留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CF/PEEK热塑性复合材料结晶行为表征及分析

孙小巍 李文静 刘凯 刘振东 张志俊 孟波 王泽卉

孙小巍, 李文静, 刘凯, 等. CF/PEEK热塑性复合材料结晶行为表征及分析[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 孙小巍, 李文静, 刘凯, 等. CF/PEEK热塑性复合材料结晶行为表征及分析[J]. 复合材料学报, 2024, 42(0): 1-12.
SUN Xiaowei, LI Wenjing, LIU Kai, et al. Crystallization behavior characterization and analysis of CF/PEEK thermoplastic composites[J]. Acta Materiae Compositae Sinica.
Citation: SUN Xiaowei, LI Wenjing, LIU Kai, et al. Crystallization behavior characterization and analysis of CF/PEEK thermoplastic composites[J]. Acta Materiae Compositae Sinica.

CF/PEEK热塑性复合材料结晶行为表征及分析

基金项目: 重点实验室基金一般项目 (6142906220101)
详细信息
    通讯作者:

    刘凯,博士,副教授,博士生导师,研究方向为复合材料工艺力学 E-mail: liukai0704@bit.edu.cn

    刘振东,博士,博士后,研究方向为热固性复合材料固化变形分析与控制方法 E-mail: lzdid@bit.edu.cn

  • 中图分类号: TB332

Crystallization behavior characterization and analysis of CF/PEEK thermoplastic composites

Funds: Key Laboratory Fund General Projects (6142906220101)
  • 摘要: 为了深入了解热塑性复合材料在非等温热成型工艺下的晶体结构和组织演变规律,优化成型工艺参数并提高热塑性复合材料结构成型质量及其热、力学性能,本文研究了碳纤维增强聚醚醚酮(CF/PEEK)热塑性复合材料在不同降温速率下的结晶行为。开展了不同冷却速率下CF/PEEK复合材料的DSC测试实验。基于Avrami方程、Ozawa方程和Mo方程描述了CF/PEEK复合材料的非等温结晶行为,计算了非等温结晶活化能并建立了结晶度演化动力学模型。此外,本文还使用光纤布拉格光栅(FBG)对CF/PEEK复合材料融凝过程进行了原位检测,结合结晶度演化模型分析了聚合物基体融凝过程中的应变变化机制。结果表明,CF/PEEK复合材料结晶度随冷却速率的增大而减小,对应的结晶时间也同样减少。经验证,本文建立的结晶度演化动力学模型能够有效分析任意冷却速率下CF/PEEK复合材料的结晶度演化过程,可以结合FBG应变检测分析CF/PEEK热塑性复合材料融凝过程中基体相变对特征应变的影响。

     

  • 图  2  不同冷却速率下碳纤维增强聚醚醚酮(CF/PEEK)复合材料非等温熔融/结晶过程热流曲线图:(a)熔融;(b)结晶

    Figure  2.  Heat flow curves of non-isothermal melting/crystallization of carbon fiber reinforced polyetheretherketone (CF/PEEK) composites at different cooling rates: (a) melting ; (b)crystallization

    图  1  (a)横截面图;(b)嵌入FBG传感器示意图

    Figure  1.  (a) Cross section of Laminate with embedded FBGs; (b) Cross section of Laminate with embedded FBGs

    图  3  不同冷却速率下CF/PEEK复合材料二次升温熔融过程热流曲线图

    Figure  3.  Heat flow curves of CF/PEEK composites during reheating melting process at different cooling rates

    图  4  CF/PEEK复合材料:(a)相对结晶度Xc(t)与温度关系曲线 (b)相对结晶度Xc(t)与时间关系曲线

    Figure  4.  CF/PEEK composites: (a)Relative crystallinity Xc(t)-temperature curves;(b) Relative crystallinity Xc(t)-time curves

    图  5  CF/PEEK复合材料的非等温结晶过程中log[-ln(1-Xc(t))]和logt的Avrami图

    Figure  5.  Plots of log[-ln(1-Xc(t))] vs. logt of non-isothermal crystallization process of CF/PEEK composites

