留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冻融环境下玄武岩纤维泡沫混凝土损伤-声发射特征

牛瀚仪 陈波 高志涵 郭凌云

牛瀚仪, 陈波, 高志涵, 等. 冻融环境下玄武岩纤维泡沫混凝土损伤-声发射特征[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 牛瀚仪, 陈波, 高志涵, 等. 冻融环境下玄武岩纤维泡沫混凝土损伤-声发射特征[J]. 复合材料学报, 2024, 42(0): 1-12.
NIU Hanyi, CHEN Bo, GAO Zhihan, et al. Damage-acoustic emission characterization of basalt fiber foam concrete under freeze-thaw environment[J]. Acta Materiae Compositae Sinica.
Citation: NIU Hanyi, CHEN Bo, GAO Zhihan, et al. Damage-acoustic emission characterization of basalt fiber foam concrete under freeze-thaw environment[J]. Acta Materiae Compositae Sinica.

冻融环境下玄武岩纤维泡沫混凝土损伤-声发射特征

基金项目: 国家自然科学基金项目(52079049; 52239009);国家重点实验室基本科研业务费(522012272)
详细信息
    通讯作者:

    陈波,博士,教授,博士生导师,研究方向为水工混凝土新材料 E-mail: chenbo@hhu.edu.cn

  • 中图分类号: TU528

Damage-acoustic emission characterization of basalt fiber foam concrete under freeze-thaw environment

Funds: General Program of National Natural Science Foundation of China (52079049; 52239009); Basic Scientific Research Business Expenses of National Key Laboratories (522012272)
  • 摘要: 对600和1000密度下4种不同玄武岩纤维掺量(0%、0.15%、0.30%和0.45%)泡沫混凝土(BFRFC)试样进行不同冻融环境下(0、20、40、60和80次冻融循环)单轴压缩联合声发射试验,探究了密度、纤维掺量、冻融循环次数对BFRFC单轴压缩性能的影响,并依据声发射与单轴压缩试验参数建立冻融环境下BFRFC受压损伤本构模型,定量分析不同冻融循环下BFRFC的损伤。结果表明:BFRFC在受压过程有明显的阶段性,分为密实、弹性、屈服和平台四个阶段,声发射特征呈现出接触期、陡增期和缓增期三个阶段;不同冻融循环次数下各试样的强度损失率范围为3.4%~63.6%;冻融环境会降低声发射的活跃度,严重影响BFRFC力学性能;玄武岩纤维掺入使试样累计振铃数先增加后减小,能在一定程度上减缓峰值强度的损失;冻融循环加速裂纹开展,玄武岩纤维可有效抑制裂纹发展,但高掺量时纤维团聚现象凸显,内部损伤加剧;BFRFC在受压前期损伤较低,在相对峰值应力大于0.7时损伤发展加速,直至破坏。

     

  • 图  1  试验方法与仪器

    Figure  1.  Test method and apparatus

    图  2  BFRFC的应力-应变关系曲线

    Figure  2.  Stress-strain relationship curve of BFRFC

    Sample number A06-0.15% represents the design of dry density of 1000 and the volume of basalt fiber mixed with 0.15%. The rest of the sample numbers are the same rules

    图  3  BFRFC代表性试样的破坏界面

    Figure  3.  Damage interface of representative specimen of BFRFC

    图  4  冻融环境下各等级BFRFC试样的应力-应变关系曲线

    Figure  4.  Stress-strain relationship curves of BFRFC specimens of various grades in freeze-thaw environment

    20 F-T refers to the specimen with 20 freeze-thaw cycles, the rest of the specimen numbering rules are the same

    图  5  BFRFC的平均峰值强度损失情况

    Figure  5.  Average peak intensity loss for BFRFC

    图  6  A06、A10等级各试样的声发射累计振铃计数-荷载关系曲线

    Figure  6.  Acoustic emission cumulative ring count-load relationship curves for each specimen of A06 and A10 grades

    The red vertical line represents the cumulative number of acoustic emission events

