留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温作用后GFRP筋与海水珊瑚混凝土粘结性能试验研究

周春恒 王君义 王新堂 陈宗平

周春恒, 王君义, 王新堂, 等. 高温作用后GFRP筋与海水珊瑚混凝土粘结性能试验研究[J]. 复合材料学报, 2023, 40(4): 2224-2239. doi: 10.13801/j.cnki.fhclxb.20220623.001
引用本文: 周春恒, 王君义, 王新堂, 等. 高温作用后GFRP筋与海水珊瑚混凝土粘结性能试验研究[J]. 复合材料学报, 2023, 40(4): 2224-2239. doi: 10.13801/j.cnki.fhclxb.20220623.001
ZHOU Chunheng, WANG Junyi, WANG Xintang, et al. Experimental study on bond behavior of GFRP bar and seawater coral aggregate concrete after exposure to high temperatures[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2224-2239. doi: 10.13801/j.cnki.fhclxb.20220623.001
Citation: ZHOU Chunheng, WANG Junyi, WANG Xintang, et al. Experimental study on bond behavior of GFRP bar and seawater coral aggregate concrete after exposure to high temperatures[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2224-2239. doi: 10.13801/j.cnki.fhclxb.20220623.001

高温作用后GFRP筋与海水珊瑚混凝土粘结性能试验研究

doi: 10.13801/j.cnki.fhclxb.20220623.001
基金项目: 国家自然科学基金(52208174);浙江省自然科学基金(LQ20E080003);中央引导地方科技基金(桂科ZY21195010)
详细信息
    通讯作者:

    陈宗平,博士,教授,博士生导师,研究方向为海洋及近海混凝土结构、钢-混凝土组合结构  E-mail: zpchen@gxu.edu.cn

  • 中图分类号: TU528

Experimental study on bond behavior of GFRP bar and seawater coral aggregate concrete after exposure to high temperatures

Funds: National Natural Science Foundation of China (52208174); Zhejiang Provincial Natural Science Foundation of China (LQ20E080003); Central Government Guides Local Science and Technology Foundation (ZY21195010)
  • 摘要: 为了研究高温后玻璃纤维增强树脂复合材料(GFRP)筋与海水珊瑚混凝土的残余粘结性能,对54个GFRP筋珊瑚混凝土试件及钢筋珊瑚混凝土对比试件进行了高温作用后的中心拔出试验,最高温度为350℃,混凝土强度等级考虑C20~C30。观察了高温后试件的表观变化及粘结破坏形态,获取了各试件的粘结-滑移曲线、粘结强度、粘结刚度和峰值滑移量,分析了不同温度、GFRP筋直径、海水珊瑚混凝土强度等因素对高温后GFRP筋与海水珊瑚混凝土粘结性能的影响。基于烧失率和XRD分析,剖析了GFRP筋海水珊瑚混凝土的高温劣化机制。最后,提出高温后GFRP筋与珊瑚混凝土的剩余粘结强度计算式和粘结-滑移本构模型。研究结果表明:高温作用后,尽管GFRP筋与珊瑚混凝土的粘结破坏形态与常温相似,GFRP筋的碳化和珊瑚混凝土的分解使得二者界面发生显著劣化;随着温度的提高,GFRP筋与珊瑚混凝土的粘结强度逐渐降低,峰值滑移量增大;GFRP筋直径越小,高温后的剩余粘结强度和剩余粘结刚度越小;珊瑚混凝土强度等级越高,剩余粘结刚度越大,峰值滑移量越小。所提出的高温后GFRP筋与珊瑚混凝土剩余粘结强度和粘结-滑移本构关系计算结果与试验结果均能较好吻合。

     

  • 图  1  筋材尺寸及几何特征

    Figure  1.  Geometrical characteristics and dimension of reinforcing bars

    GFRP—Glass fiber reinforcedpolymer

    图  2  珊瑚骨料

    Figure  2.  Coral aggregate

    图  3  电加热高温炉

    Figure  3.  Heating system

    图  4  升降温曲线

    Figure  4.  Temperature-time curves

    图  5  加载装置

    Figure  5.  Test set up

    图  6  高温作用后GFRP筋材表观形态

    Figure  6.  Forms of GFRP bars after high temperatures

    图  7  高温作用后珊瑚混凝土表观形态

    Figure  7.  Forms of coral aggregate concrete after high temperatures

    图  8  GFRP筋珊瑚混凝土试件粘结破坏形态

    Figure  8.  Bond failure modes of GFRP bar-coral aggregate concrete specimens

    图  9  高温后GFRP筋珊瑚混凝土试件粘结-滑移曲线

    Figure  9.  Bond stress-slippage curves of GFRP bars-coral concrete specimens after high temperatures

