留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湿热环境下碳纤维增强乙烯基树脂复合材料长期力学性能

张裕恒 王继辉 魏建辉 刘明 李旭 丁安心

张裕恒, 王继辉, 魏建辉, 等. 湿热环境下碳纤维增强乙烯基树脂复合材料长期力学性能[J]. 复合材料学报, 2023, 40(3): 1406-1416. doi: 10.13801/j.cnki.fhclxb.20220509.001
引用本文: 张裕恒, 王继辉, 魏建辉, 等. 湿热环境下碳纤维增强乙烯基树脂复合材料长期力学性能[J]. 复合材料学报, 2023, 40(3): 1406-1416. doi: 10.13801/j.cnki.fhclxb.20220509.001
ZHANG Yuheng, WANG Jihui, WEI Jianhui, et al. Long-term mechanical properties of carbon fiber reinforced vinyl resin composites in hygrothermal environment[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1406-1416. doi: 10.13801/j.cnki.fhclxb.20220509.001
Citation: ZHANG Yuheng, WANG Jihui, WEI Jianhui, et al. Long-term mechanical properties of carbon fiber reinforced vinyl resin composites in hygrothermal environment[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1406-1416. doi: 10.13801/j.cnki.fhclxb.20220509.001

湿热环境下碳纤维增强乙烯基树脂复合材料长期力学性能

doi: 10.13801/j.cnki.fhclxb.20220509.001
基金项目: 国家自然科学基金(11902231)
详细信息
    通讯作者:

    魏建辉,博士,高级工程师,研究方向为舰船结构的设计与分析 E-mail: 344971720@qq.com

    丁安心,博士,教授,硕士生导师,研究方向为高分子和复合材料结构固化成型仿真与监测、结构设计和老化评价 E-mail: axding@whut.edu.cn

  • 中图分类号: TB332

Long-term mechanical properties of carbon fiber reinforced vinyl resin composites in hygrothermal environment

  • 摘要: 碳纤维增强聚合物基复合材料(CFRP)因其耐腐蚀、轻质高强等特点被广泛应用于海洋环境,进而长期遭受湿热环境的考验。为了解湿热环境和极端温度对碳纤维增强乙烯基树脂复合材料的影响,测试了湿热老化前后和不同温度下CFRP的压缩性能、面内剪切性能和层间剪切强度变化。FTIR和SEM结果表明:纯树脂试样在湿热环境中发生了水解,使试样表面的微裂纹和孔隙不断扩展并向试样内部渗透;碳纤维的埋入抑制了水的扩散和水解,因而CFRP的吸湿曲线与Fickian模型高度吻合;纯树脂由于水解反应影响了吸湿通道使吸湿曲线偏离Fickian模型。力学性能表明:湿热老化90天后压缩强度和层间剪切强度分别降低7.6%、12.3%;试样在高温(70℃)下的压缩强度、面内剪切强度、层间剪切强度分别急剧降低36.2%、26.9%、37.4%,且高温对试样力学性能的影响具有部分可逆性。

     

  • 图  1  乙烯基树脂结构式

    Figure  1.  Structural formula of vinyl resin

    图  2  碳纤维增强聚合物基复合材料(CFRP)和纯树脂标准试样示意图

    Figure  2.  Standard specimens’ configuration of carbon fiber reinforced polymer composites (CFRP) and pure resin

    Thickness for all specimens is 4 mm

    图  3  纯树脂试样的FTIR图谱

    Figure  3.  FTIR spectra for pure resin specimens

    图  4  纯树脂试样在未老化前、70℃去离子水浸泡7天和120天后的表面SEM图像

    Figure  4.  SEM images of pure resin specimens before ageing, soaked in 70℃ deionized water for 7 days and 120 days

    图  5  CFRP试样在未老化前、70℃去离子水浸泡120天后的表面SEM图像

    Figure  5.  SEM images of CFRP samples before ageing and soaked in 70℃ deionized water for 120 days

    图  6  纯树脂和CFRP试样吸湿曲线

    Figure  6.  Water uptake curves for pure resin and CFRP

    t—Time

    图  7  CFRP试样的压缩性能 ((a) 强度;(b) 模量)

    Figure  7.  Compressive properties of CFRP specimens ((a) Strength; (b) Modulus)

    图  8  压缩载荷下CFRP的典型应力-应变曲线

    Figure  8.  Typical stress-strain curves of CFRP under compressive load

    图  9  CFRP试样压缩试验典型破坏模式

    Figure  9.  Typical failure modes of compression test for CFRP specimens

    Failure identification codes (such as HAT) consisting of 3 characters marked describe the failure mode, failure area and failure location respectively; Failure mode: B—Brooming; D—Delamination; H—Thyrough-thickness; M(xyz)—Multi-mode; Failure area: A—At grip/tab; G—Gage; Failure location: T—Top; M—Middle; V—Various