    图  7  A10-0.30%不同冻融循环次数下的声发射累计振铃计数-荷载关系曲线

    Figure  7.  Acoustic emission cumulative ring count-load curves for A10-0.30% with different number of freeze-thaw cycles

    The red vertical line represents the cumulative number of acoustic emission events

    图  8  不同冻融循环次数下A10-0.30%的受压损伤演化

    Figure  8.  Compression damage evolution of A10-0.30% under different number of freeze-thaw cycles

    20 F-T refers to the specimen with 20 freeze-thaw cycles, the rest of the specimen numbering rules are the same

    图  9  不同密度和纤维掺量BFRFC初始冻融损伤变量

    Figure  9.  Initial freeze-thaw damage variables of BFRFC with different densities and fiber dopings

    表  1  玄武岩纤维增强泡沫混凝土的配合比及密度

    Table  1.   Mix ratio and density of basalt fiber reinforced foam concrete

    Density level Cement/(kg·m−3) Water/(kg·m−3) Foam/(kg·m−3) Basalt fiber volume fraction/vol% Mass of basalt fiber/(kg·m−3)
    A06 416.67 208.33 35.49 0/0.15/0.3/0.45 0/4.2/8.4/12.6
    A10 743.05 371.53 21.83 0/0.15/0.3/0.45 0/4.2/8.4/12.6
    Notes: A06 and A10 represent BFRFC with the density level of 600 and 1000 kg/m3, respectively.
    下载: 导出CSV

    表  2  不同纤维含量下BFRFC峰值差异(MPa)

    Table  2.   Differences in peak values of basalt fiber foam concrete with different fiber contents (MPa)

    Density grade 0 0.15% 0.30% 0.45%
    A06 3.164 4.012 5.500 6.587
    A10 6.431 7.042 8.336 11.176
    下载: 导出CSV

    表  3  不同冻融循环次数下A10-0.30%试件的拟合参数值

    Table  3.   Fitted parameter values of A10-0.30% specimens under different freeze-thaw cycles

    Freeze-thaw
    cycles
    c m n
    0 1.8347 3.7982 −0.0363
    20 2019.3510 0.4204 0.0490
    40 681.7456 1.2910 0.0227
    60 203.2789 0.3836 0.1033
    80 172.9196 −0.6244 0.1847
    下载: 导出CSV
  • [1] 吴中如, 陈波. 大坝变形监控模型发展回眸[J]. 现代测绘, 2016, 39(5): 1-3+8. doi: 10.3969/j.issn.1672-4097.2016.05.001

    WU Zhongru, CHEN Bo. A retrospective look at the development of dam deformation monitoring model[J]. Modern Surveying and Mapping, 2016, 39(5): 1-3+8(in Chinese). doi: 10.3969/j.issn.1672-4097.2016.05.001
    [2] 郑茂盛. 寒区水利水电工程设计与施工技术[J]. 中国水利, 2010, (20): 72-74. doi: 10.3969/j.issn.1000-1123.2010.20.020

    Zheng Maosheng. Design and construction technology of water conservancy and hydropower projects in cold regions[J]. China Water Resources, 2010, (20): 72-74(in Chinese). doi: 10.3969/j.issn.1000-1123.2010.20.020
    [3] Lin Jiankang, Chen Zhongfan, Ding Xiaomeng, et al. BIM-based construction technologies forprecast foamed lightweight concrete wallboards[J]. Journal of Southeast University (English Edition), 2022, 38(3): 270-277.
    [4] 高志涵, 陈波, 陈家林, 等. 冻融环境下泡沫混凝土的孔结构与力学性能[J]. 复合材料学报, 2024, 41(2): 827-838.

    GAO Zhihan, CHEN Bo, CHEN Jialin, et al. Pore structure and mechanical properties of foam concrete under freeze-thaw environment[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 827-838(in Chinese).
    [5] 叶林杰, 夏新华, 吴迪高, 等. 基于冻融循环和疲劳荷载共同作用下泡沫混凝土的微观力学性能研究[J]. 混凝土, 2022, (9): 56-61.