    图  10  高温后GFRP筋珊瑚混凝土试件烧失率

    Figure  10.  Mass loss rate of GFRP bars-coral concrete specimens after high temperatures

    图  11  不同温度后试件中水泥基 (a) 及珊瑚骨料 (b) 的XRD图谱

    Figure  11.  XRD patterns of cement (a) and coral aggregate (b) specimens with different temperatures

    图  12  温度对GFRP筋珊瑚混凝土试件粘结性能的影响

    Figure  12.  Effect of temperature on the bond properties of GFRP bars-coral concrete specimens

    T0—Room temperature

    图  13  混凝土强度等级对GFRP筋珊瑚混凝土试件粘结性能的影响

    Figure  13.  Effect of concrete strength on bond properties of GFRP bars-coral concrete specimens

    图  14  GFRP筋直径对GFRP筋珊瑚混凝土试件粘结性能的影响

    Figure  14.  Effect of bar diameter on bond properties of GFRP bars-coral concrete specimens

    图  15  GFRP筋珊瑚混凝土试件粘结-滑移试验曲线与计算曲线对比

    Figure  15.  Comparison of the theoretical and experimental bond stress-slippage curves of GFRP bars-coral concrete specimens

    表  1  筋材几何参数及力学性能

    Table  1.   Geometrical parameter and mechanical properties of bars

    Type of reinforcementDiameter/mmRib spacing /mmRib depth/mmTensile strength f/MPaElasticity modulus E/GPa
    GFRP bar88.610.49855.4643.69
    1210.591.05853.5941.32
    169.841.40730.8533.73
    Steel rebar128.001.20629.08219.84
    下载: 导出CSV

    表  2  海水珊瑚混凝土配合比及抗压强度

    Table  2.   Mixture ratio and compressive strength of seawater coral aggregate concrete

    Strength classComposition/(kg·m−3)Slump/
    mm
    fc/
    MPa
    Basic sea waterAdditional sea waterTotal sea waterCementSilica fumeSea sandCoralPlasticizer
    C2019089279350308207100.00714221.83
    C3019091281400708107200.01219025.44
    Notes: fc—Axial compressive strength of concrete.
    下载: 导出CSV

    表  3  试件设计参数

    Table  3.   Design parameters of specimens

    Specimen numberStrength classReinforcementBar diameter/mmTemperature/℃
    GFRP8/CC30-20 C30 GFRP bar 8 20
    GFRP8/CC30-200 C30 GFRP bar 8 200
    GFRP8/CC30-350 C30 GFRP bar 8 350
    GFRP12/CC30-20 C30 GFRP bar 12 20
    GFRP12/CC30-150 C30 GFRP bar 12 150
    GFRP12/CC30-200 C30 GFRP bar 12 200
    GFRP12/CC30-250 C30 GFRP bar 12 250
    GFRP12/CC30-300 C30 GFRP bar 12 300
    GFRP12/CC30-350 C30 GFRP bar 12 350
    GFRP16/CC30-20 C30 GFRP bar 16 20
    GFRP16/CC30-200 C30 GFRP bar 16 200
    GFRP16/CC30-350 C30 GFRP bar 16 350
    GFRP12/CC20-20 C20 GFRP bar 12 20
    GFRP12/CC20-200 C20 GFRP bar 12 200
    GFRP12/CC20-350 C20 GFRP bar 12 350
    SR12/CC30-20 C30 Rebar 12 20
    SR12/CC30-200 C30 Rebar 12 200
    SR12/CC30-350 C30 Rebar 12 350
    Note: In GFRP8/CC30-20, GFRP8 means the GFRP bars with diameter of 8 mm, CC30 means coral concrete strength grade, 20 means test temperature.
    下载: 导出CSV

    表  4  高温后GFRP筋珊瑚混凝土粘结性能

    Table  4.   Bond properties of GFRP bar and coral aggregate concrete after high temperatures