    图  10  CFRP试样的层间剪切强度

    Figure  10.  Interlaminar shear strength of CFRP specimens

    图  11  CFRP短梁剪切试验典型载荷-位移曲线

    Figure  11.  Typical load-displacement curves of CFRP for short-beam test

    图  12  CFRP试样短梁剪切试验典型破坏模式

    Figure  12.  Typical failure mode of short-beam test for CFRP specimens

    图  13  CFRP试样的面内剪切性能((a) 强度;(b) 模量)

    Figure  13.  In-plane shear properties of CFRP specimens ((a) Strength; (b) Modulus)

    图  14  面内剪切载荷下CFRP的典型应力-应变曲线

    Figure  14.  Typical stress-strain curves of CFRP under in-plane shear load

    图  15  CFRP面内剪切试验可接受的典型破坏模式

    Figure  15.  Typical acceptable failure modes of in-plane shear test for CFRP

    Failure identification codes (such as VGN) consisting of three characters marked describe the failure mode, failure area and failure location respectively; Failure mode: H—Horizontal cracking; V—Vertical cracking; Failure area: G—Gage; Failure location: N—Between notches

    图  16  CFRP试样面内剪切试验典型破坏模式

    Figure  16.  Typical failure modes of in-plane shear test for CFRP specimens

    表  1  CFRP和纯树脂的老化环境

    Table  1.   Ageing environment for CFRP and pure resin

    EnvironmentHygrothermal environment
    MediumDeionized water
    MaterialCFRP, pure resin
    Temperature/℃70
    Ageing time/d7, 14, 90
    下载: 导出CSV

    表  2  CFRP的测试环境

    Table  2.   Testing environment for CFRP

    Testing environmentsTesting temperature/℃Ageing time/dSpecimen conditions
    RTD20±50Dry
    ETD700Dry
    RTW20±57, 14, 90Wet
    ETW7090Wet
    Notes: RTD—Room temperature dry condition; ETD—Elevated temperature dry condition; RTW—Room temperature wet condition; ETW—Elevated temperature wet condition.
    下载: 导出CSV
  • [1] 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2):317-322.

    MA Limin, ZHANG Jiazhen, YUE Guangquan, et al. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica,2015,32(2):317-322(in Chinese).
    [2] 于洋, 樊威, 薛利利, 等. 热氧老化对三维编织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料力学性能的影响[J]. 复合材料学报, 2021, 38(12):4060-4072.

    YU Yang, FAN Wei, XUE Lili, et al. Influence of thermo-oxidative aging on the mechanical performance of three-dimensional braided carbon fiber-glass fiber/bismaleimide composites[J]. Acta Materiae Compositae Sinica,2021,38(12):4060-4072(in Chinese).
    [3] GRAMMATIKOS S A, EVERNDEN M, MITCHELS J, et al. On the response to hygrothermal aging of pultruded FRPs used in the civil engineering sector[J]. Materials & Design,2016,96:283-295.
    [4] 张祥林, 孟庆春, 许名瑞, 等. 吸湿后碳纤维复合材料正交层板拉伸疲劳性能[J]. 材料工程, 2021, 49(8):169-177.

    ZHANG Xianglin, MENG Qingchun, XU Mingrui, et al. Tensile fatigue properties of carbon fiber reinforce composite orthogonal laminates after moisture absorption[J]. Journal of Materials Engineering,2021,49(8):169-177(in Chinese).
    [5] SHEN C H, SPRINGER G S. Moisture absorption and desorption of composite materials[J]. Journal of Composite Materials,1975,10(1):2-20.
    [6] LIU L, ZHAO Z, CHEN W, et al. An experimental investigation on high velocity impact behavior of hygrothermal aged CFRP composites[J]. Composite Structures,2018,204:645-657. doi: 10.1016/j.compstruct.2018.08.009
    [7] TUAL N, CARRERE N, DAVIES P, et al. Characterization of sea water ageing effects on mechanical properties of carbon/epoxy composites for tidal turbine blades[J]. Composites Part A: Applied Science and Manufacturing,2015,78:380-389. doi: 10.1016/j.compositesa.2015.08.035
    [8] SUN P, ZHAO Y, LUO Y, et al. Effect of temperature and cyclic hygrothermal aging on the interlaminar shear strength of carbon fiber/bismaleimide (BMI) composite[J]. Materials & Design,2011,32(8-9):4341-4347.
    [9] DAVIES P, RAJAPAKSE Y. Durability of composites in a marine environment[M]//Durability of Composites in a Marine Environment. Berlin: Springer, 2013.
    [10] ZHOU J, LUCAS J P. Hygrothermal effects of epoxy resin. Part I: The nature of water in epoxy[J]. Polymer,1999,40(20):5505-5512. doi: 10.1016/S0032-3861(98)00790-3
    [11] WANG Y, ZHU W, WAN B, et al. Hygrothermal ageing behavior and mechanism of carbon nanofibers modified flax fiber-reinforced epoxy laminates[J]. Composites Part A: Applied Science and Manufacturing,2021,140:106142. doi: 10.1016/j.compositesa.2020.106142
    [12] EFTEKHARI M, FATEMI A. Tensile behavior of thermoplastic composites including temperature, moisture, and hygrothermal effects[J]. Polymer Testing,2016,51:151-164. doi: 10.1016/j.polymertesting.2016.03.011
    [13] DOS SANTOS J C, DE OLIVEIRA L A, PANZERA T H, et al. Ageing of autoclaved epoxy/flax composites: Effects on water absorption, porosity and flexural behaviour[J]. Composites Part B: Engineering,2020,202:108380. doi: 10.1016/j.compositesb.2020.108380
    [14] SILVA L V D, SILVA F W D, TARPANI J R, et al. Ageing effect on the tensile behavior of pultruded CFRP rods[J]. Materials & Design,2016,110:245-254.
    [15] DING A, WANG J, NI A, et al. Assessment on the ageing of sandwich composites with vinylester-based composite faces and PVC foam core in various harsh environments[J]. Composite Structures,2019,213:71-81.
    [16] LIU T, LIU X, FENG P. A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects[J]. Composites Part B: Engineering,2020,191:107958. doi: 10.1016/j.compositesb.2020.107958
    [17] NIU Y F, YAN Y, YAO J W. Hygrothermal aging mechanism of carbon fiber/epoxy resin composites based on quantitative characterization of interface structure[J]. Polymer Testing,2021,94:107019. doi: 10.1016/j.polymertesting.2020.107019
    [18] 高坤, 史汉桥, 孙宝岗, 等. 湿热老化对玻璃纤维/环氧树脂复合材料性能的影响[J]. 复合材料学报, 2016, 33(6):1147-1152.