    YE Linjie, XIA Xinhua, WU Di Gao, et al. Study on the micromechanical properties of foam concrete based on the combined effect of freeze-thaw cycle and fatigue loading[J]. Concrete, 2022, (9): 56-61(in Chinese).
    [6] M. Amran, R. Fediuk, N. Vatin, et al. Fibre-Reinforced Foamed Concretes: A Review[J]. Materials, 2020, 13, 4323. Li T, Huang F, Zhu J, et al. Effect of foaming gas and cement type on the thermal conductivity of foamed concrete[J]. Construction and Building Materials, 2020, 231.
    [7] 董进秋, 杜艳廷, 闻宝联, 等. 玄武岩纤维混凝土力学性能与增韧机理研究[J]. 工业建筑, 2011, 41(S1): 638-641.

    DONG Jinqiu, DU Yanting, WEN Baolian, et al. Mechanical properties and toughening mechanism of basalt fiber concrete[J]. Industrial Building, 2011, 41(S1): 638-641(in Chinese).
    [8] 李为民, 许金余, 沈刘军, 等. 玄武岩纤维混凝土的动态力学性能[J]. 复合材料学报, 2008, (2): 135-142. doi: 10.3321/j.issn:1000-3851.2008.02.023

    Li Weimin, Xu Jinyu, Shen Liujun, et al. Dynamic mechanical properties of basalt fiber concrete[J]. Acta Materiae Compositae Sinica, 2008, (2): 135-142(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.02.023
    [9] 王起台, 任根立. 冻融循环作用下玄武岩纤维混凝土抗压和抗折性能分析[J]. 湖南城市学院学报(自然科学版), 2023, 32(4): 6-12.

    Wang Q T, Ren G L. Analysis of compressive and flexural properties of basalt fiber reinforced concrete under freeze-thaw cycles[J]. Journal of hunan city university (Natural Science Edition), 2023, 32(4): 6-12(in Chinese).
    [10] 王小娟, 崔浩儒, 周宏元, 等. 玄武岩纤维增强泡沫混凝土的单轴拉伸及准静态压缩性能[J]. 复合材料学报, 2023, 40(3): 1569-1585.

    Wang X J, Cui H R, Zhou H Y, et al. Uniaxial tensile and quasi-static compressive properties of basalt fiber reinforced foam concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1569-1585(in Chinese).
    [11] Gencel O, Nodehi M, Bayraktar O Y, et al. Basalt fiber-reinforced foam concrete containing silica fume: An experimental study[J]. Construction and Building Materials, 2022, 326.
    [12] 周程涛, 陈波, 张娟, 等. 玄武岩纤维泡沫混凝土的细观结构及损伤特性[J/OL]. 复合材料学报: 1-11.

    Zhou C T, Chen B, Zhang J, et al. Microstructure and damage characteristics of basalt fiber foamed concrete [J/OL]. Acta Materiae Compositae Sinica: 1-11. (in Chinese).
    [13] 段力群, 董璐, 马林建, 等. 泡沫混凝土单轴压缩下声发射特征试验研究[J]. 中国矿业大学学报, 2018, 47(4): 742-747.

    Duan Liqun, Dong Lu, Ma Linjian, et al. Experimental study on acoustic emission characteristics of foam concrete under uniaxial compression[J]. Journal of China University of Mining and Technology, 2018, 47(4): 742-747(in Chinese).
    [14] 李升涛, 陈徐东, 张锦华, 等. 不同密度等级泡沫混凝土的单轴压缩破坏特征[J]. 建筑材料学报, 2021, 24(6): 1146-1153. doi: 10.3969/j.issn.1007-9629.2021.06.004

    Li Shengtao, Chen Xudong, Zhang Jinhua, et al. Uniaxial compression damage characteristics of foam concrete with different density grades[J]. Journal of Building Materials, 2021, 24(6): 1146-1153(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.06.004
    [15] 中华人民共和国住房和城乡建设部. 泡沫混凝土: JG/T266−2011[S]. 北京: 中国标准出版社, 2011.

