Rheological properties and mechanism of fumed SiO2 modified asphalt
-
摘要:
纳米材料因其界面效应、量子尺寸效应和宏观量子隧道效应,有作为复合材料改性剂和增强剂的巨大潜力,已广泛应用于沥青改性研究。但纳米材料在沥青中易团聚,对沥青的改性效果会因此大大降低甚至产生负面影响,即便进行表面改性也难以彻底解决该问题。考虑到纳米材料工艺复杂、造价高昂,这种不充分利用造成了极大的资源浪费并严重阻碍它的实际应用。大量研究表明,纳米SiO2可以显著改善沥青的抗车辙性能、抗老化性能、抗剥落性能及疲劳寿命;气相SiO2可以使橡胶、树脂具有更优异的动态力学性能。相较于纳米SiO2,气相SiO2粒径略大,但仍属于纳米级材料,且造价仅为纳米SiO2的1/10~1/5。本文对气相SiO2改性沥青的流变性能进行试验,通过与普通SiO2、疏水纳米SiO2进行比较,评估气相SiO2代替纳米SiO2的可行性;研究了气相SiO2对沥青性能的改善机制。结果表明,气相SiO2兼具纳米材料共性和初级支化结构特性,在沥青中不仅起到了纳米增韧效应,还形成“水团簇”力学增强结构,从而缓解了沥青黏弹性比例随温度升高而增大的问题。因此在高温抗车辙、中温抗疲劳方面表现出比纳米SiO2更好的提升效果,与此同时对低温性能的负面影响最小。气相SiO2是一种性价比高的纳米级沥青改性材料。 代表性图 FS在不同温度对沥青的作用示意图 Abstract: Nano-silica (NS) modified asphalt is satisfactory in mechanical properties but is expensive. Fumed-silica (FS) is also a nanoscale material and the price is only 1/10 of NS. To evaluate the feasibility of FS replacing NS, using 3 wt% original silica (OS), fumed silica (FS), hydrophobic nano silica (MNS) as modifier, the rheological properties of corresponding modified asphalt were studied compared with matrix asphalt (Esso, ES) by the multi-stress creep recovery test (MSCR), linear amplitude scanning test (LAS) and bent beam rheological test (BBR). The results show that the optimal modifier FS has the best effect on the rutting resistance at high temperature and the fatigue resistance at intermediate temperature for asphalt, and the least negative effect on the low temperature performance. The mechanism for these results was explored by SEM, temperature scanning test (TeS), variable temperature infrared spectroscopy (VT-IR), TGA and DSC. The intrinsic primary aggregates of FS and unique ES-hydroclusters system played a key role in the performance of FS-asphalt composite. Therefore, fumed SiO2 is a cost-effective nano-scale material used to modify asphalt. -
图 2 基质沥青(ES)、普通SiO2改性沥青(OS-ES)、气相SiO2改性沥青(FS-ES)和疏水纳米SiO2改性沥青(MNS-ES)在不同温度(64℃, 70℃, 76℃)和应力(0.1 kPa, 3.2 kPa)下的累计应变曲线
Figure 2. Cumulative strain of matrix asphalt ESSO 70 (ES), ordinary SiO2 modified asphalt (OS-ES), fumed SiO2 modified asphalt (FS-ES) and hydrophobic nano SiO2 modified asphalt (MNS-ES) at different temperatures (64℃, 70℃, 76℃) and stresses (0.1 kPa, 3.2 kPa)
表 1 ESSO 70号沥青的基本信息
Table 1. Basic information of ESSO 70# asphalt
Peformance
gradePenetration index
(25℃, 0.1 mm)Ductility
(10℃, cm)Softening point
/℃58-16 68 44 47.2 表 2 试验所用仪器信息
Table 2. Information on the instrument used in the test
Test Manufacturer Model MSCR TA (U.S.) TA DHR-3 Rheometer LAS TeS BBR CANNON (U.S.) TE-BBR-F SEM JEOL (Japan) JSM 7800F Prime VT-IR Bruker (Germany) NICOLET5700FT-IP TGA NETZSCH (Germany) TG209 F3 DSC DSC200 F3 表 3 四种沥青热损失相关参数
Table 3. Results of thermogravimetric losing for the four bitumen
Sample ES OS-ES FS-ES MNS-ES Weight losing extrapolated onset To/℃ 307 282 327 371 Weight losing fastest Tf/℃ 355 400 375 411 Weight losing extrapolated end Te/℃ 384 434 428 437 Loss on ignition LOI/% 85.16 75.72 78.11 78.85 Temperatures and enthalpies related to a fusion Sample ES OS-ES FS-ES MNS-ES Fusion extrapolated onset Teim/℃ 10.9 10.2 15.2 15.1 Fusion extrapolated end Tefm/℃ 91.01 89.22 91.00 89.24 Fusion enthalpy ΔfusHm/J/g −6.41 −7.92 −6.83 −6.85 Temperatures related to a glass transition Sample ES OS-ES FS-ES MNS-ES Extrapolated onset temperature Tf/℃ −31.6 −27.9 −30 −22.6 Midpoint temperature Tg/℃ −20.9 −15.6 −20.1 −17.2 Extrapolated end temperature Te/℃ −7.4 −5.7 −7.6 −6.6 -
