Molecular simulation of the interaction mechanism between wollastonite and silane and the properties of modified powder filled nylon 6
-
摘要: 通过采用硅烷对硅灰石进行干法改性优化硅灰石物化性能,探究了改性温度、时间、硅烷用量对改性效果的影响。采用红外光谱对改性前后硅灰石粉体表面官能团进行表征。分别将未改性硅灰石原样与改性粉体填充尼龙6制备复合材料,对复合材料的冲击强度、拉伸强度、弯曲强度、弯曲模量、热变形温度等指标进行测试。使用分子模拟分析了硅烷SCA1113 (3-氨丙基三乙氧基硅烷)改性硅灰石的微观机制。结果表明:改性温度80 ℃,改性时间20min,硅烷用量0.8%为优化工艺条件;未改性硅灰石填充尼龙6样品较尼龙6纯样刚性提高但降低韧性,而改性后的硅灰石填充尼龙6可以同时提高尼龙6材料的刚性与韧性;硅烷SCA1113改性硅灰石时其反应性不来自于硅灰石晶体内部,晶面(100)最具反应性,硅烷SCA1113与硅灰石表面吸附为化学吸附,形成了Si-O-Ca键。Abstract: The physical and chemical properties of wollastonite were optimized through dry modification with silane, and the effects of modification temperature, time, and silane dosage on the modification effect of wollastonite were explored. Infrared spectroscopy was used to characterize the surface functional groups of wollastonite and modified wollastonite. PA6 composite materials were prepared by filling wollastonite and modified wollastonite powder in polyamide 6 (PA 6), and the impact strength, tensile strength, flexural strength, and flexural modulus of the composite materials were tested. The microscopic mechanism of wollastonite modified by SCA1113 (3-Aminopropyltriethoxysilane)was analyzed using molecular simulation. The results show that the optimize modification process conditions of wollastonite are the modification temperature of 80°, the modification time of 20 minutes, and the silane dosage of 0.8%. Unmodified wollastonite filled nylon 6 can improve the rigidity of the composite material but reduce its toughness compared to pure nylon 6 samples, while modified wollastonite filled nylon 6 can simultaneously improve the rigidity and toughness of the material; When silane SCA1113 modifies wollastonite, its reactivity does not come from inside the wollastonite crystal, and the crystal surface (100) is the most reactive, and silane SCA1113 and wollastonite surface are adsorbed to form Si-O-Ca bond.
-
Key words:
- wollastonite /
- silane SCA1113 /
- nylon 6 /
- mechanical properties /
- molecular simulation
-
表 1 几何优化前后晶体下部原子坐标及变化
Table 1. Coordinates and changes of lower atoms in crystals before and after geometric optimization
Original coordinates Optimized coordinates Coordinate variation Atom (x,y,z) (x,y,z) (x,y,z) O1 (0.301,0.939,0.464) (0.302,0.936,0.468) (-0.001,0.002,-0.004) O2 (0.571,0.769,0.199) (0.574,0.771,0.202) (-0.003,-0.002,-0.003) O3 (-0.018,0.868,0.265) (-0.021,0.867,0.266) (0.003,0,-0.001) O4 (0.271,0.87,0.094) (0.27,0.872,0.093) (0.002,-0.002,0.001) O5 (0.402,0.727,-0.17) (0.403,0.728,-0.171) (-0.001,-0.001,0.001) O6 (0.274,0.513,0.093) (0.273,0.513,0.092) (0,0,0.001) O7 (-0.017,0.374,0.266) (-0.019,0.375,0.268) (0.002,-0.001,-0.002) O8 (0.303,0.462,0.463) (0.305,0.466,0.468) (-0.001,-0.004,-0.005) O9 (0.218,0.179,0.225) (0.22,0.181,0.228) (-0.002,-0.002,-0.003) Si1 (0.185,0.954,0.269) (0.185,0.954,0.271) (0,0,-0.002) Si2 (0.397,0.724,0.056) (0.399,0.725,0.057) (-0.002,-0.002,-0.001) Si3 (0.185,0.388,0.268) (0.186,0.39,0.272) (-0.001,-0.003,-0.003) Ca1 (0.802,0.577,0.239) (0.803,0.577,0.238) (-0.001,0,0.001) Ca2 (0.503,0.75,0.527) (0.507,0.752,0.531) (-0.003,-0.001,-0.004) Ca3 (0.202,0.929,0.764) (0.201,0.927,0.764) (0.001,0.002,0) 表 2 硅灰石晶体的表面能