    Specimen numberτu/MPas1/mmκ/(MPa·mm−1)Failure mode
    GFRP8/CC30-207.571.737.79P
    GFRP8/CC30-2005.931.994.10P
    GFRP8/CC30-3503.612.332.45P
    GFRP12/CC20-207.220.999.05S
    GFRP12/CC20-2005.841.0610.92S
    GFRP12/CC20-3503.731.275.63S
    GFRP12/CC30-2010.920.3730.29S
    GFRP12/CC30-1508.950.4035.10S
    GFRP12/CC30-2008.720.4031.02S
    GFRP12/CC30-2506.210.5425.35S
    GFRP12/CC30-3005.850.6114.78S
    GFRP12/CC30-3505.010.6111.37S
    GFRP16/CC30-208.070.6511.92S
    GFRP16/CC30-2007.110.6612.25S
    GFRP16/CC30-3504.330.896.07S
    SR12/CC30-2013.180.6055.20S
    SR12/CC30-20013.990.9171.20S
    SR12/CC30-3509.151.8019.32S
    Notes: τu—Bonding strength; s1—Peak slippage; κ—Bond stiffness; P—Pull-out of bar; S—Splitting of concrete.
    下载: 导出CSV

    表  5  GFRP筋珊瑚混凝土试件剩余粘结强度计算值与试验值

    Table  5.   Calculated values and test values of residual bond strength of GFRP bars-coral concrete specimens

    Specimen numberT/℃d/mmL/mmfc/MPa$\tau _{\text{u}}^{\text{c}}(T)/{\text{MPa}}$$\tau _{\text{u}}^{\text{e}}(T)/{\text{MPa}}$$\tau _{\text{u}}^{\text{c}}(T)/\tau _{\text{u}}^{\text{e}}(T)$
    GFRP8/CC30-20 20 8 50 25.44 7.57 7.57 1.00
    GFRP8/CC30-200 200 8 50 25.44 5.87 5.93 0.99
    GFRP8/CC30-350 350 8 50 25.44 3.79 3.61 1.05
    GFRP12/CC20-20 20 12 60 21.83 8.59 7.22 1.19
    GFRP12/CC20-200 200 12 60 21.83 6.66 5.84 1.14
    GFRP12/CC20-350 350 12 60 21.83 4.30 3.73 1.15
    GFRP12/CC30-20 20 12 60 25.44 9.71 10.92 0.89
    GFRP12/CC30-150 150 12 60 25.44 8.25 8.95 0.92
    GFRP12/CC30-200 200 12 60 25.44 7.53 8.72 0.86
    GFRP12/CC30-250 250 12 60 25.44 6.73 6.21 1.08
    GFRP12/CC30-300 300 12 60 25.44 5.84 5.85 1.00
    GFRP12/CC30-350 350 12 60 25.44 4.87 5.01 0.97
    GFRP16/CC30-20 20 16 80 25.44 8.07 8.07 1.00
    GFRP16/CC30-200 200 16 80 25.44 6.26 7.11 0.88
    GFRP16/CC30-350 350 16 80 25.44 4.04 4.33 0.93
    Notes: T—Temperature; d—Nominal diameter of GFRP bars; L—Embedded length of GFRP bars; fc—Axial compressive strength of concrete; $\tau _{\text{u}}^{\text{c}} $(T)—Calculated value of bond strength between GFRP bars and coral concrete at different high temperatures; $\tau _{\text{u}}^{\text{e}} $(T)—Test value of bond strength between GFRP bars and coral concrete at different high temperatures.
    下载: 导出CSV

    表  6  GFRP筋珊瑚混凝土试件粘结-滑移曲线计算结果

    Table  6.   Calculation results of bond stress-slippage curves of GFRP bars-coral concrete specimens

    Specimen numbersc(T)/mmse(T)/mmsc(T)/se(T)αβpR2
    GFRP8/CC30-20 1.73 1.73 1.00 0.72 1.10 0.25 0.99
    GFRP8/CC30-200 1.81 1.99 0.91 0.92 1.72 0.39 0.98
    GFRP8/CC30-350 2.38 2.33 1.02 1.00 1.30 0.53 0.96
    GFRP12/CC20-20 0.99 0.99 1.00 1.26 1.87 4.01 0.99
    GFRP12/CC20-200 1.04 1.06 0.98 0.20 0.05 0.21 0.97
    GFRP12/CC20-350 1.36 1.27 1.07 0.94 1.83 0.40 0.97
    GFRP12/CC30-20 0.44 0.37 1.19 1.14 2.28 4.99 0.99
    GFRP12/CC30-150 0.44 0.41 1.07 0.74 1.47 0.09 0.95
    GFRP12/CC30-200 0.46 0.40 1.15 0.75 1.50 1.38 0.86
    GFRP12/CC30-250 0.50 0.54 0.93 0.92 1.81 0.16 0.98
    GFRP12/CC30-300 0.55 0.61 0.90 1.16 1.65 0.86 0.95
    GFRP12/CC30-350 0.61 0.61 1.00 0.97 1.44 0.21 0.90
    GFRP16/CC30-20 0.65 0.65 1.00 1.02 1.02 2.10 0.91
    GFRP16/CC30-200 0.69 0.66 1.05 1.20 1.58 11.71 0.96
    GFRP16/CC30-350 0.90 0.89 1.01 0.99 1.98 0.15 0.93
    Notes: sc(T)—Calculated value of peak slippage; se(T)—Test value of peak slippage; α, β—Design conditions; p—Softening coefficient of descending stage; R2—Correlation coefficient.
    下载: 导出CSV
  • [1] 周济, 陈宗平, 陈宇良, 等. 潮汐区GFRP筋珊瑚海洋混凝土柱轴压性能试验及承载力计算[J]. 复合材料学报, 2022, 39(1): 344-360.

