites[J]. Carbon,2019,146:224-231. DOI: 10.1016/j.carbon.2019.01.073

    [30]

    KARGAR F, BARANI Z, SALGADO R, et al. Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers[J]. ACS Applied Materials & Interfaces,2018,10(43):37555-37565.

    [31]

    WU Z H, XU C A, MA C Q, et al. Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites[J]. Advanced Materials,2019,31(19):1900199. DOI: 10.1002/adma.201900199

    [32]

    RYU S H, CHO H B, KWON Y T, et al. Quasi-isotropic thermal conduction in percolation networks: Using the pore-filling effect to enhance thermal conductivity in polymer nanocomposites[J]. ACS Applied Polymer Materials,2020,3(3):1293-1305.

    [33]

    YANG J, SHEN X, YANG W, et al. Templating strategies for 3D-structured thermally conductive composites: Recent advances and thermal energy applications[J]. Progress in Materials Science,2023,133:101054.

    [34]

    HAN L Y, LI K Z, FU Y Q, et al. Multifunctional electromagnetic interference shielding 3D reduced graphene oxide/vertical edge-rich graphene/epoxy nanocompo-sites with remarkable thermal management performance[J]. Composites Science and Technology,2022,222:109407. DOI: 10.1016/j.compscitech.2022.109407

    [35]

    TAN X, YUAN Q L, QIU M T, et al. Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: A mini review[J]. Journal of Materials Science & Technology,2022,117:238-250.

    [36]

    ANAND S, VU M C, MANI D, et al. Dual 3D networks of graphene derivatives based polydimethylsiloxane composites for electrical insulating electronic packaging materials with outstanding electromagnetic interference shielding and thermal dissipation performances[J]. Chemical Engineering Journal, 2023, 462: 142017.

    [37]

    BA K X, ZHANG M Y, WANG X D, et al. Porous graphene composites fabricated by template method used for electromagnetic shielding and thermal conduction[J]. Diamond and Related Materials,2023,131:109585. DOI: 10.1016/j.diamond.2022.109585

    [38]

    YE L J, CHEN C M, BIAN Y X, et al. Segregated structures induced linear mechanoelectrical responses to low strains for elastomer/CNTs composites[J]. Composites Science and Technology,2022,230:109752. DOI: 10.1016/j.compscitech.2022.109752

    [39]

    YANG W, WANG Y F, LI Y, et al. Three-dimensional skeleton assembled by carbon nanotubes/boron nitride as filler in epoxy for thermal management materials with high thermal conductivity and electrical insulation[J]. Composites Part B: Engineering,2021,224:109168. DOI: 10.1016/j.compositesb.2021.109168

    [40]

    KIM J, HAN N M, KIM J, et al. Highly conductive and fracture-resistant epoxy composite based on non-oxidized graphene flake aerogel[J]. ACS Applied Materials & Interfaces,2018,10(43):37507-37516.

    [41]

    BUSTILLOS J, ZHANG C, BOESL B, et al. Three-dimensional graphene foam-polymer composite with superior deicing efficiency and strength[J]. ACS Applied Materials & Interfaces,2018,10(5):5022-5029.

    [42]

    LI X H, LIU P F, LI X F, et al. Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites[J]. Carbon,2018,140:624-633. DOI: 10.1016/j.carbon.2018.09.016

    [43]

    LEE W, HONG J, SONG J, et al. Fabrication of high-performance thermally conductive phase change material composites with porous ceramic filler network for efficient thermal management[J]. Composites Science and Technology,2023,240:110092. DOI: 10.1016/j.compscitech.2023.110092

    [44]

    HU H L, ZHANG G, XIAO L G, et al. Preparation and electrical conductivity of graphene/ultrahigh molecular weight polyethylene composites with a segregated structure[J]. Carbon,2012,50(12):4596-4599. DOI: 10.1016/j.carbon.2012.05.045

    [45]