    图  6  CF/PEEK复合材料的非等温结晶过程中log[-ln(1-Xc(T))]和logΦ的Ozawa图

    Figure  6.  Plots of log [-ln(1-Xc(T))] vs. logΦ of non-isothermal crystallization process of CF/PEEK composites

    图  7  CF/PEEK复合材料的非等温结晶过程中logΦ和logt的Mo图

    Figure  7.  Plots of logΦ vs. logt of non-isothermal crystallization process of CF/PEEK composites

    图  8  CF/PEEK复合材料的ln(Φ/Tp2 )-1000/Tp拟合曲线图

    Figure  8.  ln(Φ/Tp2 )-1000/Tp fitting curve of CF/PEEK composites

    图  9  CF/PEEK复合材料的t1/2n1To随冷却速率的拟合结果:(a)t1/2;(b)n1; (c)To

    Figure  9.  Fitting results of t1/2n and To with cooling rates of CF/PEEK composites: (a)t1/2;(b)n1; (c)To

    图  10  CF/PEEK复合材料的DSC测试和模型预测结果对比:(a) 5℃·min−1;(b) 10℃·min−1;(c) 15℃·min−1;(d) 20℃·min−1;(e) 18℃·min−1

    Figure  10.  Comparison of CF/PEEK composites DSC test and model output results: (a) 5℃·min−1;(b) 10℃·min−1; (a)5℃·min−1;(b) 10℃·min−1;(c) 15℃·min−1;(d) 20℃·min−1;(e) 18℃·min−1

    图  11  CF/PEEK复合材料的温度、应变及相对结晶度曲线图:(a) 0°方向;(b) 90°方向;(c)纯PEEK树脂

    Figure  11.  Temperature, strain and relative crystallinity curves of CF/PEEK composites: (a) 0°direction; (b) 90°direction; (c) pure PEEK resin

    表  1  CF/PEEK复合材料不同冷却速率下的结晶参数

    Table  1.   Crystallization parameters of CF/PEEK composites at different cooling rates

    Samples Φ/(℃·min−1) To/℃ Tp/℃ Te/℃ Tcc/℃ Tm/℃ tc/min Xc/%
    1 5 315.5 302.8 279.5 173.2 337.7 7.2 23.1
    2 10 311.0 299.4 268.9 173.0 340.1 4.2 20.8
    3 15 308.4 294.4 262.6 172.8 338.9 3.1 20.1
    4 20 301.5 283.9 243.2 169.2 337.6 2.9 19.8
    Notes:To is the crystallization initiation temperature; Tp is the peak crystallization temperature; Te is the crystallization end temperature; Tcc is the cold crystallization temperature; Tm is the melting point; tc is the crystallization time; Xc is the absolute crystallinity.
    下载: 导出CSV

    表  2  CF/PEEK复合材料不同冷却速率下的Avrami结晶参数

    Table  2.   Avrami crystallization parameters of CF/PEEK composites at different cooling rates

    Cooling Rate/(℃·min−1) n Zt
    5 2.58 0.01
    10 2.56 0.18
    15 2.69 0.28
    20 2.52 0.55
    Notes:n is the exponents of Avrami's equation; Zt is the crystallization rate constant.
    下载: 导出CSV

    表  3  CF/PEEK复合材料的Ozawa结晶参数

    Table  3.   Ozawa crystallization parameters of CF/PEEK composites

    Temperature/℃mK(T)
    2780.5025.12
    2881.1572.44
    2981.3252.48
    Notes:m is the exponents of Ozawa's equation; K(T) is the cooling function.
    下载: 导出CSV

    表  4  CF/PEEK复合材料的Mo结晶参数

    Table  4.   Mo crystallization parameters of CF/PEEK composites

    Xc(t)/%bF(T)
    100.7610.96
    300.7314.45
    500.7917.38
    700.8621.88
    901.0033.11
    Notes:b is the exponents of Mo's equation; F(T) is the cooling rate value.
    下载: 导出CSV