Table 2. Surface energy of wollastonite crystals
Surface Energy/(eV·nm−2) (100) −2330 (010) −2160 (001) −2134 表 3 复合粉体填充尼龙6力学性能
Table 3. Mechanical properties of composite powder filling in nylon 6
Sample PA6 Wollastonite/PA6 Modified powder/PA6 Impact strength/(kJ·m−2) 6.8 4.4 7.38 Tensile strength/MPa 60.56 60.82 75.6 Bending strength/MPa 72.54 109.96 108.05 Bending modulus/MPa 1955.41 3280.27 3439.4 -
[1] 李渴, 彭春艳, 魏博, 等. 国外硅灰石资源开发利用情况[J]. 建材世界, 2019, 40(5): 12-16.LI Ke, PENG Chunyan, WEI Bo, et al. Development and utilization of wollastonite in foreign countries[J]. The World of Building Materials, 2019, 40(5): 12-16(in Chinese). [2] 蒋浩东, 李树蔚, 丁建, 等. 国内外硅灰石资源现状及应用研究进展[J]. 矿产保护与利用, 2023, 43(1): 162-168.JIANG Haodong, LI Shuwei, DING Jian, et al. Domestic and foreign status and application research progress of wollastonite resources[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 162-168(in Chinese). [3] 许怀凤. 陶瓷坯用硅灰石粉的质量控制及其方法[J]. 中国粉体技术, 2013, 19(6): 73-76.XU Huaifeng. Quality controlling factors and methods of wollastonite powders for ceramics[J]. China Powder Science and Technology, 2013, 19(6): 73-76(in Chinese). [4] 韩秀丽, 张韩, 刘磊, 等. 硅灰石对连铸保护渣结晶性能的影响规律[J]. 钢铁钒钛, 2015, 36(1): 103-108.HAN Xiuli, ZHANG Han, LIU Lei, PAN Miaomiao, et al. Effect of wollastonite on crystallization properties of mould powder[J]. Iron Steel Vanadium Titanium, 2015, 36(1): 103-108(in Chinese). [5] 邢君, 郭永伟, 张利军. 硅灰石和膨润土增强膨胀型钢结构防火涂料[J]. 消防科学与技术, 2020, 39(7): 1003-1007. doi: 10.3969/j.issn.1009-0029.2020.07.032XING Jun, GUO Yongwei, ZHANG Lijun. Experimental study on wollastonite and bentonite reinforced fire retardant coatings for expanded steel structures[J]. Fire Science and Technology, 2020, 39(7): 1003-1007(in Chinese). doi: 10.3969/j.issn.1009-0029.2020.07.032 [6] LOTFOLLAHI S, JAIDARI A, BAKHTIARI P, et al. Effect of wollastonite microfibers and waste tire rubber on mechanical properties of concrete[J]. International Journal of Concrete Structures and Materials, 2023, 17(1): 33. doi: 10.1186/s40069-023-00595-3 [7] 王泽红, 周鸭羊, 宁国栋. 高长径比硅灰石制备及机理研究[J]. 矿产保护与利用, 2015, (1): 49-53.WANG Zehong, ZHOU Yayang, NING Guodong. Study on the preparation of high aspect ratio wollatonite and its mechanism[J]. Conservation and Utilization of Mineral Resources, 2015, (1): 49-53(in Chinese). [8] 刘坤. 汽车轻量化材料及制造工艺研究[J]. 汽车测试报告, 2023, (2): 78-80.LIU Kun. Research on lightweight materials and manufacturing processes for automobiles[J]. Car Test Report, 2023, (2): 78-80(in Chinese). [9] 石照耀, 辛栋. 