留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子模拟硅灰石与硅烷作用机制及改性粉体填充尼龙6性能

舒畅 王彩丽 李海婷 杨润全

舒畅, 王彩丽, 李海婷, 等. 分子模拟硅灰石与硅烷作用机制及改性粉体填充尼龙6性能[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 舒畅, 王彩丽, 李海婷, 等. 分子模拟硅灰石与硅烷作用机制及改性粉体填充尼龙6性能[J]. 复合材料学报, 2024, 42(0): 1-9.
SHU Chang, WANG Caili, LI Haiting, et al. Molecular simulation of the interaction mechanism between wollastonite and silane and the properties of modified powder filled nylon 6[J]. Acta Materiae Compositae Sinica.
Citation: SHU Chang, WANG Caili, LI Haiting, et al. Molecular simulation of the interaction mechanism between wollastonite and silane and the properties of modified powder filled nylon 6[J]. Acta Materiae Compositae Sinica.

分子模拟硅灰石与硅烷作用机制及改性粉体填充尼龙6性能

基金项目: 浙江省非金属矿工程技术研究中心开放课题基金(ZD2023K07)
详细信息
    通讯作者:

    王彩丽, 博士, 副教授,硕士生导师, 研究方向为矿物材料制备与应用 E-mail: 229478584@qq.com

  • 中图分类号: TQ323.6

Molecular simulation of the interaction mechanism between wollastonite and silane and the properties of modified powder filled nylon 6

Funds: Engineering Research Center of Non-metallic Minerals of Zhejiang Province (ZD2023K07)
  • 摘要: 通过采用硅烷对硅灰石进行干法改性优化硅灰石物化性能,探究了改性温度、时间、硅烷用量对改性效果的影响。采用红外光谱对改性前后硅灰石粉体表面官能团进行表征。分别将未改性硅灰石原样与改性粉体填充尼龙6制备复合材料,对复合材料的冲击强度、拉伸强度、弯曲强度、弯曲模量、热变形温度等指标进行测试。使用分子模拟分析了硅烷SCA1113 (3-氨丙基三乙氧基硅烷)改性硅灰石的微观机制。结果表明:改性温度80 ℃,改性时间20min,硅烷用量0.8%为优化工艺条件;未改性硅灰石填充尼龙6样品较尼龙6纯样刚性提高但降低韧性,而改性后的硅灰石填充尼龙6可以同时提高尼龙6材料的刚性与韧性;硅烷SCA1113改性硅灰石时其反应性不来自于硅灰石晶体内部,晶面(100)最具反应性,硅烷SCA1113与硅灰石表面吸附为化学吸附,形成了Si-O-Ca键。

     

  • 图  1  硅灰石粉体扫描电镜照片

    Figure  1.  SEM image of wollastonite

    图  2  硅烷用量、改性时间和改性温度对硅灰石吸油值影响

    Figure  2.  Effect of silane dosage, modification time and temperature on the oil absorption value of wollastonite

    图  3  硅灰石FTIR图谱

    Figure  3.  FTIR spectrum of silane

    图  4  硅灰石晶胞

    Figure  4.  Crystal cells of wollastonite

    图  5  硅灰石几何优化前后模型

    Figure  5.  Wollastonite models before and after geometric optimization

    图  6  硅灰石不同晶面

    Figure  6.  Different crystal planes of wollastonite

    图  7  优化前后的硅灰石晶面(100)

    Figure  7.  Crystal planes (100) of wollsstonite before and after optimization

    图  8  3-氨丙基三乙氧基硅烷(SCA1113)

    Figure  8.  3-aminopropyltriethoxysilane (SCA1113)

    图  9  SCA1113水解过程

    Figure  9.  Hydrolysis process of SCA1113

    图  10  SCA1113与晶面(100)结合过程模拟

    Figure  10.  Simulation of the bonding process between SCA1113 and crystal (100)

    图  11  SCA1113改性硅灰石机制

    Figure  11.  Mechanism of SCA1113 modified silica fume

    表  1  几何优化前后晶体下部原子坐标及变化

    Table  1.   Coordinates and changes of lower atoms in crystals before and after geometric optimization