    GAO Kun, SHI Hanqiao, SUN Baogang, et al. Effects of hydro-thermal aging on properties of glass fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2016,33(6):1147-1152(in Chinese).
    [19] 李宏福, 王淑范, 孙海霞, 等. 连续碳纤维/尼龙6热塑性复合材料的吸湿及力学性能[J]. 复合材料学报, 2019, 36(1):114-121.

    LI Hongfu, WANG Shufan, SUN Haixia, et al. Water absorption and mechanical property of continuous carbon fiber/polyamide 6 composites[J]. Acta Materiae Compositae Sinica,2019,36(1):114-121(in Chinese).
    [20] JESTHI D K, NAYAK R K. Evaluation of mechanical properties and morphology of seawater aged carbon and glass fiber reinforced polymer hybrid composites[J]. Compo-sites Part B: Engineering,2019,174:106980. doi: 10.1016/j.compositesb.2019.106980
    [21] YIN X, LIU Y, MIAO Y, et al. Water absorption, hydrothermal expansion, and thermomechanical properties of a vinylester resin for fiber-reinforced polymer composites subjected to water or alkaline solution immersion[J]. Polymers,2019,11(3):505-515. doi: 10.3390/polym11030505
    [22] KARBHARI V M. Durability of composites for civil structural applications[M]. Cambridge: Woodhead Publishing in Materials, 2007: 72-79.
    [23] CHU W, WU L, KARBHARI V M. Durability evaluation of moderate temperature cured E-glass/vinylester systems[J]. Composite Structures,2004,66(1/4):367-376.
    [24] SVETLIK S L. An investigation in the hygrothermal degradation of an E-glass/vinyl-ester composite in humid and immersion environments[D]. San Diego: University of California, 2008.
    [25] HOTA G, BARKER W, MANALO A. Degradation mechanism of glass fiber/vinylester-based composite materials under accelerated and natural aging[J]. Construction and Building Materials,2020,256:119462. doi: 10.1016/j.conbuildmat.2020.119462
    [26] MICELLI F, NANNI A. Durability of FRP rods for concrete structures[J]. Construction and Building Materials,2004,18(7):491-503. doi: 10.1016/j.conbuildmat.2004.04.012
    [27] ASTM Standards. Standard test moisture absorption properties and equilibrium conditioning of polymer matrix composite materials: D5229-14[S]. West Conshohocken: ASTM International, 2014.
    [28] ASTM Standards. Standard test method for water absorption of plastics: D570-98(2018)[S]. West Conshohocken: ASTM International, 2018.
    [29] ASTM Standards. Standard test method for compressive properties of polymer matrix composite materials using a combined loading compression (CLC) test fixture: D6641-14[S]. West Conshohocken: ASTM International, 2014.
    [30] ASTM Standards. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: D2344-16[S]. West Conshohocken: ASTM International, 2016.
    [31] ASTM Standards. Standard test method for shear properties of composite materials by V-notched rail shear method: ASTM D7078-12[S]. West Conshohocken: ASTM International, 2012.
    [32] WISNOM M R, GIGLIOTTI M, ERSOY N, et al. Mechanisms generating residual stresses and distortion during manufacture of polymer–matrix composite structures[J]. Composites Part A: Applied Science and Manufacturing,2006,37(4):522-529. doi: 10.1016/j.compositesa.2005.05.019
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  1089
  • HTML全文浏览量:  598
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-08
  • 修回日期:  2022-04-10
  • 录用日期:  2022-04-24
  • 网络出版日期:  2022-05-10
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回