    ZHOU Ji, CHEN Zongping, CHEN Yuliang, et al. Test on axial compression performance and bearing capacity calculation of GFRP bars reinforced coral aggregate marine concrete columns exposed to tidal area[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 344-360(in Chinese).
    [2] 刘霞, 李峰, 佘殷鹏. 玄武岩纤维增强聚合物筋增强珊瑚礁砂混凝土柱轴压试验[J]. 复合材料学报, 2020, 37(10):2428-2438. doi: 10.13801/j.cnki.fhclxb.20200219.003

    LIU Xia, LI Feng, SHE Yinpeng. Axial compression test of basalt fiber reinforced polymer reinforced coral reef and sand aggregate concrete column[J]. Acta Materiae Compositae Sinica,2020,37(10):2428-2438(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200219.003
    [3] DONG Z, WU G, ZHU H, et al. Flexural behavior of seawater sea-sand coral concrete–UHPC composite beams reinforced with BFRP bars[J]. Construction and Building Materials,2020,265:120279. doi: 10.1016/j.conbuildmat.2020.120279
    [4] WANG X, ZHANG X, DING L, et al. Punching shear behavior of two-way coral-reef-sand concrete slab reinforced with BFRP composites[J]. Construction and Building Materials,2020,231:117113.
    [5] YANG S, YANG C, HUANG M, et al. Study on bond performance between FRP bars and seawater coral aggregate concrete[J]. Construction and Building Materials,2018,173:272-288. doi: 10.1016/j.conbuildmat.2018.04.015
    [6] WANG L, MAO Y, LV H, et al. Bond properties between FRP bars and coral concrete under seawater conditions at 30, 60, and 80°C[J]. Construction and Building Materials,2018,162:442-449.
    [7] 王磊, 毛亚东, 陈爽, 等. GFRP筋与珊瑚混凝土黏结性能的试验研究[J]. 建筑材料学报, 2018, 21(2):286-292. doi: 10.3969/j.issn.1007-9629.2018.02.018

    WANG Lei, MAO Yadong, CHEN Shuang, et al. Experimental research on bond performance between GFRP bars and the coral concrete[J]. Journal of Building Materials,2018,21(2):286-292(in Chinese). doi: 10.3969/j.issn.1007-9629.2018.02.018
    [8] 杨超, 杨树桐, 戚德海. BFRP筋与珊瑚混凝土粘结性能试验研究[J]. 工程力学, 2018, 35(S1):172-180. doi: 10.6052/j.issn.1000-4750.2017.06.S034

    YANG Chao, YANG Shutong, QI Dehai. Experimental study on the bond performance between BFRP bars and coral concrete[J]. Engineering Mechanics,2018,35(S1):172-180(in Chinese). doi: 10.6052/j.issn.1000-4750.2017.06.S034
    [9] 高傲, 杨树桐, 高广希, 等. 海洋环境下BFRP筋与珊瑚混凝土粘结性能的试验研究[J]. 复合材料科学与工程, 2020(12):43-53. doi: 10.3969/j.issn.1003-0999.2020.12.008

    GAO Ao, YANG Shutong, GAO Guangxi, et al. Experimental study on the bond performance between BFRP bars and caral concrete in marine environment[J]. Composites Science and Engineering,2020(12):43-53(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.12.008
    [10] DAI J, YIN S, HU C. Analysis of key influencing factors of the bond performance between BFRP bars and coral reef and sand concrete[J]. Construction and Building Materials,2021,269:121248. doi: 10.1016/j.conbuildmat.2020.121248
    [11] 陈爽, 吕海波, 王磊. 纤维增强塑料筋与珊瑚混凝土粘结滑移本构模型[J]. 桂林理工大学学报, 2019, 39(1):107-113.