    Original coordinatesOptimized coordinatesCoordinate variation
    Atom(x,y,z)(x,y,z)(x,y,z)
    O1(0.301,0.939,0.464)(0.302,0.936,0.468)(-0.001,0.002,-0.004)
    O2(0.571,0.769,0.199)(0.574,0.771,0.202)(-0.003,-0.002,-0.003)
    O3(-0.018,0.868,0.265)(-0.021,0.867,0.266)(0.003,0,-0.001)
    O4(0.271,0.87,0.094)(0.27,0.872,0.093)(0.002,-0.002,0.001)
    O5(0.402,0.727,-0.17)(0.403,0.728,-0.171)(-0.001,-0.001,0.001)
    O6(0.274,0.513,0.093)(0.273,0.513,0.092)(0,0,0.001)
    O7(-0.017,0.374,0.266)(-0.019,0.375,0.268)(0.002,-0.001,-0.002)
    O8(0.303,0.462,0.463)(0.305,0.466,0.468)(-0.001,-0.004,-0.005)
    O9(0.218,0.179,0.225)(0.22,0.181,0.228)(-0.002,-0.002,-0.003)
    Si1(0.185,0.954,0.269)(0.185,0.954,0.271)(0,0,-0.002)
    Si2(0.397,0.724,0.056)(0.399,0.725,0.057)(-0.002,-0.002,-0.001)
    Si3(0.185,0.388,0.268)(0.186,0.39,0.272)(-0.001,-0.003,-0.003)
    Ca1(0.802,0.577,0.239)(0.803,0.577,0.238)(-0.001,0,0.001)
    Ca2(0.503,0.75,0.527)(0.507,0.752,0.531)(-0.003,-0.001,-0.004)
    Ca3(0.202,0.929,0.764)(0.201,0.927,0.764)(0.001,0.002,0)
    下载: 导出CSV

    表  2  硅灰石晶体的表面能

    Table  2.   Surface energy of wollastonite crystals

    Surface Energy/(eV·nm−2)
    (100) −2330
    (010) −2160
    (001) −2134
    下载: 导出CSV

    表  3  复合粉体填充尼龙6力学性能

    Table  3.   Mechanical properties of composite powder filling in nylon 6

    Sample PA6 Wollastonite/PA6 Modified powder/PA6
    Impact strength/(kJ·m−2) 6.8 4.4 7.38
    Tensile strength/MPa 60.56 60.82 75.6
    Bending strength/MPa 72.54 109.96 108.05
    Bending modulus/MPa 1955.41 3280.27 3439.4
    下载: 导出CSV
  • [1] 李渴, 彭春艳, 魏博, 等. 国外硅灰石资源开发利用情况[J]. 建材世界, 2019, 40(5): 12-16.

    LI Ke, PENG Chunyan, WEI Bo, et al. Development and utilization of wollastonite in foreign countries[J]. The World of Building Materials, 2019, 40(5): 12-16(in Chinese).
    [2] 蒋浩东, 李树蔚, 丁建, 等. 国内外硅灰石资源现状及应用研究进展[J]. 矿产保护与利用, 2023, 43(1): 162-168.

    JIANG Haodong, LI Shuwei, DING Jian, et al. Domestic and foreign status and application research progress of wollastonite resources[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 162-168(in Chinese).
    [3] 许怀凤. 陶瓷坯用硅灰石粉的质量控制及其方法[J]. 中国粉体技术, 2013, 19(6): 73-76.

    XU Huaifeng. Quality controlling factors and methods of wollastonite powders for ceramics[J]. China Powder Science and Technology, 2013, 19(6): 73-76(in Chinese).
    [4] 韩秀丽, 张韩, 刘磊, 等. 硅灰石对连铸保护渣结晶性能的影响规律[J]. 钢铁钒钛, 2015, 36(1): 103-108.

    HAN Xiuli, ZHANG Han, LIU Lei, PAN Miaomiao, et al. Effect of wollastonite on crystallization properties of mould powder[J]. Iron Steel Vanadium Titanium, 2015, 36(1): 103-108(in Chinese).
    [5] 邢君, 郭永伟, 张利军. 硅灰石和膨润土增强膨胀型钢结构防火涂料[J]. 消防科学与技术, 2020, 39(7): 1003-1007. doi: 10.3969/j.issn.1009-0029.2020.07.032

    XING Jun, GUO Yongwei, ZHANG Lijun. Experimental study on wollastonite and bentonite reinforced fire retardant coatings for expanded steel structures[J]. Fire Science and Technology, 2020, 39(7): 1003-1007(in Chinese). doi: 10.3969/j.issn.1009-0029.2020.07.032
    [6] LOTFOLLAHI S, JAIDARI A, BAKHTIARI P, et al. Effect of wollastonite microfibers and waste tire rubber on mechanical properties of concrete[J]. International Journal of Concrete Structures and Materials, 2023, 17(1): 33. doi: 10.1186/s40069-023-00595-3
    [7] 王泽红, 周鸭羊, 宁国栋. 高长径比硅灰石制备及机理研究[J]. 矿产保护与利用, 2015, (1): 49-53.