    DU J H, ZHAO L, ZENG Y, et al. Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene compo-sites with a segregated network structure[J]. Carbon,2011,49(4):1094-1100. DOI: 10.1016/j.carbon.2010.11.013

    [46]

    LI M K, GAO C X, HU H L, et al. Electrical conductivity of thermally reduced graphene oxide/polymer composites with a segregated structure[J]. Carbon,2013,65:371-373. DOI: 10.1016/j.carbon.2013.08.016

    [47]

    GAO C, ZHANG S M, WANG F, et al. Conductive compo-sites with segregated structure and ultralow percolation threshold via flocculation-assembled PVDF/graphene core-shell particles[J]. Materials Letters,2015,158:428-431. DOI: 10.1016/j.matlet.2015.06.011

    [48]

    WANG L, WANG H, LI B, et al. Highly electrically conductive polymer composite with a novel fiber-based segregated structure[J]. Journal of Materials Science,2020,55(25):11727-11738. DOI: 10.1007/s10853-020-04797-y

    [49]

    XU M K, LIU J, ZHANG H B, et al. Electrically conductive Ti3C2Tx MXene/polypropylene nanocomposites with an ultralow percolation threshold for efficient electromagnetic interference shielding[J]. Industrial & Engi-neering Chemistry Research,2021,60(11):4342-4350.

    [50]

    CHANG C G, YANG J C, ZHANG G, et al. Fabrication of segregated poly(arylene sulfide sulfone)/graphene nanoplate composites reinforced by polymer fibers for electromagnetic interference shielding[J]. Nano Materials Science,2022,4(3):285-293. DOI: 10.1016/j.nanoms.2021.11.001

    [51]

    ZHAO G J, CAO X Y, ZHANG Q, et al. A novel interpenetrating segregated functional filler network structure for ultra-high electrical conductivity and efficient EMI shielding in CPCs containing carbon nanotubes[J]. Materials Today Physics,2021,21:100483. DOI: 10.1016/j.mtphys.2021.100483

    [52]

    LI X, LI C H, ZHANG X M, et al. Simultaneously enhanced thermal conductivity and mechanical properties of PP/BN composites via constructing reinforced segregated structure with a trace amount of BN wrapped PP fiber[J]. Chemical Engineering Journal,2020,390:124563. DOI: 10.1016/j.cej.2020.124563

    [53]

    YANG G, WANG M J, DONG J W, et al. Fibers-induced segregated-like structure for polymer composites achieving excellent thermal conductivity and electromagnetic interference shielding efficiency[J]. Composites Part B: Engi-neering,2022,246:110253. DOI: 10.1016/j.compositesb.2022.110253

    [54]

    WANG L Y, ZHANG J T, SUN Y Y, et al. Green preparation and enhanced gas barrier property of rubber nanocomposite film based on graphene oxide-induced chemical crosslinking[J]. Polymer,2021,225:123756. DOI: 10.1016/j.polymer.2021.123756

    [55]

    ZHAN Y H, MENG Y Y, LI Y C. Electric heating behavior of flexible graphene/natural rubber conductor with self-healing conductive network[J]. Materials Letters,2017,192:115-118. DOI: 10.1016/j.matlet.2016.12.045

    [56]

    GEORGE N, CHANDRA J, MATHIAZHAGAN A, et al. High performance natural rubber composites with conductive segregated network of multiwalled carbon nanotubes[J]. Composites Science and Technology,2015,116:33-40. DOI: 10.1016/j.compscitech.2015.05.008

    [57]

    ZHU Y, WEI L Y, FU X, et al. Super strong and tough elastomers enabled by sacrificial segregated network[J]. Chinese Journal of Polymer Science,2021,39(3):377-386. DOI: 10.1007/s10118-020-2484-9

    [58]

    QIN H M, DENG C R, LU S J, et al. Enhanced mechanical property, thermal and electrical conductivity of natural rubber/graphene nanosheets nanocomposites[J]. Polymer Composites,2020,41(4):1299-1309. DOI: 10.1002/pc.25455

