留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气相二氧化硅改性沥青的流变性能及改性机制

栗思琪 颜川奇 周圣雄

栗思琪, 颜川奇, 周圣雄. 气相二氧化硅改性沥青的流变性能及改性机制[J]. 复合材料学报, 2023, 40(11): 6275-6287. doi: 10.13801/j.cnki.fhclxb.20230203.002
引用本文: 栗思琪, 颜川奇, 周圣雄. 气相二氧化硅改性沥青的流变性能及改性机制[J]. 复合材料学报, 2023, 40(11): 6275-6287. doi: 10.13801/j.cnki.fhclxb.20230203.002
LI Siqi, YAN Chuanqi, ZHOU Shengxiong. Rheological properties and mechanism of fumed SiO2 modified asphalt[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6275-6287. doi: 10.13801/j.cnki.fhclxb.20230203.002
Citation: LI Siqi, YAN Chuanqi, ZHOU Shengxiong. Rheological properties and mechanism of fumed SiO2 modified asphalt[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6275-6287. doi: 10.13801/j.cnki.fhclxb.20230203.002

气相二氧化硅改性沥青的流变性能及改性机制

doi: 10.13801/j.cnki.fhclxb.20230203.002
基金项目: 国家自然科学基金(52008353)
详细信息
    通讯作者:

    周圣雄,博士,研究方向为路面新材料 E-mail: zhoushengxiong@my.swjtu.edu.cn

  • 中图分类号: U414;TB332

Rheological properties and mechanism of fumed SiO2 modified asphalt

Funds: National Natural Science Foundation of China (52008353)
  • 摘要: 纳米SiO2 (NS)可有效改善沥青的力学性能但价格高昂,气相SiO2 (FS)同样为纳米级材料且价格仅为NS的1/10。为评估FS代替NS的可行性,通过多重应力蠕变回复试验(MSCR)、线性振幅扫描试验(LAS)和弯曲梁流变试验(BBR)对比了普通SiO2 (OS)、FS、疏水纳米SiO2 (MNS)分别在掺量为3wt%时对基质沥青(Esso,ES)流变性能的影响。结果表明:FS对沥青高温抗车辙性能和中温抗疲劳性能的改善是三者中最好的,对低温抗裂性能的损害是最弱的。此外,借助SEM、变温红外光谱(VT-IR)、温度扫描(TeS)、TGA和DSC分析FS对沥青的改性机制,推断出FS特有的初级支化结构及其形成的“沥青-水团簇”体系是提升沥青性能的关键。因此,FS是一种性价比高的纳米级沥青改性材料。

     

  • 图  1  普通SiO2 (OS)、气相SiO2 (FS)、纳米SiO2 (NS)、偶联剂KH550和改性纳米SiO2 (MNS)的红外图谱

    Figure  1.  FTIR spectra of ordinary SiO2 (OS), fumed SiO2 (FS), nano-SiO2 (NS), KH550 and hydrophobic SiO2 (MNS)

    图  2  基质沥青(ES)、普通SiO2改性沥青(OS-ES)、气相SiO2改性沥青(FS-ES)和疏水纳米SiO2改性沥青(MNS-ES)在不同温度(64℃、70℃、76℃)和应力(0.1 kPa、3.2 kPa)下的累计应变曲线:(a) 0.1 kPa;(b) 3.2 kPa

    Figure  2.  Cumulative strain of matrix asphalt ESSO 70 (ES), ordinary SiO2 modified asphalt (OS-ES), fumed SiO2 modified asphalt (FS-ES) and hydrophobic nano SiO2 modified asphalt (MNS-ES) at different temperatures (64℃, 70℃, 76℃) and stresses (0.1 kPa, 3.2 kPa): (a) 0.1 kPa; (b) 3.2 kPa

    图  3  沥青样品在0.1 kPa和3.2 kPa下的不可恢复蠕变柔量Jnr, 0.1 (a)和Jnr, 3.2 (b)

    Figure  3.  Non-recoverable creep compliance Jnr, 0.1 (a) and Jnr, 3.2 (b) of asphalt at 0.1 kPa and 3.2 kPa

    图  4  各沥青样品的应力-应变曲线(a)、疲劳寿命Nf (b)、应变ε为3%和5%时的疲劳寿命(c)、ε为10%和15%时的疲劳寿命(d)

