Crystallization behavior characterization and analysis of CF/PEEK thermoplastic composites
-
摘要: 为了深入了解热塑性复合材料在非等温热成型工艺下的晶体结构和组织演变规律,优化成型工艺参数并提高热塑性复合材料结构成型质量及其热学、力学性能,本文研究了碳纤维增强聚醚醚酮(CF/PEEK)热塑性复合材料在不同降温速率下的结晶行为。开展了不同冷却速率下CF/PEEK复合材料的DSC测试实验。基于Avrami方程、Ozawa方程和Mo方程描述了CF/PEEK复合材料的非等温结晶行为,计算了非等温结晶活化能并建立了结晶度演化动力学模型。此外,本文还使用光纤布拉格光栅(FBG)对CF/PEEK复合材料融凝过程进行了原位检测,结合结晶度演化模型分析了聚合物基体融凝过程中的应变变化机制。结果表明,CF/PEEK复合材料结晶度随冷却速率的增大而减小,对应的结晶时间也同样减少。经验证,本文建立的结晶度演化动力学模型能够有效分析任意冷却速率下CF/PEEK复合材料的结晶度演化过程,可以结合FBG应变检测分析CF/PEEK热塑性复合材料融凝过程中基体相变对特征应变的影响。
-
关键词:
- CF/PEEK复合材料 /
- 非等温结晶行为 /
- 结晶动力学 /
- 光纤光栅传感技术 /
- 原位检测
Abstract: To gain a comprehensive understanding of the non-isothermal crystallization behavior of carbon fiber reinforced polyetheretherketone (CF/PEEK) composites, optimize process parameters, and enhance the structural forming quality and thermal and mechanical properties of thermoplastic composites, this study investigated the crystallization behavior of CF/PEEK thermoplastic composite materials under different cooling rates. Through conducting differential scanning calorimetry (DSC) experiments on CF/PEEK composite materials at various cooling rates, the non-isothermal crystallization behavior of CF/PEEK composite materials was analyzed using the Avrami, Ozawa, and Mo equations. The activation energy of non-isothermal crystallization was determined, and the crystallization kinetics model was developed. In addition, in-situ detection of the CF/PEEK composite material melting/crystallization process was carried out using fiber Bragg grating (FBG), and the strain variation mechanism during the polymer matrix melting/crystallization process was analyzed in conjunction with the crystallization kinetics model. The results indicate that the crystallinity of CF/PEEK composite materials decreases with increasing cooling rate, accompanied by a decrease in the corresponding crystallization time. It has been demonstrated that the established crystallinity crystallization kinetic model in this study effectively analyzes the crystallization process of CF/PEEK composite materials under different cooling rate. Additionally, it can be combined with fiber Bragg grating strain detection to analyze the influence of matrix phase transition on characteristic strain during the melting/crystallization process of CF/PEEK thermo-plastic composites. -
表 1 CF/PEEK复合材料不同冷却速率下的结晶参数
Table 1. Crystallization parameters of CF/PEEK composites at different cooling rates
Sample Φ/(℃·min−1) To/℃ Tp/℃ Te/℃ Tcc/℃ Tm/℃ tc/min Xc/% 1 5 315.5 302.8 279.5 173.2 337.7 7.2 23.1 2 10 311.0 299.4 268.9 173.0 340.1 4.2 20.8 3 15 308.4 294.4 262.6 172.8 338.9 3.1 20.1 4 20 301.5 283.9 243.2 169.2 337.6 2.9 19.8 Notes: Φ—Cooling rate; To—Crystallization initiation temperature; Tp—Peak crystallization temperature; Te—Crystallization end temperature; Tcc—Cold crystallization temperature; Tm—Melting point; tc—Crystallization time; Xc—Absolute crystallinity. 表 2 CF/PEEK复合材料不同冷却速率下的Avrami结晶参数
Table 2. Avrami crystallization parameters of CF/PEEK composites at different cooling rates
Cooling rate/(℃·min−1) n Zt 5 2.58 0.01 10 2.56 0.18 15 2.69 0.28 20 2.52 0.55 Notes: n—Exponents of Avrami's equation; Zt—Crystallization rate constant. 表 3 CF/PEEK复合材料的Ozawa结晶参数
Table 3. Ozawa crystallization parameters of CF/PEEK composites
Temperature/℃ m K(T) 278 0.50 25.12 288 1.15 72.44 298 1.32 52.48 Notes: m—Exponents of Ozawa's equation; K(T)—Cooling function. 表 4 CF/PEEK复合材料的Mo结晶参数