    [59]

    LI Y J, HE Q, ZHANG H, et al. Functionalised graphene oxide-bromobutyl rubber composites with segregated structure for enhanced gas barrier properties[J]. Plastics, Rubber and Composites,2022,51(7):363-371. DOI: 10.1080/14658011.2021.2008702

    [60]

    BOURGEAT-LAMI E, FAUCHEU J, NOËL A. Latex routes to graphene-based nanocomposites[J]. Polymer Che-mistry,2015,6(30):5323-5357. DOI: 10.1039/C5PY00490J

    [61]

    SCHERILLO G, LAVORGNA M, BUONOCORE G G, et al. Tailoring assembly of reduced graphene oxide nanosheets to control gas barrier properties of natural rubber nanocomposites[J]. ACS Applied Materials & Interfaces,2014,6(4):2230-2234.

    [62]

    HAN L J, WANG H R, TANG Q, et al. Preparation of graphene/polypropylene composites with high dielectric constant and low dielectric loss via constructing a segregated graphene network[J]. RSC Advances,2021,11(60):38264-38272. DOI: 10.1039/D1RA06138K

    [63]

    GEORGE N, VARGHESE G A, JOSEPH R. Improved mechanical and barrier properties of Natural rubber-Multiwalled carbon nanotube composites with segregated network structure[J]. Materials Today: Proceedings,2019,9:13-20. DOI: 10.1016/j.matpr.2019.02.030

    [64]

    CUI J S, ZHOU S X. Facile fabrication of highly conductive polystyrene/nanocarbon composites with robust interconnected network via electrostatic attraction strategy[J]. Journal of Materials Chemistry C,2018,6(3):550-557. DOI: 10.1039/C7TC04752E

    [65]

    XU C H, WU W C, ZHENG Z J, et al. Strengthened, conductivity-tunable, and low solvent-sensitive flexible conductive rubber films with a Zn2+-crosslinked one-body segregated network[J]. Composites Science and Technology,2021,203:108606. DOI: 10.1016/j.compscitech.2020.108606

    [66]

    SONG Q C, CHEN B X, ZHOU Z H, et al. Flexible, stretchable and magnetic Fe3O4@Ti3C2Tx/elastomer with supramolecular interfacial crosslinking for enhancing mechanical and electromagnetic interference shielding performance[J]. Science China Materials,2021,64(6):1437-1448. DOI: 10.1007/s40843-020-1539-2

    [67]

    WU S L, SHI T J, ZHANG L Y. Latex co-coagulation approach to fabrication of polyurethane/graphene nanocomposites with improved electrical conductivity, thermal conductivity, and barrier property[J]. Journal of Applied Polymer Science,2016,133(11):43117.

    [68]

    LI M N, TANG C, ZHANG L, et al. A thermally conductive epoxy polymer composites with hybrid fillers of copper nanowires and reduced graphene oxide[J]. Journal of Materials Science: Materials in Electronics,2017,28(20):15694-15700. DOI: 10.1007/s10854-017-7459-4

    [69]

    FENG Y Z, LI X W, ZHAO X Y, et al. Synergetic improvement in thermal conductivity and flame retardancy of epoxy/silver nanowires composites by incorporating “branch-like” flame-retardant functionalized graphene[J]. ACS Applied Materials & Interfaces,2018,10(25):21628-21641.