    Ministry of Housing and Urban-Rural Development, People's Republic of China. Foam concrete [S]. Beijing: China Standard Press, 2011(in Chinese).
    [16] 王丹薇. 常用纤维对水工泡沫混凝土物理力学性能的影响研究[J]. 吉林水利, 2022, (3): 10-13+18. doi: 10.3969/j.issn.1009-2846.2022.03.004

    WANG Danwei. Study on the influence of common fibers on the physical and mechanical properties of hydraulic foam concrete[J]. Jilin Water Resources, 2022, (3): 10-13+18(in Chinese). doi: 10.3969/j.issn.1009-2846.2022.03.004
    [17] 中华人民共和国水利部. 水工混凝土试验规程: SL/T 352-2020[S]. 北京: 中国标准出版社, 2020.

    Ministry of Water Resources, People's Republic of China. Test procedure for hydraulic concrete: SL/T 352-2020 [S]. Beijing: China Standard Press, 2020(in Chinese).
    [18] 周宏元, 王业斌, 王小娟, 等. 泡沫混凝土压缩性能尺寸效应研究[J]. 材料导报, 2021, 35(18): 18076-18082+18095. doi: 10.11896/cldb.20090009

    Zhou Hongyuan, Wang Yebin, Wang Xiaojuan, et al. Study on the size effect of compression properties of foam concrete[J]. Materials Herald, 2021, 35(18): 18076-18082+18095(in Chinese). doi: 10.11896/cldb.20090009
    [19] 朱兴一, 张启帆, 于越, 等. 基于离散元的EMAS泡沫混凝土贯入力学性能研究[J]. 建筑材料学报, 2023, 26(2): 122-128. doi: 10.3969/j.issn.1007-9629.2023.02.002

    ZHU Xingyi, ZHANG Qifan, YU Yue, et al. Study on penetration mechanical properties of EMAS foam concrete based on discrete elements[J]. Journal of Building Materials, 2023, 26(2): 122-128(in Chinese). doi: 10.3969/j.issn.1007-9629.2023.02.002
    [20] 周程涛, 陈波, 高志涵. 冻融环境下泡沫混凝土的单轴压缩特性[J]. 硅酸盐通报, 2023, 42(4): 1233-1241. doi: 10.3969/j.issn.1001-1625.2023.4.gsytb202304011

    ZHOU Chengtao, CHEN Bo, GAO Zhihan. Uniaxial compression characteristics of foam concrete under freeze-thaw environment[J]. Silicate Bulletin, 2023, 42(4): 1233-1241(in Chinese). doi: 10.3969/j.issn.1001-1625.2023.4.gsytb202304011
    [21] 黄海健, 宫能平, 穆朝民, 等. 泡沫混凝土动态力学性能及本构关系[J]. 建筑材料学报, 2020, 23(2): 466-472. doi: 10.3969/j.issn.1007-9629.2020.02.033

    Huang Haijian, Gong Nengping, Mu Zhaomin, et al. Dynamic mechanical properties and constitutive relationship of foam concrete[J]. Journal of Building Materials, 2020, 23(2): 466-472(in Chinese). doi: 10.3969/j.issn.1007-9629.2020.02.033
    [22] 高志涵, 陈波, 陈家林, 等. 基于X-CT的泡沫混凝土孔隙结构与导热性能[J]. 建筑材料学报, 2023, 26(7): 723-730. doi: 10.3969/j.issn.1007-9629.2023.07.004

    Gao Zhihan, Chen Bo, Chen Jialin, et al. Pore structure and thermal conductivity of foam concrete based on X-CT[J]. Journal of Building Materials, 2023, 26(7): 723-730(in Chinese). doi: 10.3969/j.issn.1007-9629.2023.07.004
    [23] 张亚梅, 孙超, 王申, 等. 不同密度等级泡沫混凝土的性能和孔结构[J]. 重庆大学学报, 2020, 43(8): 54-63.