    Figure  4.  Stress-strain curves (a), Fatigue life Nf (b), Nf at 3% and 5% of strain (c), Nf at 10% and 15% of strain (d) for asphalt samples

    εf —Yield strain

    图  5  不同SiO2改性沥青的弯曲梁流变试验(BBR)测试结果:(a)劲度模量S;(b)蠕变速率m

    Figure  5.  Stiffness modulus S (a) and creep rates m (b) from bent beam rheological test (BBR) for asphalt samples modified by SiO2

    图  6  不同SiO2的实物图((a)~(c))和SEM图像((d)~(f))

    Figure  6.  Object pictures ((a)-(c)) and SEM images ((d)-(f)) of different SiO2

    图  7  不同SiO2改性沥青的复数模量(G*)和相位角(δ)

    Figure  7.  Complex modulus (G*) and phase angle (δ) of different SiO2 modified asphalts

    图  8  不同SiO2改性沥青的模量比$ {R}_{{G}^{*}} $和相位角比$ {R}_{\delta } $

    Figure  8.  Complex modulus ratio $ {R}_{{G}^{*}} $ and phase angle ratio $ {R}_{\delta } $ of different SiO2 modified asphalts

    图  9  ES的傅里叶变换红外光谱(a)及FE-ES的变温红外光谱((b)~(d))

    Figure  9.  FTIR spectra characteristics of ES (a) and variable temperature infrared spectroscopy of FE-ES ((b)-(d))

    图  10  FS在不同温度下对沥青的作用示意图

    Tg—Glass transition temperature

    Figure  10.  Schematic representation of the FS action in bitumen at different temperatures

    图  11  4种沥青的TGA-DTG (a)及第二次加热DSC曲线(b)

    LOI—Loss on ignition; ΔHm, fus—Melting enthalpy

    Figure  11.  TGA and DTG curves (a) and DSC curves of the second heating (b) for the four bitumen

    表  1  ESSO 70号沥青的基本信息

    Table  1.   Basic information of ESSO 70# asphalt

    Performance
    grade
    Penetration index
    (25℃, 0.1 mm)
    Ductility
    (10℃, cm)
    Softening point
    /℃
    58-16684447.2
    下载: 导出CSV

    表  2  4种沥青热损失相关参数

    Table  2.   Results of thermogravimetric losing for the four bitumen

    Sample Mass losing extrapolated onset To/℃ Mass losing fastest
    Tf/℃
    Mass losing extrapolated end Te/℃ Loss on ignition LOI/%
    ES 307 355 384 85.16
    OS-ES 282 400 434 75.72
    FS-ES 327 375 428 78.11
    MNS-ES 371 411 437 78.85
    下载: 导出CSV

    表  3  4种沥青第二次加热的DSC相关参数[46-47]

    Table  3.   Results of DSC in the second heating for the four bitumen[46-47]