    [70]

    LIU F, XIE Z X, CAI Y F, et al. Electromagnetic interference shielding property of silver nanowires/polymer foams with low thermal conductivity[J]. Journal of Materials Science: Materials in Electronics,2021,32:28394-28405. DOI: 10.1007/s10854-021-07219-0

    [71]

    WANG Y, CHEN Q M, LIU C, et al. Highly enhanced thermal conductivity of TPU composites with segregated network constructed by the in-situ reduction of copper[J]. Journal of Alloys and Compounds,2023,941:168801. DOI: 10.1016/j.jallcom.2023.168801

    [72]

    ZHANG L, LI Z F, LIU G T, et al. Enhancement of the electrical and thermal conductivity of epoxy-based compo-site films through the construction of the multi-scale conductive bridge structure[J]. Composites Science and Technology,2023,239:110074. DOI: 10.1016/j.compscitech.2023.110074

    [73]

    ZHAN Y H, LAVORGNA M, BUONOCORE G, et al. Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing[J]. Journal of Materials Chemistry,2012,22(21):10464-10468. DOI: 10.1039/c2jm31293j

    [74]

    ZHANG P, ZHANG X, DING X, et al. Improving thermal conductivity of polyvinylidene fluoride/low-melting-point alloy with segregated structure induced by incorporation of silver interface layer[J]. Journal of Polymer Research,2022,29(9):390. DOI: 10.1007/s10965-022-03242-9

    [75]

    BHUTTA M S, TANG X B, AKRAM S, et al. Development of novel hybrid 2D-3D graphene oxide diamond micro composite polyimide films to ameliorate electrical & thermal conduction[J]. Journal of Industrial and Engineering Chemistry,2022,114:108-114. DOI: 10.1016/j.jiec.2022.06.036

    [76] 石林, 马忠雷, 景佳瑶, 等. 双导热网络功能化氮化硼纳米片/聚氨酯复合材料的制备与导热性能[J]. 复合材料学报, 2022, 39(10):4531-4539. DOI: 10.13801/j.cnki.fhclxb.20211028.007

    SHI Lin, MA Zhonglei, JING Jiayao, et al. Preparation and thermally conductive properties of functionalized boron nitride nanosheets/polyurethane composites with double heat-conduction networks[J]. Acta Materiae Compositae Sinica,2022,39(10):4531-4539(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20211028.007

    [77]

    LEE W, KIM J. Improved thermal conductivity of poly (dimethylsiloxane) composites filled with well-aligned hybrid filler network of boron nitride and graphene oxide[J]. Polymer Testing,2021,104:107402. DOI: 10.1016/j.polymertesting.2021.107402

    [78]

    YOON H, MATTEINI P, HWANG B. Review on three-dimensional ceramic filler networking composites for thermal conductive applications[J]. Journal of Non-Crystalline Solids,2022,576:121272.

    [79]

    HU M C, FENG J Y, NG K M. Thermally conductive PP/AlN composites with a 3D segregated structure[J]. Composites Science and Technology,2015,110:26-34. DOI: 10.1016/j.compscitech.2015.01.019

    [80]

    ZHANG X, XIA X C, YOU H, et al. Design of continuous segregated polypropylene/Al2O3 nanocomposites and impact of controlled Al2O3 distribution on thermal conductivity[J]. Composites Part A: Applied Science and Manufacturing,2020,131:105825. DOI: 10.1016/j.compositesa.2020.105825

    [81]

    LI B, LI R L, XIE Y X. Properties and effect of preparation method of thermally conductive polypropylene/aluminum oxide composite[J]. Journal of Materials Science,2017,52(5):2524-2533. DOI: 10.1007/s10853-016-0546-8

    [82]

    WANG X, LU H, FENG C, et al. Facile method to fabricate highly thermally conductive UHMWPE/BN composites with the segregated structure for thermal management[J]. Plastics, Rubber and Composites,2020,49(5):196-203. DOI: 10.1080/14658011.2020.1726143

    [83]

    DING J W, ZHENG R B, ZHANG Y J, et al. The high thermal conductive and flexible boron nitride/silicone rubber composites with segregated structure[J]. Materials Research Express,2021,8(3):035306. DOI: 10.1088/2053-1591/abed6b

    [84]

    GU J W, GUO Y Q, YANG X T, et al. Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers[J]. Composites Part A: Applied Science and Manufacturing,2017,95:267-273. DOI: 10.1016/j.compositesa.2017.01.019