Table 4. Mo crystallization parameters of CF/PEEK composites
Xc(t)/% b F(T) 10 0.76 10.96 30 0.73 14.45 50 0.79 17.38 70 0.86 21.88 90 1.00 33.11 Notes: b—Exponents of Mo's equation; F(T)—Cooling rate value. 表 5 CF/PEEK复合材料非等温结晶特征值
Table 5. Non-isothermal crystallization characteristics of CF/PEEK composites
Cooling rate/(℃·min−1) t1/2/min n1 To/℃ 5 2.60 2.33 315.53 10 1.50 2.68 311.01 15 1.20 2.95 308.38 20 0.98 2.60 301.52 Notes: t1/2—Half-crystallization time; n1—Previous exponent of Avrami equation; To—Crystallization initiation temperature. -
[1] GAO S L, KIM J K. Cooling rate influences in carbon fibre/PEEK composites. Part 1. Crystallinity and interface adhesion[J]. Composites Part A: Applied Science and Manufacturing, 2000, 31: 517-530. doi: 10.1016/S1359-835X(00)00009-9 [2] DAI G, ZHAN L, GUAN C, et al. The effect of cooling rate on crystallization behavior and tensile properties of CF/PEEK composites[J]. Journal of Polymer Engineering, 2021, 41(6): 423-430. doi: 10.1515/polyeng-2020-0356 [3] GAO S L, KIM J K. Correlation among crystalline morphology of PEEK, interface bond strength, and in-plane mechanical properties of carbon/PEEK composites[J]. Journal of Applied Polymer Science, 2002, 84(6): 1155-1167. doi: 10.1002/app.10406 [4] MA X L, WEN L H, WANG S Y, et al. Inherent relationship between process parameters, crystallization and mechanical properties of continuous carbon fiber reinforced PEEK composites[J]. Defence Technology, 2023, 24: 269-284. doi: 10.1016/j.dt.2022.04.010 [5] JIN L, BALL J, BREMNER T, et al. Crystallization behavior and morphological characterization of poly(ether ether ketone)[J]. Polymer, 2014, 55(20): 5255-5265. doi: 10.1016/j.polymer.2014.08.045 [6] TIERNEY J J, GILLESPIE JR J W. Crystallization kinetics behavior of PEEK based composites exposed to high heating and cooling rates[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(5): 547-558. doi: 10.1016/j.compositesa.2003.12.004 [7] REGIS M, ZANETTI M, PRESSACCO M, et al. Opposite role of different carbon fiber reinforcements on the non-isothermal crystallization behavior of poly(ether ether ketone)[J]. Materials Chemistry and Physics, 2016, 179: 223-231. doi: 10.1016/j.matchemphys.2016.05.034 [8] ROBERT L, DUSSERRE G. Assessment of thermoset cure-induced strains by fiber bragg grating sensor[J]. Polymer Engineering & Science, 2013, 54(7): 1585-1594. [9] COLPO F, HUMBERT L, BOTSIS J. Characterisation of residual stresses in a single fibre composite with FBG sensor[J]. Composites Science and Technology, 2007, 67(9): 1830-1841. doi: 10.1016/j.compscitech.2006.10.024 [10] MARIN E, ROBERT L, TRIOLLET S, et al. Liquid resin infusion process monitoring with superimposed fibre Bragg grating sensor[J]. Polymer Testing, 2012, 31(8): 1045-1052. doi: 10.1016/j.polymertesting.2012.07.018 [11] TSUKADA T, MINAKUCHI S, TAKEDA N. Identification of process-induced residual stress/strain distribution in thick thermoplastic composites based on in situ strain monitoring using optical fiber sensors[J]. Journal of Composite Materials, 2019, 53(24): 3445-3458. doi: 10.1177/0021998319837199 [12] TAKEDA S I, TSUKADA T, MINAKUCHI S, et al. Fiber-optic sensing for press forming of L-shaped thermoplastic composites[J]. Procedia Engineering, 2017, 188: 348-353. doi: 10.1016/j.proeng.2017.04.494 [13] SORENSEN L, GMÜR T, BOTSIS J. Residual strain development in an AS4/PPS thermoplastic composite measured using fibre Bragg grating sensors[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(2): 270-281. doi: 10.1016/j.compositesa.2005.02.016 [14] 林帆. 