    WANG Zehong, ZHOU Yayang, NING Guodong. Study on the preparation of high aspect ratio wollatonite and its mechanism[J]. Conservation and Utilization of Mineral Resources, 2015, (1): 49-53(in Chinese).
    [8] 刘坤. 汽车轻量化材料及制造工艺研究[J]. 汽车测试报告, 2023, (2): 78-80.

    LIU Kun. Research on lightweight materials and manufacturing processes for automobiles[J]. Car Test Report, 2023, (2): 78-80(in Chinese).
    [9] 石照耀, 辛栋. 塑料齿轮研究的进展和方向[J/OL]. (2024-01-18)[2024-03-12]. https://doi.org/10.13700/j.bh.1001-5965.2023.0788.

    SHI Zhaoyao, XIN Dong. A Review on Plastic Gear’s Research Progress and Direction[J/OL]. (2024-01-18) [2024-03-12]. https://doi.org/10.13700/j.bh.1001-5965.2023.0788 (in Chinese).
    [10] 何露露, 何敏, 何肖, 等. 尼龙6抗氧剂的应用进展[J]. 塑料, 2021, 50(5): 67-71.

    HE Lulu, HE Ming, HE Xiao, et al. Application progress of nylon 6 antioxidants[J]. Plastics, 2021, 50(5): 67-71(in Chinese).
    [11] SON S M, KIM M, YOO J J, et al. Fabrication of carbon fiber/polyamide 6 composites with water resistance and anti-icing performance using a superhydrophobic fluorinated-polydopamine coating[J]. Composites Science and Technology, 2023, 238: 110048. doi: 10.1016/j.compscitech.2023.110048
    [12] YE W, YUAN Y, LIU S, et al. A strategy towards simultaneously improving strength and processability of polyamide 6 using bespoke dynamic covalent chain extender[J]. Polymers Advanced Technologies, 2023, 35(1): e6266.
    [13] KOZLOV G V, DOLBIN I V. Effect of the nanofiller structure on the heat resistance of polyamide-6/organoclay nanocomposites[J]. High Temperature, 2022, 60(1): 126-128. doi: 10.1134/S0018151X2201014X
    [14] 张鑫婷, 尹洪峰, 魏英, 等. 基体改性对连续玻纤增强尼龙复合材料性能的影响[J/OL]. (2023-12-28)[2024-03-12]. https://doi.org/10.13801/j.cnki.fhclxb.20231128.001.

    ZHANG Xinting, YIN Hongfeng, WEI Ying, et al. Effect of matrix modification on the properties of continuous glass fiber reinforced nylon composites[J/OL]. (2023-12-28) [2024-03-12]. https://doi.org/10.13801/j.cnki.fhclxb.20231128.001 (in Chinese).
    [15] DING H, LU S, DU G. Surface modification of wollastonite by the mechano-activated method and its properties[J]. International Journal of Minerals Metallurgy and Materials, 2011, 18(1): 83-88. doi: 10.1007/s12613-011-0404-2
    [16] FENG C, YONGZHONG B, Jiamin Z, et al. Comparative study on the mechanical and thermal properties of polycarbonate composites reinforced by kH570/SA/SDBS modified wollastonite fibers[J]. Polymer Composites, 2022, 43(11): 8125-8135. doi: 10.1002/pc.26975
    [17] 丁茜, 花超然, 伏豪, 等. β-成核废旧聚丙烯/硅灰石复合材料的制备与力学性能[J]. 塑料工业, 2020, 48(8): 39-42. doi: 10.3969/j.issn.1005-5770.2020.08.009

    DING Qian, HUA Chaoran, FU Hao, et al. Preparation and mechanical properties of β-nucleated recycled polypropylene/wollastonite composites[J]. China Plastics Industry, 2020, 48(8): 39-42(in Chinese). doi: 10.3969/j.issn.1005-5770.2020.08.009
    [18] LIZHI Y, YAO X, SHAOSHU T, et al. Application of environmentally friendly potassium oleate modified wollastonite in carbon black/natural rubber composites[J]. Journal of Applied Polymer Science, 2023, 140(15): 53723. doi: 10.1002/app.53723
    [19] YU Q, LUO M, CHEN H, et al. Adsorption configuration of stearic acid onto calcium sulfate whisker[J]. Colloid Polymer Science, 2022, 300(7): 825-834. doi: 10.1007/s00396-022-04984-0
    [20] MENG J, WANG J, WANG L, et al. Preparation and performance of superhydrophobic surfaces with low surface energy modified attapulgite[J]. Journal of Molecular Structure, 2024, 1295(1): 136586.
    [21] 全国塑料标准化技术委员会. 塑料拉伸强度的测定: GB T1040-92[S]. 北京: 中国标准出版社, 2008.