    表  5  CF/PEEK复合材料非等温结晶特征值

    Table  5.   Non-isothermal crystallization characteristics of CF/PEEK composites

    Cooling Rate/(℃·min−1) t1/2/min n1 To/℃
    5 2.60 2.33 315.53
    10 1.50 2.68 311.01
    15 1.20 2.95 308.38
    20 0.98 2.60 301.52
    Notes:t1/2 is the half-crystallization time; n1 is the previous exponent of Avrami equation; To is the crystallization initiation temperature.
    下载: 导出CSV
  • [1] GAO S L, KIM J K. Cooling rate influences in carbon fibre/PEEK composites. Part 1. Crystallinity and interface adhesion[J]. Composites Part A: Applied Science and Manufacturing, 2000, 31: 517-530. doi: 10.1016/S1359-835X(00)00009-9
    [2] DAI G, ZHAN L, GUAN C, et al. The effect of cooling rate on crystallization behavior and tensile properties of CF/PEEK composites[J]. Journal of Polymer Engineering, 2021, 41(6): 423-430. doi: 10.1515/polyeng-2020-0356
    [3] GAO S L, KIM J K. Correlation among crystalline morphology of PEEK, interface bond strength, and in-plane mechanical properties of carbon/PEEK composites[J]. Journal of Applied Polymer Science, 2002, 84(6): 1155-1167. doi: 10.1002/app.10406
    [4] MA X L, WEN L H, WANG S Y, et al. Inherent relationship between process parameters, crystallization and mechanical properties of continuous carbon fiber reinforced PEEK composites[J]. Defence Technology, 2023, 24: 269-284. doi: 10.1016/j.dt.2022.04.010
    [5] JIN L, BALL J, BREMNER T, et al. Crystallization behavior and morphological characterization of poly(ether ether ketone)[J]. Polymer, 2014, 55(20): 5255-5265. doi: 10.1016/j.polymer.2014.08.045
    [6] TIERNEY J J, GILLESPIE JR J W. Crystallization kinetics behavior of PEEK based composites exposed to high heating and cooling rates[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(5): 547-558. doi: 10.1016/j.compositesa.2003.12.004
    [7] REGIS M, ZANETTI M, PRESSACCO M, et al. Opposite role of different carbon fiber reinforcements on the non-isothermal crystallization behavior of poly(etheretherketone)[J]. Materials Chemistry and Physics, 2016, 179: 223-231. doi: 10.1016/j.matchemphys.2016.05.034
    [8] ROBERT L, DUSSERRE G. Assessment of thermoset cure-induced strains by fiber bragg grating sensor[J]. Polymer Engineering & Science, 2013, 54(7): 1585-1594.
    [9] COLPO F, HUMBERT L, BOTSIS J. Characterisation of residual stresses in a single fibre composite with FBG sensor[J]. Composites Science and Technology, 2007, 67(9): 1830-1841. doi: 10.1016/j.compscitech.2006.10.024
    [10] MARIN E, ROBERT L, TRIOLLET S, et al. Liquid Resin Infusion process monitoring with superimposed Fibre Bragg Grating sensor[J]. Polymer Testing, 2012, 31(8): 1045-1052. doi: 10.1016/j.polymertesting.2012.07.018
    [11] TSUKADA T, MINAKUCHI S, TAKEDA N. Identification of process-induced residual stress/strain distribution in thick thermoplastic composites based on in situ strain monitoring using optical fiber sensors[J]. Journal of Composite Materials, 2019, 53(24): 3445-3458. doi: 10.1177/0021998319837199
    [12] TAKEDA S I, TSUKADA T, MINAKUCHI S, et al. Fiber-optic Sensing for Press Forming of L-shaped Thermoplastic Composites[J]. Procedia Engineering, 2017, 188: 348-353. doi: 10.1016/j.proeng.2017.04.494
    [13] SORENSEN L, GMüR T, BOTSIS J. Residual strain development in an AS4/PPS thermoplastic composite measured using fibre Bragg grating sensors[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(2): 270-281. doi: 10.1016/j.compositesa.2005.02.016
    [14] 林帆. 特种光栅用于热塑性复合材料成型过程监测的关键技术研究 [D]. 上海: 东华大学, 2021.