特种光栅用于热塑性复合材料成型过程监测的关键技术研究[D]. 上海: 东华大学, 2021.LIN Fan. Research on key technique of special optical fiber grating used in thermoplastic composite molding process monitoring[D]. Shanghai: Donghua University, 2021(in Chinese). [15] BLUNDELL D J, OSBORN B N. The morphology of poly(aryl-ether-ether-ketone)[J]. Polymer, 1983, 24: 953-958. doi: 10.1016/0032-3861(83)90144-1 [16] DI LORENZO M L, SILVESTRE C. Non-isothermal crystallization of polymers[J]. Progress in Polymer Science, 1999, 24: 917-950. doi: 10.1016/S0079-6700(99)00019-2 [17] PHILLIPS R, MÅNSON J A E. Prediction and analysis of nonisothermal crystallization of polymers[J]. Journal of Polymer Science Part B: Polymer Physics, 1997, 35(6): 875-888. [18] SEO Y, KIM S. Nonisothermal crystallization behavior of poly(aryl ether ether ketone)[J]. Polymer Engineering and Science, 1997, 41(6): 940-945. [19] SATTARI M, MOLAZEMHOSSEINI A, NAIMI-JAMAL M R, et al. Nonisothermal crystallization behavior and mechanical properties of PEEK/SCF/nano-SiO2 composites[J]. Materials Chemistry and Physics, 2014, 147(3): 942-953. doi: 10.1016/j.matchemphys.2014.06.041 [20] JEZIORNY A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC[J]. Polymer, 1978, 19: 1142-1144. doi: 10.1016/0032-3861(78)90060-5 [21] KUO M C, HUANG J C, CHEN M. Non-isothermal crystallization kinetic behavior of alumina nanoparticle filled poly(ether ether ketone)[J]. Materials Chemistry and Physics, 2006, 99(2-3): 258-268. doi: 10.1016/j.matchemphys.2005.10.021 [22] LIU T X, MO Z S, WANG S E, et al. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone)[J]. Polymer Engineering and Science, 1997, 37: 568-575. doi: 10.1002/pen.11700 [23] BLAINE R L, KISSINGER H E. Homer Kissinger and the Kissinger equation[J]. Thermochimica Acta, 2012, 540: 1-6. doi: 10.1016/j.tca.2012.04.008 [24] NAKAMURA K, KATAYAMA K, AMANO T. Some aspects of nonisothermal crystallization of polymers. II. Consideration of the isokinetic condition[J]. Journal of Applied Polymer Science, 1973, 17(4): 1031-1041. doi: 10.1002/app.1973.070170404 [25] WANG Y, WANG Y, LIN Q, et al. Crystallization behavior of partially melted poly(ether ether ketone)[J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(2): 1021-1028. doi: 10.1007/s10973-017-6229-0 [26] URALIL F S, NEWAZ G M, LUSTIGER A. Processing effects and damage tolerance in poly(etheretherketone) composites[J]. Polymer Composites, 1992, 13(1): 7-14. doi: 10.1002/pc.750130103 [27] 侯月娇, 曲敏杰, 聂琰, 等. PEEK/CF复合材料的非等温结晶动力学研究[J]. 现代塑料加工应用, 2016, 28(5): 19-22.HOU Yuejiao, QU Minjie, NIE Yan, et al. Nonisothermal crystallization kinetics of PEEK/CF composites[J]. Modern Plastics Processing and Applications, 2016, 28(5): 19-22(in Chinese). [28] 孙洪霖. 连续碳纤维增强聚醚醚酮复合材料制备及性能研究[D]. 上海: 东华大学, 2021.SUN Honglin. Study on preparation and properties of continuous carbon fiber reinforced polyetheretherketone composite[D]. Shanghai: Donghua University, 2021(in Chinese). [29] CHOE C R, LEE K H. Nonisothermal crystallization kinetics of poly(etheretherketone) (PEEK)[J]. Polymer Engineering and Science, 1989, 29: 801-805. doi: 10.1002/pen.760291208 [30] WIJSKAMP S. Shape distortion in composite forming[D]. Enschede: University of Twente, 2005.