    National Technical Committee for Plastic Standardization. Determination of tensile strength of plastics: GB T1040-92 [S]. Beijing: China Standard Publishing House, 2008(in Chinese).
    [22] 全国塑料标准化技术委员会. 塑料拉伸强度的测定: GB T9341-2000[S]. 北京: 中国标准出版社, 2008.

    National Technical Committee for Plastic Standardization. Determination of tensile strength of plastics: GB T9341-2000[S]. Beijing: China Standard Publishing House, 2008(in Chinese).
    [23] 国家技术监督局. 硬质塑料简支梁冲击实验方法: GB T1043-93[S]. 北京: 中国标准出版社, 1993.

    The State Administration of Technical Supervision. Hard plastic simply supported beam impact test method: GB T1043-93[S] Beijing: China Standards Publishing House, 1993(in Chinese).
    [24] 李知俊, 胡智淇, 关岩, 等. 煅烧硅灰石粉对硫氧镁水泥力学性能的影响[J]. 复合材料学报, 2024, 41(1): 395-403.

    LI Zhijun, HU Zhiqi, GUAN Yan, et al. Effect of calcined wollastonite powder on mechanical properties of magnesium sulfade cement[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 395-403(in Chinese).
    [25] 方乐武, 李明, 李渊, 等. 表面改性硅灰石纤维增强油井水泥力学性能[J]. 精细石油化工进展, 2023, 24(5): 20-25. doi: 10.3969/j.issn.1009-8348.2023.05.006

    FANG Lewu, LI Ming, Li Yuan, et al. Mechanical properties of surface modified wollastonite fiber reinforced oil well cement[J]. Advances in Fine Petrochemicals, 2023, 24(5): 20-25(in Chinese). doi: 10.3969/j.issn.1009-8348.2023.05.006
    [26] 张陶忠, 陈晓龙, 郝晓宇, 等. 硅灰石表面改性及其在聚丙烯中的应用[J]. 合成树脂及塑料, 2023, 40(3): 17-20+24.

    ZHANG Taozhong, CHEN Xiaolong, HAO Xiaoyu, et al. Surface modification of wollastonite and their application in polypropylene[J]. China Synthetic Resin and Plastics, 2023, 40(3): 17-20+24(in Chinese).
    [27] GONIAKOWSKI J, FINOCCHI F, NOGUERA C. Polarity of oxide surfaces and nanostructures[J]. Reports on Progress Physics, 2008, 71(1): 016501. doi: 10.1088/0034-4885/71/1/016501
    [28] LIU X, CHENG B, HU J. CaSiO3 (001) surface reconstruction and CO2 molecular adsorption[J]. Journal of Solid State Chemistry, 2023, 323: 124027. doi: 10.1016/j.jssc.2023.124027
    [29] LAN S, LI L, XU D, et al. Surface modification of magnesium hydroxide using vinyltriethoxysilane by dry process[J]. Applied Surface Science, 2016, 382: 56-62. doi: 10.1016/j.apsusc.2016.04.119
    [30] ZRILIC S S, ZIVKOVIC J M, ZARIC S D. Computational and crystallographic study of hydrogen bonds in the second coordination sphere of chelated amino acids with a free water molecule: Influence of complex charge and metal ion[J]. Journal of Inorganic Biochemistry, 2024, 251: 112442. doi: 10.1016/j.jinorgbio.2023.112442
    [31] YU S, OH K H, HWANG J Y, et al. The effect of amino-silane coupling agents having different molecular structures on the mechanical properties of basalt fiber-reinforced polyamide 6, 6 composites[J]. Composites Part B-Engineering, 2019, 163: 511-21. doi: 10.1016/j.compositesb.2018.12.148
  • 加载中
计量
  • 文章访问数:  64
  • HTML全文浏览量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-13
  • 修回日期:  2024-04-07
  • 录用日期:  2024-04-20
  • 网络出版日期:  2024-05-17

目录

    /

    返回文章
    返回