    [85]

    JIANG Y, LIU Y J, MIN P, et al. BN@PPS core-shell structure particles and their 3D segregated architecture composites with high thermal conductivities[J]. Composites Science and Technology,2017,144:63-69. DOI: 10.1016/j.compscitech.2017.03.023

    [86]

    LIU C, WU W, DRUMMER D, et al. Significantly enhanced thermal conductivity of polymer composites via establishing double-percolated expanded graphite/multi-layer graphene hybrid filler network[J]. European Polymer Journal,2021,160:110768. DOI: 10.1016/j.eurpolymj.2021.110768

    [87]

    SUDHINDRA S, KARGAR F, BALANDIN A A. Noncured graphene thermal interface materials for high-power electronics: Minimizing the thermal contact resistance[J]. Nanomaterials,2021,11(7):1699. DOI: 10.3390/nano11071699

    [88]

    LEWIS J S, PERRIER T, BARANI Z, et al. Thermal interface materials with graphene fillers: Review of the state of the art and outlook for future applications[J]. Nanotechnology,2021,32(14):142003. DOI: 10.1088/1361-6528/abc0c6

    [89]

    GAO C W, FENG C P, LU H, et al. Thermally conductive general-purpose polystyrene (GPPS)/graphite composite with a segregated structure: Effect of size of resin and graphite flakes[J]. Polymer-Plastics Technology and Engineering,2018,57(13):1277-1287. DOI: 10.1080/03602559.2017.1381242

    [90]

    LEI Y Z, BAI Y, SHI Y, et al. Composite nanoarchitectonics of poly (vinylidene fluoride)/graphene for thermal and electrical conductivity enhancement via constructing segregated network structure[J]. Journal of Polymer Research,2022,29(5):213. DOI: 10.1007/s10965-022-03052-z

    [91]

    SONG N, CAO D L, LUO X, et al. Highly thermally conductive polypropylene/graphene composites for thermal management[J]. Composites Part A: Applied Science and Manufacturing,2020,135:105912. DOI: 10.1016/j.compositesa.2020.105912

    [92]

    YU J, CHOI H K, KIM H S, et al. Synergistic effect of hybrid graphene nanoplatelet and multi-walled carbon nano-tube fillers on the thermal conductivity of polymer composites and theoretical modeling of the synergistic effect[J]. Composites Part A: Applied Science and Manufacturing,2016,88:79-85. DOI: 10.1016/j.compositesa.2016.05.022

    [93]

    WANG Z G, GONG F, YU W C, et al. Synergetic enhancement of thermal conductivity by constructing hybrid conductive network in the segregated polymer composites[J]. Composites Science and Technology,2018,162:7-13. DOI: 10.1016/j.compscitech.2018.03.016

    [94]

    CHEN R, HE Q X, LI X, et al. Significant enhancement of thermal conductivity in segregated (GnPs&MWCNTs)@polybenzoxazine/(polyether ether ketone)-based composites with excellent electromagnetic shielding[J]. Chemical Engineering Journal,2022,431:134049. DOI: 10.1016/j.cej.2021.134049

    [95]

    ZHANG P, DING X, WANG Y Y, et al. Segregated double network enabled effective electromagnetic shielding composites with extraordinary electrical insulation and thermal conductivity[J]. Composites Part A: Applied Science and Manufacturing,2019,117:56-64. DOI: 10.1016/j.compositesa.2018.11.007

    [96]

    HAO M Y, QIAN X, ZHANG Y G, et al. Thermal conductivity enhancement of carbon fiber/epoxy composites via constructing three-dimensionally aligned hybrid thermal conductive structures on fiber surfaces[J]. Composites Science and Technology,2023,231:109800. DOI: 10.1016/j.compscitech.2022.109800

    [97]