    CHEN Shuang, LV Haibo, WANG Lei. Constitutive model of bond-slip relation between FRP bar and coral concrete[J]. Journal of Guilin University of Technology,2019,39(1):107-113(in Chinese).
    [12] ZHOU C, PAN J, ZHANG Z, et al. Comparative study on the tensile mechanical behavior of GFRP bars under and after high temperature exposure[J]. Case Studies in Construction Materials,2022,16:e00905. doi: 10.1016/j.cscm.2022.e00905
    [13] KATZ A, BERMAN N. Modeling the effect of high temperature on the bond of FRP reinforcing bars to concrete[J]. Cement and Concrete Composites,2000,22(6):433-443. doi: 10.1016/S0958-9465(00)00043-3
    [14] GALATI N, NANNI A, DHARANI L R, et al. Thermal effects on bond between FRP rebars and concrete[J]. Composites Part A: Applied Science and Manufacturing,2005,37(8):1223-1230.
    [15] 吕西林, 周长东, 金叶. 火灾高温下GFRP筋和混凝土粘结性能试验研究[J]. 建筑结构学报, 2007, 28(5):32-39, 88. doi: 10.3321/j.issn:1000-6869.2007.05.004

    LV Xilin, ZHOU Changdong, JIN Ye. Test study on bond behavior between GFRP bar and concrete in high temperature[J]. Journal of Building Structures,2007,28(5):32-39, 88(in Chinese). doi: 10.3321/j.issn:1000-6869.2007.05.004
    [16] 王晓璐, 査晓雄, 张旭琛. 高温下FRP筋与混凝土的粘结性能[J]. 哈尔滨工业大学学报, 2013, 45(6):8-15. doi: 10.11918/j.issn.0367-6234.2013.06.002

    WANG Xiaolu, ZHA Xiaoxiong, ZHANG Xuchen. Bond behavior of FRP rebar and concrete at elevated temperature[J]. Journal of Harbin Institute of Technology,2013,45(6):8-15(in Chinese). doi: 10.11918/j.issn.0367-6234.2013.06.002
    [17] ASTM International. Standard practice for the preparation of substitute ocean water: ASTM D1141—1998[S]. West Conshohocken: ASTM International, 1998.
    [18] 中华人民共和国国家质量监督检验检疫总局. 纤维增强复合材料筋基本力学性能试验方法: GB/T 30022—2013[S]. 北京: 中国标准出版社, 2013.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Test method for basic mechanical properties of fiber reinforced polymer bar: GB/T 30022—2013[S]. Beijing: Standards Press of China, 2013(in Chinese).
    [19] LU L, YUAN G, SHU Q, et al. Bond behaviour between early age concrete and steel bar subjected to cyclic loading after fire[J]. Fire Safety Journal,2019,105:129-143. doi: 10.1016/j.firesaf.2019.02.012
    [20] LI Q, HUANG X, HUANG Z, et al. Bond characteristics between early aged fly ash concrete and reinforcing steel bar after fire[J]. Construction and Building Materials,2017,147:701-712. doi: 10.1016/j.conbuildmat.2017.04.184
    [21] XIONG Z, ZENG Y, LI L G, et al. Experimental study on the effects of glass fibres and expansive agent on the bond behaviour of glass/basalt FRP bars in seawater sea-sand concrete[J]. Construction and Building Materials,2021,274:122100. doi: 10.1016/j.conbuildmat.2020.122100
    [22] 牛建刚, 边钰, 谢承斌. 再生混凝土与锈蚀钢筋界面粘结性能[J]. 科学技术与工程, 2020, 20(19):7845-7851.

    NIU Jiangang, BIAN Yu, XIE Chengbin. Interfacial bond properties between recycled concrete and corroded steel bar[J]. Science Technology and Engineering,2020,20(19):7845-7851(in Chinese).
    [23] IRSHIDAT M R. Bond strength evaluation between steel rebars and carbon nanotubes modified concrete[J]. Case Studies in Construction Materials,2021,14:e00477. doi: 10.1016/j.cscm.2020.e00477
    [24] ASHRAFI H, BAZLI M, NAJAFABADI E P, et al. The effect of mechanical and thermal properties of FRP bars on their tensile performance under elevated temperatures[J]. Construction and Building Materials,2017,157:1001-1010. doi: 10.1016/j.conbuildmat.2017.09.160
    [25] SPAGNUOLO S, MEDA A, RINALDI Z, et al. Residual behaviour of glass FRP bars subjected to high temperatures[J]. Composite Structures,2018,203:886-893. doi: 10.1016/j.compstruct.2018.07.077
    [26] 李趁趁, 王英来, 赵军, 等. 高温后FRP筋纵向拉伸性能[J]. 建筑材料学报, 2014, 17(6):1076-1081. doi: 10.3969/j.issn.1007-9629.2014.06.024