    LIN Fan. Research on Key Technique of Special Optical Fiber Grating Used in Thermoplastic Composite Molding Process Monitoring [D]. Shanghai: Donghua University, 2021(in Chinese).
    [15] BLUNDELL D J, OSBORN B N. The morphology of poly(aryl-ether-etherketone)[J]. Polymer, 1983, 24: 953-958. doi: 10.1016/0032-3861(83)90144-1
    [16] LIU T X, MO Z S, WANG S E, et al. Nonisothermal Melt and Cold Crystallization Kinetics of Poly(Aryl Ether Ether Ketone Ketone)[J]. Polymer Engineering and Science, 1997, 37: 568-575. doi: 10.1002/pen.11700
    [17] Di LORENZO M L, SILVESTRE C. Non-isothermal crystallization of polymers[J]. Progress in Polymer Science, 1999, 24: 917-950. doi: 10.1016/S0079-6700(99)00019-2
    [18] PHILLIPS R, E. MÅNSON J A. Prediction and analysis of nonisothermal crystallization of polymers[J]. Journal of Polymer Science Part B: Polymer Physics, 35(6), 875–888.
    [19] Seo Y, Kim S. Nonisothermal crystallization behavior of poly(aryl ether ether ketone)[J]. Polymer Engineering and Science, 1997, 41(6): 940-945.
    [20] SATTARI M, MOLAZEMHOSSEINI A, NAIMI-JAMAL M R, et al. Nonisothermal crystallization behavior and mechanical properties of PEEK/SCF/nano-SiO2 composites[J]. Materials Chemistry and Physics, 2014, 147(3): 942-953. doi: 10.1016/j.matchemphys.2014.06.041
    [21] JEZIORNY A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d. s. c.[J]. Polymer, 1978, 19: 1142-1144. doi: 10.1016/0032-3861(78)90060-5
    [22] KUO M C, HUANG J C, CHEN M. Non-isothermal crystallization kinetic behavior of alumina nanoparticle filled poly(ether ether ketone)[J]. Materials Chemistry and Physics, 2006, 99(2-3): 258-268. doi: 10.1016/j.matchemphys.2005.10.021
    [23] BLAINE R L, KISSINGER H E. Homer Kissinger and the Kissinger equation[J]. Thermochimica Acta, 2012, 540: 1-6. doi: 10.1016/j.tca.2012.04.008
    [24] NAKAMURA K, KATAYAMA K, AMANO T. Some aspects of nonisothermal crystallization of polymers. II. Consideration of the isokinetic condition[J]. Journal of Applied Polymer Science, 1973, 17(4): 1031-1041. doi: 10.1002/app.1973.070170404
    [25] WANG Y, WANG Y, LIN Q, et al. Crystallization behavior of partially melted poly(ether ether ketone)[J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(2): 1021-1028. doi: 10.1007/s10973-017-6229-0
    [26] URALIL F S, NEWAZ G M, LUSTIGER A. Processing effects and damage tolerance in poly(etheretherketone) composites[J]. Polymer Composites, 1992, 13(1): 7-14. doi: 10.1002/pc.750130103
    [27] 侯月娇, 曲敏杰, 聂琰, 等. PEEK/CF复合材料的非等温结晶动力学研究[J]. 现代塑料加工应用, 2016, 28(5): 19-22.

    HOU Yuejiao, QU Minjie, NIE Yan, et al. Nonisothermal crystallization kinetics of PEEK/CF composites[J]. Modern Plastics Processing and Applications, 2016, 28(5): 19-22(in Chinese).
    [28] 孙洪霖. 连续碳纤维增强聚醚醚酮复合材料制备及性能研究[D]. 上海: 东华大学, 2021.

    SUN Honglin. Study on Preparation and Properties of Continuous Carbon Fiber Reinforced Polyetheretherketone Composite [D]. Shanghai: Donghua University, 2021(in Chinese).
    [29] CHOE C R, LEE K H. Nonisothermal crystallization kinetics of poly(etheretherketone) (PEEK)[J]. Polymer Engineering and Science, 1989, 29: 801-805. doi: 10.1002/pen.760291208
    [30] WIJSKAMP S. Shape distortion in composite forming. PhD Thesis, Enschede, Netherlands: University of Twente, 2005.
  • 加载中
计量
  • 文章访问数:  47
  • HTML全文浏览量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-23
  • 修回日期:  2024-03-28
  • 录用日期:  2024-04-14
  • 网络出版日期:  2024-04-25

目录

    /

    返回文章
    返回