    WU W F, REN T L, LIU X Q, et al. Creating thermal conductive pathways in polymer matrix by directional assembly of synergistic fillers assisted by electric fields[J]. Composites Communications,2022,35:101309. DOI: 10.1016/j.coco.2022.101309

    [98]

    ZHANG H, ZHANG X W, LI D T, et al. Thermal conductivity enhancement via conductive network conversion from “sand-like” to “stone-like” in the polydimethylsiloxane composites[J]. Composites Communications,2020,22:100509. DOI: 10.1016/j.coco.2020.100509

    [99] 田恐虎, 吴阳, 盛绍顶, 等. 聚合物基绝缘导热复合材料中碳系填料的研究进展[J]. 复合材料学报, 2021, 38(4):1054-1065. DOI: 10.13801/j.cnki.fhclxb.20201224.001

    TIAN Konghu, WU Yang, SHENG Shaoding, et al. Research progress of carbon-based fillers in polymer matrix insulating and thermally conductive composites[J]. Acta Materiae Compositae Sinica,2021,38(4):1054-1065(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20201224.001

    [100]

    LI M N, TANG C, ZHANG L, et al. A thermally conductive and insulating epoxy polymer composite with hybrid filler of modified copper nanowires and graphene oxide[J]. Journal of Materials Science: Materials in Electronics,2018,29(6):4948-4954.

    [101]

    AN D, LI Z W, CHEN H F, et al. Modulation of covalent bonded boron nitride/graphene and three-dimensional networks to achieve highly thermal conductivity for polymer-based thermal interfacial materials[J]. Composites Part A: Applied Science and Manufacturing,2022,156:106890. DOI: 10.1016/j.compositesa.2022.106890

    [102]

    ZHANG X, WU K, LIU Y H, et al. Preparation of highly thermally conductive but electrically insulating compo-sites by constructing a segregated double network in polymer composites[J]. Composites Science and Technology,2019,175:135-142. DOI: 10.1016/j.compscitech.2019.03.017

    [103]

    YUAN H, WANG Y, LI T, et al. Fabrication of thermally conductive and electrically insulating polymer compo-sites with isotropic thermal conductivity by constructing a three-dimensional interconnected network[J]. Nanoscale,2019,11(23):11360-11368. DOI: 10.1039/C9NR02491C

    [104]

    FENG C P, WAN S S, WU W C, et al. Electrically insulating, layer structured SiR/GNPs/BN thermal management materials with enhanced thermal conductivity and breakdown voltage[J]. Composites Science and Technology,2018,167:456-462. DOI: 10.1016/j.compscitech.2018.08.039

  • 期刊类型引用(6)

    1. 耿乾浩,徐晓云,李冰晶. 矿用聚氨酯注浆材料反应热控制技术研究进展. 化工进展. 2025(01): 319-328 . 百度学术
    2. 吴连锋,朱洪宇,申小松,朱艳吉,汪怀远. 1, 5-萘二酚改性环氧树脂及其氮化硼复合材料的制备与导热性能. 中国表面工程. 2024(01): 110-117 . 百度学术
    3. 杨承伟,王玉斌,傅伟强,王煦. 纳米材料改性聚对苯二甲酸乙二醇酯的研究进展. 塑料科技. 2024(01): 112-116 . 百度学术
    4. 王世民,温变英. 模压氮化硼/聚对苯二甲酸乙二醇酯复合材料的导热机制与散热效果. 复合材料学报. 2023(01): 160-170 . 本站查看
    5. 石贤斌,张帅,陈超,聂向导,班露露,赵亚星,刘仁,桑欣欣. 氮化硼纳米片的绿色制备及其在导热复合材料中的应用. 复合材料学报. 2023(08): 4558-4567 . 本站查看
    6. 郑舒方,王玉印,郭兰迪,靳玉岭. 具有三维连续网络结构的聚合物基导热复合材料研究进展. 复合材料学报. 2023(12): 6528-6544 . 本站查看

    其他类型引用(7)