塑料齿轮研究的进展和方向[J/OL]. (2024-01-18)[2024-03-12]. https://doi.org/10.13700/j.bh.1001-5965.2023.0788.SHI Zhaoyao, XIN Dong. A Review on Plastic Gear’s Research Progress and Direction[J/OL]. (2024-01-18) [2024-03-12]. https://doi.org/10.13700/j.bh.1001-5965.2023.0788 (in Chinese). [10] 何露露, 何敏, 何肖, 等. 尼龙6抗氧剂的应用进展[J]. 塑料, 2021, 50(5): 67-71.HE Lulu, HE Ming, HE Xiao, et al. Application progress of nylon 6 antioxidants[J]. Plastics, 2021, 50(5): 67-71(in Chinese). [11] SON S M, KIM M, YOO J J, et al. Fabrication of carbon fiber/polyamide 6 composites with water resistance and anti-icing performance using a superhydrophobic fluorinated-polydopamine coating[J]. Composites Science and Technology, 2023, 238: 110048. doi: 10.1016/j.compscitech.2023.110048 [12] YE W, YUAN Y, LIU S, et al. A strategy towards simultaneously improving strength and processability of polyamide 6 using bespoke dynamic covalent chain extender[J]. Polymers Advanced Technologies, 2023, 35(1): e6266. [13] KOZLOV G V, DOLBIN I V. Effect of the nanofiller structure on the heat resistance of polyamide-6/organoclay nanocomposites[J]. High Temperature, 2022, 60(1): 126-128. doi: 10.1134/S0018151X2201014X [14] 张鑫婷, 尹洪峰, 魏英, 等. 基体改性对连续玻纤增强尼龙复合材料性能的影响[J/OL]. (2023-12-28)[2024-03-12]. https://doi.org/10.13801/j.cnki.fhclxb.20231128.001.ZHANG Xinting, YIN Hongfeng, WEI Ying, et al. Effect of matrix modification on the properties of continuous glass fiber reinforced nylon composites[J/OL]. (2023-12-28) [2024-03-12]. https://doi.org/10.13801/j.cnki.fhclxb.20231128.001 (in Chinese). [15] DING H, LU S, DU G. Surface modification of wollastonite by the mechano-activated method and its properties[J]. International Journal of Minerals Metallurgy and Materials, 2011, 18(1): 83-88. doi: 10.1007/s12613-011-0404-2 [16] FENG C, YONGZHONG B, Jiamin Z, et al. Comparative study on the mechanical and thermal properties of polycarbonate composites reinforced by kH570/SA/SDBS modified wollastonite fibers[J]. Polymer Composites, 2022, 43(11): 8125-8135. doi: 10.1002/pc.26975 [17] 丁茜, 花超然, 伏豪, 等. β-成核废旧聚丙烯/硅灰石复合材料的制备与力学性能[J]. 塑料工业, 2020, 48(8): 39-42. doi: 10.3969/j.issn.1005-5770.2020.08.009DING Qian, HUA Chaoran, FU Hao, et al. Preparation and mechanical properties of β-nucleated recycled polypropylene/wollastonite composites[J]. China Plastics Industry, 2020, 48(8): 39-42(in Chinese). doi: 10.3969/j.issn.1005-5770.2020.08.009 [18] LIZHI Y, YAO X, SHAOSHU T, et al. Application of environmentally friendly potassium oleate modified wollastonite in carbon black/natural rubber composites[J]. Journal of Applied Polymer Science, 2023, 140(15): 53723. doi: 10.1002/app.53723 [19] YU Q, LUO M, CHEN H, et al. Adsorption configuration of stearic acid onto calcium sulfate whisker[J]. Colloid Polymer Science, 2022, 300(7): 825-834. doi: 10.1007/s00396-022-04984-0 [20] MENG J, WANG J, WANG L, et al. Preparation and performance of superhydrophobic surfaces with low surface energy modified attapulgite[J]. Journal of Molecular Structure, 2024, 1295(1): 136586. [21] 全国塑料标准化技术委员会. 