    SampleMelting extrapolated
    onset Teim/℃
    Melting extrapolated
    end Tefm/℃
    Melting enthalpy
    ΔHm, fus/(J·g–1)
    Temperatures and enthalpies
    related to a melting
    ES 10.9 91.01 −6.41
    OS-ES 10.2 89.22 −7.92
    FS-ES 15.2 91.00 −6.83
    MNS-ES 15.1 89.24 −6.85
    Sample Extrapolated onset
    temperature Tf/℃
    Midpoint temperature Tg/℃ Extrapolated end
    temperature Te/℃
    Temperatures related to a
    glass transition
    ES −31.6 −20.9 −7.4
    OS-ES −27.9 −15.6 −5.7
    FS-ES −30.0 −20.1 −7.6
    MNS-ES −22.6 −17.2 −6.6
    下载: 导出CSV
  • [1] NUÑEZ J Y M, DOMINGOS M D I, FAXINA A L. Susceptibi-lity of low-density polyethylene and polyphosphoric acid-modified asphalt binders to rutting and fatigue cracking[J]. Construction and Building Materials,2014,73:509-514. doi: 10.1016/j.conbuildmat.2014.10.002
    [2] LINK R E, SHENOY A. Fatigue testing and evaluation of asphalt binders using the dynamic shear rheometer[J]. Journal of Testing and Evaluation,2002,30:303-312. doi: 10.1520/JTE12320J
    [3] SADEGHNEJAD M, SHAFABAKHSH G. Use of nano SiO2 and nano TiO2 to improve the mechanical behaviour of stone mastic asphalt mixtures[J]. Construction and Building Materials,2017,157:965-974. doi: 10.1016/j.conbuildmat.2017.09.163
    [4] SALEH T A. Nanomaterials: Classification, properties, and environmental toxicities[J]. Environmental Technology & Innovation,2020,20:101067.
    [5] BONICA C, TORALDO E, ANDENA L, et al. The effects of fibers on the performance of bituminous mastics for road pavements[J]. Composites Part B: Engineering,2016,95:76-81. doi: 10.1016/j.compositesb.2016.03.069
    [6] GALOOYAK S S, DABIR B, NAZARBEYGI A E, et al. Rheological properties and storage stability of bitumen/SBS/montmorillonite composites[J]. Construction and Building Materials,2010,24(3):300-307. doi: 10.1016/j.conbuildmat.2009.08.032
    [7] KORDI Z, SHAFABAKHSH G. Evaluating mechanical properties of stone mastic asphalt modified with nano Fe2O3[J]. Construction and Building Materials,2017,134:530-539. doi: 10.1016/j.conbuildmat.2016.12.202
    [8] SHAFABAKHSH G, MIRABDOLAZIMI S M, SADEGHNEJAD M. Evaluation the effect of nano-TiO2 on the rutting and fatigue behavior of asphalt mixtures[J]. Construction and Building Materials,2014,54:566-571. doi: 10.1016/j.conbuildmat.2013.12.064
    [9] MOGHADAS NEJAD F, TANZADEH R, TANZADEH J, et al. Investigating the effect of nanoparticles on the rutting behaviour of hot-mix asphalt[J]. International Journal of Pavement Engineering,2016,17(4):353-362. doi: 10.1080/10298436.2014.993194
    [10] FANG C, YU X, YU R, et al. Preparation and properties of isocyanate and nano particles composite modified asphalt[J]. Construction and Building Materials,2016,119:113-118. doi: 10.1016/j.conbuildmat.2016.04.099
    [11] SALTAN M, TERZI S, KARAHANCER S. Examination of hot mix asphalt and binder performance modified with nano silica[J]. Construction and Building Materials,2017,156:976-984. doi: 10.1016/j.conbuildmat.2017.09.069
    [12] DING H, ZHANG H, XIE Q, et al. Synthesis and characterization of nano-SiO2 hybrid poly(methyl methacrylate) nanocomposites as novel wax inhibitor of asphalt binder[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,653:130023. doi: 10.1016/j.colsurfa.2022.130023
    [13] YARAHMADI A M, SHAFABAKHSH G, ASAKEREH A. Laboratory investigation of the effect of nano CaCO3 on rutting and fatigue of stone mastic asphalt mixtures[J]. Construction and Building Materials,2022,317:126127. doi: 10.1016/j.conbuildmat.2021.126127
    [14] MANFRO A L, STAUB DE MELO J V, VILLENA DEL CARPIO J A, et al. Permanent deformation performance under moisture effect of an asphalt mixture modified by calcium carbonate nanoparticles[J]. Construction and Building Materials,2022,342:128087. doi: 10.1016/j.conbuildmat.2022.128087
    [15] MAMUYE Y, LIAO M C, DO N D. Nano-Al2O3 composite on intermediate and high temperature properties of neat and modified asphalt binders and their effect on hot mix asphalt mixtures[J]. Construction and Building Materials,2022,331:127304. doi: 10.1016/j.conbuildmat.2022.127304
    [16] LI Z, GUO T, CHEN Y, et al. The properties of nano-CaCO3/nano-ZnO/SBR composite-modified asphalt[J]. Nanotechnology Reviews, 2021, 10(1): 1253-1265.
    [17] 周毛毛, 蒋阳, 谢于辉, 等. 纳米二氧化钛的制备、改性及其在聚合物基复合材料中的应用研究进展[J]. 复合材料学报, 2022, 39(5):2089-2105.

    ZHOU Maomao, JIANG Yang, XIE Yuhui, et al. Preparation and modification of nano-TiO2 and its application in polymer matrix composites research progress[J]. Acta Materiae Compositae Sinica,2022,39(5):2089-2105(in Chinese).
    [18] 倪爱清, 朱坤坤, 王继辉. 纳米SiO2-NaOH-有机硅烷偶联剂表面改性对苎麻纤维/乙烯基酯树脂复合材料性能的影响[J]. 复合材料学报, 2019, 36(11):2579-2586.