  • 目的 

    热界面材料可以有效地将高温电子器件的热量快速传递到热管理元件,以缓解电子器件过热而导致的元件寿命恶化的问题。近年来,由聚合物和高导热填料制成的聚合物基复合材料因其密度低、导热性能可调而受到广泛关注。不同于传统的填料随机分散的复合材料,在聚合物基体中构建三维连续网络结构可以显著增加填料/填料接触、降低导热渗透阈值和界面热阻,显著改善复合材料的导热性能。

    方法 

    首先从声子传输的角度,简要分析了聚合物基导热复合材料的导热机制。其次,基于导热填料和聚合物的不同的存在形态,总结了具有连续网络结构的导热复合材料的构筑工艺。总结了不同种类的导热填料对聚合物复合材料的导热性能的影响,主要包括金属填料、陶瓷填料、碳基填料及其混杂填料等。最后,对具有连续网络结构的聚合物基导热复合材料的未来发展前景进行了展望。

    结果 

    基于聚合物(颗粒、纤维、乳液、溶液等)和导热填料(微观单独存在或宏观三维连续多孔结构)的不同存在形态,目前已开发出几种在聚合物基体中构建三维互联导热网络的构筑工艺,分别是基于三维多孔泡沫预构筑-聚合物回填或牺牲模板、聚合物颗粒/导热填料的干/湿法沉积-后加工工艺、聚合物纤维/织物沉积-后加工工艺、胶乳混合-铸膜或絮凝工艺等。三维连续导热网络的构筑可为声子提供有效的传播途径,降低声子散射,显著降低导热粒子间的界面接触热阻,进而提高复合材料的热导率。聚合物基导热复合材料中最常采用的导热填料主要包括金属填料、碳基填料、陶瓷填料及其混杂填料等。金属填料通常具有较高的导热系数和电导率,通常应用于对电绝缘性能要求不高的领域。碳基填料具有更加优异的导热系数,对聚合物的导热性能提升更为有效。然而,与金属填料类似,碳基填料优异的导电性限制了其在电子封装领域的应用。陶瓷填料因其优良的导热性和电绝缘性而受到越来越多的关注,多用于制造既导热又电绝缘的复合材料。理想的电子设备热管理材料或热界面材料应同时具有导热系数高、电绝缘性好、热机械稳定性好、成本低等优点。目前,实现聚合物基复合材料的绝缘/导热兼容性能主要有以下两种工艺。一是在填料表面构筑绝缘层,对导热填料进行绝缘化的改性处理,在切断导电传输路径的同时提高界面相互作用,降低界面热阻,主要包括聚合物改性和绝缘陶瓷涂层改性等;二是在微观/宏观等不同尺度上对聚合物的内部结构及填料的分布状态等进行优化设计,在阻断导电网络的同时促进导热网络的形成,主要包括微观尺度上的填料混杂、宏观尺度上的层合结构调控和填料的选择性分布等。

    结论 

    综述了近年来具有三维连续网络结构的聚合物基导热复合材料的研究进展。首先从声子传输的角度简要分析了聚合物基复合材料的导热机制。重点介绍了具有连续网络结构的聚合物基导热复合材料的构筑工艺和不同类型导热填料对聚合物复合材料导热性能的影响及其机制。实现聚合物基复合材料的高导热性依赖于在基体中构筑高度连续、高质量的导热网络,这是保证高效传热的关键。通过构筑连续网络的微观结构,确保了聚合物基复合材料在低填料含量下的高导热性能,为高导热复合材料的设计提供了独特的灵活性和通用性。

图(10)
计量
  • 文章访问数:  1102
  • HTML全文浏览量:  664
  • PDF下载量:  157
  • 被引次数: 13
出版历程
  • 收稿日期:  2023-04-18
  • 修回日期:  2023-05-16
  • 录用日期:  2023-05-25
  • 网络出版日期:  2023-05-30
  • 刊出日期:  2023-11-30

目录

/

返回文章
返回