    LI Chenchen, WANG Yinglai, ZHAO Jun, et al. Longitudinal tensile properties of FRP bars after high temperature[J]. Journal of Building Materials,2014,17(6):1076-1081(in Chinese). doi: 10.3969/j.issn.1007-9629.2014.06.024
    [27] YAO Y, HAO L. Mechanical properties and failure mechanism of carbon nanotube concrete at high temperatures[J]. Construction and Building Materials,2021,297:123782. doi: 10.1016/j.conbuildmat.2021.123782
    [28] 朋改非, 王金羽, CHAN Y N S, 等. 火灾高温下硬化水泥浆的化学分解特征[J]. 南京信息工程大学学报(自然科学版), 2009, 1(1):76-81. doi: 10.13878/j.cnki.jnuist.2009.01.012

    PENG Gaifei, WANG Jinyu, CHAN Y N S, et al. Chemical decomposition characteristics of hardened cement paste subjected to high temperature of fire[J]. Journal of Nanjing University of Information Science and Technology: Natural Science Edition,2009,1(1):76-81(in Chinese). doi: 10.13878/j.cnki.jnuist.2009.01.012
    [29] 王英来. 高温后FRP筋拉伸性能及其与混凝土粘结性能试验研究[D]. 郑州: 郑州大学, 2013.

    WANG Yinglai. Experimental study on tensile property of FRP bars and bond behavior between FRP bars and concrete after high temperature[D]. Zhengzhou: Zhengzhou University, 2013(in Chinese).
    [30] 刘华新, 朱伯衡. 高温对玄武岩纤维筋混杂纤维再生混凝土粘结性能的影响[J]. 科学技术与工程, 2022, 22(5):2049-2054. doi: 10.3969/j.issn.1671-1815.2022.05.041

    LIU Huaxin, ZHU Boheng. Effect of high temperature on bond behavior between basalt fiber reinforced polymer bars and hybrid fiber recycled aggregate concrete[J]. Science Technology and Engineering,2022,22(5):2049-2054(in Chinese). doi: 10.3969/j.issn.1671-1815.2022.05.041
    [31] COSENZA E, MANFREDI G, REALFONZO R. Behavior and modeling of bond of FRP rebars to concrete[J]. Journal of Composites for Construction,1997,1(2):40-51. doi: 10.1061/(ASCE)1090-0268(1997)1:2(40)
    [32] ELIGEHAUSEN R, POPOV E P, BERTERO V V. Local bond stress-slip relationships of deformed bars under generalized excitations[C]. Proceedings of the 7th European Conference on Earthquake Engineering. Berkeley, 1982: 69-80.
    [33] HUANG L, CHEN J, QU J, et al. Modeling for bond-constitutive relationships of FRP rebars to concrete matrix[J]. Construction and Building Materials,2020,263:120654. doi: 10.1016/j.conbuildmat.2020.120654
    [34] MALVAR L J. Tensile and bond properties of GFRP reinforcing bars[J]. Materials Journal,1995,92(3):276-285.
    [35] 张海霞. FRP筋与混凝土粘结滑移性能研究[D]. 沈阳: 东北大学, 2006.

    ZHANG Haixia. Study on bond-slip behavior between FRP bars and concrete[D]. Shenyang: Northeastern University, 2006(in Chinese).
    [36] 高丹盈, 朱海堂, 谢晶晶. 纤维增强塑料筋混凝土粘结滑移本构模型[J]. 工业建筑, 2003, 33(7):41-43, 82. doi: 10.3321/j.issn:1000-8993.2003.07.011

    GAO Danying, ZHU Haitang, XIE Jingjing. The constitutive models for bond slip relation between FRP rebars and concrete[J]. Industrial Construction,2003,33(7):41-43, 82(in Chinese). doi: 10.3321/j.issn:1000-8993.2003.07.011
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  761
  • HTML全文浏览量:  336
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-07
  • 修回日期:  2022-06-10
  • 录用日期:  2022-06-11
  • 网络出版日期:  2022-06-24
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回