    NI Aiqing, ZHU Kunkun, WANG Jihui. Effects of nano SiO2-NaOH-silane coupling agent surface treatment on behavior of ramie fiber/vinyl ester resin composite[J]. Acta Materiae Compositae Sinica,2019,36(11):2579-2586(in Chinese).
    [19] 王成江, 范正阳, 赵宁, 等. 硅烷偶联剂修饰下SiO2-甲基乙烯基硅橡胶分子界面的粘结性[J]. 复合材料学报, 2020, 37(12):3079-3090.

    WANG Chengjiang, FAN Zhengyang, ZHAO Ning, et al. Adhesion of SiO2-methyl vinyl silicone rubber molecular interface modified by silane coupling agents[J]. Acta Materiae Compositae Sinica,2020,37(12):3079-3090(in Chinese).
    [20] LI X, WANG G X, JIANG X Z, et al. Investigation of performance and modification mechanism of ceramic-polishing-powder-modified asphalt mastic[J]. Road Materials and Pavement Design,2023,4(24):919-934.
    [21] ZHAO D, GE S F, SENSES E, et al. Role of filler shape and connectivity on the viscoelastic behavior in polymer nanocomposites[J]. Macromolecules,2015,48(15):5433-5438. doi: 10.1021/acs.macromol.5b00962
    [22] GÜRGEN S. Wear performance of UHMWPE based composites including nano-sized fumed silica[J]. Composites Part B: Engineering,2019,173:106967. doi: 10.1016/j.compositesb.2019.106967
    [23] LIU X Q, BAO R Y, WU X J, et al. Temperature induced gelation transition of a fumed silica/PEG shear thickening fluid[J]. RSC Advances,2015,5(24):18367-18374. doi: 10.1039/C4RA16261G
    [24] BARTHEL H, DREYER M, GOTTSCHALK-GAUDIG T, et al. Fumed silica-rheological additive for adhesives, resins, and paints[J]. Macromolecular Symposia, 2002, 187: 573-584.
    [25] KIM K M, KIM H, KIM H J. Enhancing thermo-mechanical properties of epoxy composites using fumed silica with different surface treatment[J]. Multidisciplinary Digital Publishing Institute,2021,13(16):2691-2703.
    [26] ZHAO J, WU D, HAN J Y, et al. Mechanical properties of fumed silica/HDPE composites[J]. Applied Mechanics and Materials,2014,633-634:427-430. doi: 10.4028/www.scientific.net/AMM.633-634.427
    [27] VOLKOV D S, ROGOVA O B, PROSKURNIN M A. Organic matter and mineral composition of silicate soils: FTIR comparison study by photoacoustic, diffuse reflectance, and attenuated total reflection modalities[J]. Agronomy, 2021, 11(9): 1879-1908.
    [28] ZHU J, GAO W, WANG B, et al. Preparation and evaluation of starch-based extrusion-blown nanocomposite films incorporated with nano-ZnO and nano-SiO2[J]. International Journal of Biological Macromolecules,2021,183:1371-1378. doi: 10.1016/j.ijbiomac.2021.05.118
    [29] 张益硕, 周仲魁, 杨顺景, 等. KH550改性膨润土对低浓度U(VI)的吸附[J]. 有色金属工程, 2022, 12(9):154-164. doi: 10.3969/j.issn.2095-1744.2022.09.21