[1] NUñEZ J Y M, DOMINGOS M D I, FAXINA A L. Susceptibility of low-density polyethylene and polyphosphoric acid-modified asphalt binders to rutting and fatigue cracking[J]. Construction and Building Materials,2014,73:509-514. doi: 10.1016/j.conbuildmat.2014.10.002 [2] LINK R E, SHENOY A. Fatigue Testing and Evaluation of Asphalt Binders Using the Dynamic Shear Rheometer[J]. Journal of Testing and Evaluation - J TEST EVAL,2002,30:303-312. doi: 10.1520/JTE12320J [3] SADEGHNEJAD M, SHAFABAKHSH G. Use of Nano SiO2 and Nano TiO2 to improve the mechanical behaviour of stone mastic asphalt mixtures[J]. Construction and Building Materials,2017,157:965-974. doi: 10.1016/j.conbuildmat.2017.09.163 [4] SALEH T A. Nanomaterials: Classification, properties, and environmental toxicities[J]. Environmental Technology & Innovation,2020,20:101067. [5] BONICA C, TORALDO E, ANDENA L, et al. The effects of fibers on the performance of bituminous mastics for road pavements[J]. Composites Part B:Engineering,2016,95:76-81. doi: 10.1016/j.compositesb.2016.03.069 [6] GALOOYAK S S, DABIR B, NAZARBEYGI A E, et al. Rheological properties and storage stability of bitumen/SBS/montmorillonite composites[J]. Construction and Building Materials,2010,24(3):300-307. doi: 10.1016/j.conbuildmat.2009.08.032 [7] KORDI Z, SHAFABAKHSH G. Evaluating mechanical properties of stone mastic asphalt modified with Nano Fe2O3[J]. Construction and Building Materials,2017,134:530-539. doi: 10.1016/j.conbuildmat.2016.12.202 [8] SHAFABAKHSH G, MIRABDOLAZIMI S M, SADEGHNEJAD M. Evaluation the effect of nano-TiO2 on the rutting and fatigue behavior of asphalt mixtures[J]. Construction and Building Materials,2014,54:566-571. doi: 10.1016/j.conbuildmat.2013.12.064 [9] MOGHADAS NEJAD F, TANZADEH R, TANZADEH J, et al. Investigating the effect of nanoparticles on the rutting behaviour of hot-mix asphalt[J]. International Journal of Pavement Engineering,2016,17(4):353-362. doi: 10.1080/10298436.2014.993194 [10] FANG C, YU X, YU R, et al. Preparation and properties of isocyanate and nano particles composite modified asphalt[J]. Construction and Building Materials,2016,119:113-118. doi: 10.1016/j.conbuildmat.2016.04.099 [11] SALTAN M, TERZI S, KARAHANCER S. Examination of hot mix asphalt and binder performance modified with nano silica[J]. Construction and Building Materials,2017,156:976-984. doi: 10.1016/j.conbuildmat.2017.09.069 [12] DING H, ZHANG H, XIE Q, et al. Synthesis and characterization of nano-SiO2 hybrid poly(methyl methacrylate) nanocomposites as novel wax inhibitor of asphalt binder[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,653:130023. doi: 10.1016/j.colsurfa.2022.130023 [13] YARAHMADI A M, SHAFABAKHSH G, ASAKEREH A. Laboratory investigation of the effect of nano CaCO3 on rutting and fatigue of stone mastic asphalt mixtures[J]. Construction and Building Materials,2022,317:126127. doi: 10.1016/j.conbuildmat.2021.126127 [14] MANFRO A L, STAUB DE MELO J V, VILLENA DEL CARPIO J A, et al. Permanent deformation performance under moisture effect of an asphalt mixture modified by calcium carbonate nanoparticles[J]. Construction and Building Materials,2022,342:128087. doi: 10.1016/j.conbuildmat.2022.128087 [15] MAMUYE Y, LIAO M C, DO N D. Nano-Al2O3 composite on intermediate and high temperature properties of neat and modified asphalt binders and their effect on hot mix asphalt mixtures[J]. Construction and Building Materials,2022,331:127304. doi: 10.1016/j.conbuildmat.2022.127304 [16] LI Z, GUO T, CHEN Y, et al. The properties of nano-CaCO3/nano-ZnO/SBR composite-modified asphalt [J]. 