塑料拉伸强度的测定: GB T1040-92[S]. 北京: 中国标准出版社, 2008.National Technical Committee for Plastic Standardization. Determination of tensile strength of plastics: GB T1040-92 [S]. Beijing: China Standard Publishing House, 2008(in Chinese). [22] 全国塑料标准化技术委员会. 塑料拉伸强度的测定: GB T9341-2000[S]. 北京: 中国标准出版社, 2008.National Technical Committee for Plastic Standardization. Determination of tensile strength of plastics: GB T9341-2000[S]. Beijing: China Standard Publishing House, 2008(in Chinese). [23] 国家技术监督局. 硬质塑料简支梁冲击实验方法: GB T1043-93[S]. 北京: 中国标准出版社, 1993.The State Administration of Technical Supervision. Hard plastic simply supported beam impact test method: GB T1043-93[S] Beijing: China Standards Publishing House, 1993(in Chinese). [24] 李知俊, 胡智淇, 关岩, 等. 煅烧硅灰石粉对硫氧镁水泥力学性能的影响[J]. 复合材料学报, 2024, 41(1): 395-403.LI Zhijun, HU Zhiqi, GUAN Yan, et al. Effect of calcined wollastonite powder on mechanical properties of magnesium sulfade cement[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 395-403(in Chinese). [25] 方乐武, 李明, 李渊, 等. 表面改性硅灰石纤维增强油井水泥力学性能[J]. 精细石油化工进展, 2023, 24(5): 20-25. doi: 10.3969/j.issn.1009-8348.2023.05.006FANG Lewu, LI Ming, Li Yuan, et al. Mechanical properties of surface modified wollastonite fiber reinforced oil well cement[J]. Advances in Fine Petrochemicals, 2023, 24(5): 20-25(in Chinese). doi: 10.3969/j.issn.1009-8348.2023.05.006 [26] 张陶忠, 陈晓龙, 郝晓宇, 等. 硅灰石表面改性及其在聚丙烯中的应用[J]. 合成树脂及塑料, 2023, 40(3): 17-20+24.ZHANG Taozhong, CHEN Xiaolong, HAO Xiaoyu, et al. Surface modification of wollastonite and their application in polypropylene[J]. China Synthetic Resin and Plastics, 2023, 40(3): 17-20+24(in Chinese). [27] GONIAKOWSKI J, FINOCCHI F, NOGUERA C. Polarity of oxide surfaces and nanostructures[J]. Reports on Progress Physics, 2008, 71(1): 016501. doi: 10.1088/0034-4885/71/1/016501 [28] LIU X, CHENG B, HU J. CaSiO3 (001) surface reconstruction and CO2 molecular adsorption[J]. Journal of Solid State Chemistry, 2023, 323: 124027. doi: 10.1016/j.jssc.2023.124027 [29] LAN S, LI L, XU D, et al. Surface modification of magnesium hydroxide using vinyltriethoxysilane by dry process[J]. Applied Surface Science, 2016, 382: 56-62. doi: 10.1016/j.apsusc.2016.04.119 [30] ZRILIC S S, ZIVKOVIC J M, ZARIC S D. Computational and crystallographic study of hydrogen bonds in the second coordination sphere of chelated amino acids with a free water molecule: Influence of complex charge and metal ion[J]. Journal of Inorganic Biochemistry, 2024, 251: 112442. doi: 10.1016/j.jinorgbio.2023.112442 [31] YU S, OH K H, HWANG J Y, et al. The effect of amino-silane coupling agents having different molecular structures on the mechanical properties of basalt fiber-reinforced polyamide 6, 6 composites[J]. Composites Part B-Engineering, 2019, 163: 511-21. doi: 10.1016/j.compositesb.2018.12.148
计量
- 文章访问数: 91
- HTML全文浏览量: 58
- 被引次数: 0