    Zhang Y M, Sun C, Wang S, et al. Performance and pore structure of foam concrete with different density grades[J]. Journal of Chongqing University, 2020, 43(8): 54-63(in Chinese).
    [24] 王静文, 王伟. 玄武岩纤维增强泡沫混凝土响应面多目标优化[J]. 材料导报, 2019, 33(24): 4092-4097. doi: 10.11896/cldb.19010130

    WANG Jingwen, WANG Wei. Multi-objective optimization of response surface of basalt fiber reinforced foam concrete[J]. Materials Herald, 2019, 33(24): 4092-4097(in Chinese). doi: 10.11896/cldb.19010130
    [25] Benaboud S, Takarli M, Pouteau B, et al. Fatigue process analysis of aged asphalt concrete from two-point bending test using acoustic emission and curve fitting techniques[J]. Construction and Building Materials, 2021, 301: 124109. doi: 10.1016/j.conbuildmat.2021.124109
    [26] De Smedt M, Vrijdaghs R, Van Steen C, et al. Damage analysis in steel fibre reinforced concrete under monotonic and cyclic bending by means of acoustic emission monitoring[J]. Cement & Concrete Composites, 2020, 114.
    [27] Li S, Chen X, Zhang J. Acoustic emission characteristics in deterioration behavior of dam concrete under post-peak cyclic test[J]. Construction and Building Materials, 2021, 292: 123324. doi: 10.1016/j.conbuildmat.2021.123324
    [28] OHTSU M. Acoustic emission characteristics in concrete and diagnostic application[J]. Journal of Acoustic Emission, 1987, 6(2): 99-108.
    [29] 陈波, 袁志颖, 陈家林, 等. 冻融循环后蒸汽养护混凝土的损伤—声发射特性[J]. 建筑材料学报, 2023, 26(2): 143-149. doi: 10.3969/j.issn.1007-9629.2023.02.005

    CHEN Bo, YUAN Zhiying, CHEN Jialin, et al. Damage-acoustic emission characteristics of steam-cured concrete after freeze-thaw cycles[J]. Journal of Building Materials, 2023, 26(2): 143-149(in Chinese). doi: 10.3969/j.issn.1007-9629.2023.02.005
    [30] 张明, 李仲奎, 杨强, 等. 准脆性材料声发射的损伤模型及统计分析[J]. 岩石力学与工程学报, 2006, 25(12): 2493. doi: 10.3321/j.issn:1000-6915.2006.12.015

    Zhang M, Li Zhongkui, Yang Q, et al. Damage modeling and statistical analysis of acoustic emission from quasi-brittle materials[J]. Journal of Rock Mechanics and Engineering, 2006, 25(12): 2493(in Chinese). doi: 10.3321/j.issn:1000-6915.2006.12.015
    [31] 纪洪广, 蔡美峰. 混凝土材料声发射与应力-应变参量耦合关系及应用[J]. 岩石力学与工程学报, 2003, 22(2): 227. doi: 10.3321/j.issn:1000-6915.2003.02.012

    Ji Hongguang, Cai Meifeng. Coupling relationship between acoustic emission and stress-strain parameters in concrete materials and applications[J]. Journal of Rock Mechanics and Engineering, 2003, 22(2): 227(in Chinese). doi: 10.3321/j.issn:1000-6915.2003.02.012
    [32] LEMAITRE J. How to use damage mechanics[J]. NuclearEngineering and Design, 1984, 80(1): 233-245.
    [33] 龙广成, 杨振雄, 白朝能, 等. 荷载-冻融耦合作用下充填层自密实混凝土的耐久性及损伤模型[J]. 硅酸盐学报, 2019, 47(7): 855-864.

    LONG Guangcheng, YANG Zhenxiong, BAI Chaoneng, et al. Durability and damage model of self-compacting concrete filled layer under load-freeze-thaw coupling[J]. Journal of the ChineseCeramic Society, 2019, 47(7): 855-864(in Chinese).
  • 加载中
计量
  • 文章访问数:  41
  • HTML全文浏览量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-06
  • 修回日期:  2024-05-30
  • 录用日期:  2024-06-09
  • 网络出版日期:  2024-06-22

目录

    /

    返回文章
    返回