    ZHANG Yishuo, ZHOU Zhongkui, YANG Shunjing, et al. Adsorption performance of KH550 modified bentonite low concentrations of U(VI)[J]. Nonferrous Metals Engineering,2022,12(9):154-164(in Chinese). doi: 10.3969/j.issn.2095-1744.2022.09.21
    [30] ABED A H, OUDAH A M. Rheological properties of modified asphalt binder with nanosilica and SBS[J]. IOP Conference Series: Materials Science and Engineering,2018,433(1):012031.
    [31] REZAEI S, ZIARI H, NOWBAKHT S. High-temperature functional analysis of bitumen modified with composite of nano-SiO2 and styrene butadiene styrene polymer[J]. Petroleum Science and Technology,2016,34(13):1195-1203. doi: 10.1080/10916466.2016.1188112
    [32] REZAEI S, KHORDEHBINAN M, FAKHREFATEMI S M R, et al. The effect of nano-SiO2 and the styrene butadiene styrene polymer on the high-temperature performance of hot mix asphalt[J]. Petroleum Science and Technology,2017,35(6):553-560. doi: 10.1080/10916466.2016.1270301
    [33] American Society for Testing and Materials. Standard test method for multiple stress creep and recovery (MSCR) of asphalt binder using a dynamic shear rheometer: ASTM D7405—10[S]. West Conshohocken: ASTM International, 2010.
    [34] XIA T, CHEN X, XU J, et al. Key role of network formation in rutting, fatigue and brittle performance of bitumen/PEG/MDI/SiO2 composites[J]. Construction and Building Materials,2021,296:123739. doi: 10.1016/j.conbuildmat.2021.123739
    [35] American Society for Testing and Materials. Standard test method for determining the rheological properties of asphalt binder using a dynamic shear rheometer: ASTM D7175—15[S]. West Conshohocken: ASTM International, 2017.
    [36] American Association of State Highway and Transportation Officials. Standard method of test for determining the flexural creep stiffness of asphalt binder using the bending beam rheometer (BBR): AASHTO T313[S]. Washington: AASHTO, 2022.
    [37] SOENEN H, BESAMUSCA J, FISCHER H R, et al. Laboratory investigation of bitumen based on round robin DSC and AFM tests[J]. Materials and Structures,2014,47(7):1205-1220. doi: 10.1617/s11527-013-0123-4
    [38] MIRSEPAHI M, TANZADEH J, GHANOON S A. Laboratory evaluation of dynamic performance and viscosity improvement in modified bitumen by combining nanomaterials and polymer[J]. Construction and Building Materials,2020,233:117183. doi: 10.1016/j.conbuildmat.2019.117183
    [39] 罗蓉, 许苑, 刘涵奇, 等. DCLR改性沥青的流变力学性质[J]. 中国公路学报, 2018, 31(6):165-171. doi: 10.3969/j.issn.1001-7372.2018.06.002

    LUO Rong, XU Yuan, LIU Hanqi, et al. Rheological mecha-nical properties of DCLR-modified asphalt binders[J]. China Journal of Highway and Transport,2018,31(6):165-171(in Chinese). doi: 10.3969/j.issn.1001-7372.2018.06.002
    [40] 周鑫, 易玉华. 气相二氧化硅的异氰酸酯改性及其对浇注型聚氨酯弹性体力学性能的影响[J]. 复合材料学报, 2023, 40(2): 852-859.

    ZHOU Xin, YI Yuhua. Isocyanate modified fumed silica and its effects on the mechanical properties of casting polyurethane elastomer[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 852-859(in Chinese).
    [41] ZHU C Z, ZHANG H L, XU G Q, et al. Aging rheological characteristics of SBR modified asphalt with multi-dimensional nanomaterials[J]. Construction and Building Materials,2017,151:388-393. doi: 10.1016/j.conbuildmat.2017.06.121
    [42] CHERAGHIAN G, WISTUBA M P, KIANI S, et al. Rheological, physicochemical, and microstructural properties of asphalt binder modified by fumed silica nanoparticles[J]. Scientific Reports,2021,11(1):11455. doi: 10.1038/s41598-021-90620-w
    [43] BALDINO N, GABRIELE D, ROSSI C O, et al. Low temperature rheology of polyphosphoric acid (PPA) added bitumen[J]. Construction and Building Materials,2012,36:592-596. doi: 10.1016/j.conbuildmat.2012.06.011
    [44] MESHAL A S, FATMA A A. Comparative analysis of the mechanical, thermal and barrier properties of polypropylene incorporated with CaCO3 and nano CaCO3[J]. Surfaces and Interfaces,2022,31:102055. doi: 10.1016/j.surfin.2022.102055
    [45] CHAN C M, WU J S, LI J X, et al. Polypropylene/calcium carbonate nanocomposites[J]. Polymer,2002,43(10):2981-2992. doi: 10.1016/S0032-3861(02)00120-9
    [46] American Society for Testing and Materials. Standard test method for assignment of the glass transition tempera-tures by differential scanning calorimetry: ASTM E1356—08[S]. West Conshohocken: ASTM International, 2014.
    [47] American Society for Testing and Materials. Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry: ASTM D 3418—12[S]. West Conshohocken: ASTM International, 2021.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  573
  • HTML全文浏览量:  255
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-02
  • 修回日期:  2022-12-28
  • 录用日期:  2023-01-10
  • 网络出版日期:  2023-02-03
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回