2021, 10(1): 1253-1265. [17] 周毛毛, 蒋阳, 谢于辉, 等. 纳米二氧化钛的制备、改性及其在聚合物基复合材料中的应用研究进展[J]. 复合材料学报, 2022, 39(5):2089-2105.ZHOU M M, JIANG Y, XIE Y H, et al. Preparation and modification of nano-TiO2 and its application in polymer matrix composites research progress[J]. Acta Materiae Compositae Sinica,2022,39(5):2089-2105(in Chinese). [18] 倪爱清, 朱坤坤, 王继辉. 纳米SiO2-NaOH-有机硅烷偶联剂表面改性对苎麻纤维/乙烯基酯树脂复合材料性能的影响[J]. 复合材料学报, 2019, 36(11):2579-2586.NI A Q, ZHU K K, WANG J H. Effects of nano SiO2-NaOH-silanecoupling agent surface treatment on behavior of ramie fiber/vinyl ester resin composite[J]. Acta Materiae Compositae Sinica,2019,36(11):2579-2586(in Chinese). [19] 王成江, 范正阳, 赵宁, 等. 硅烷偶联剂修饰下SiO2-甲基乙烯基硅橡胶分子界面的粘结性[J]. 复合材料学报, 2020, 37(12):3079-3090.WANG C J, FAN Z Y, ZHAO N, et al. Adhesion of SiO2-methyl vinyl silicone rubber molecular interface modified by silane coupling agents[J]. Acta Materiae Compositae Sinica,2020,37(12):3079-3090(in Chinese). [20] XIONG L, GONG-XUN W, XIAO-ZHI J, et al. Investigation of performance and modification mechanism of ceramic-polishing-powder-modified asphalt mastic[J]. Road Materials and Pavement Design,2022:1-16. [21] ZHAO D, GE S F, SENSES E, et al. Role of filler shape and connectivity on the viscoelastic behavior in polymer nanocomposites[J]. Macromolecules,2015,48(15):5433-5438. doi: 10.1021/acs.macromol.5b00962 [22] GüRGEN S. Wear performance of UHMWPE based composites including nano-sized fumed silica[J]. Composites Part B:Engineering,2019,173:106967. doi: 10.1016/j.compositesb.2019.106967 [23] LIU X Q, BAO R Y, WU X J, et al. Temperature induced gelation transition of a fumed silica/PEG shear thickening fluid[J]. RSC ADVANCES,2015,5(24):18367-18374. doi: 10.1039/C4RA16261G [24] BARTHEL H, DREYER M, GOTTSCHALK-GAUDIG T, et al. Fumed Silica - Rheological Additive for Adhesives, Resins, and Paints [M]. Organosilicon Chemistry Set, 2008. [25] KIM K M, KIM H, KIM H J. Enhancing Thermo-Mechanical Properties of Epoxy Composites Using Fumed Silica with Different Surface Treatment[J]. Multidisciplinary Digital Publishing Institute,2021,13(16):2691-2703. [26] ZHAO J, WU D, HAN J Y, et al. Mechanical properties of fumed silica / HDPE Composites[J]. Applied Mechanics and Materials,2014,633-634:427-430. doi: 10.4028/www.scientific.net/AMM.633-634.427 [27] VOLKOV D S, ROGOVA O B, PROSKURNIN M A. Organic matter and mineral composition of silicate soils: FTIR comparison study by photoacoustic, diffuse reflectance, and attenuated total reflection modalities [J]. 2021, 11(9): 1879-1908. [28] ZHU J, GAO W, WANG B, et al. Preparation and evaluation of starch-based extrusion-blown nanocomposite films incorporated with nano-ZnO and nano-SiO2[J]. International Journal of Biological Macromolecules,2021,183:1371-1378. doi: 10.1016/j.ijbiomac.2021.05.118 [29] 张益硕, 周仲魁, 杨顺景, 等. KH550改性膨润土对低浓度U(Ⅵ)的吸附[J]. 有色金属工程, 2022, 12(9):154-164. doi: 10.3969/j.issn.2095-1744.2022.09.21ZHANG H Y, ZHOU Z K, YANG S J, et al. Adsorption performance of KH550 modified bentonite low concentrations of U(Ⅵ)[J]. Nonferrous Metals Engineering,2022,12(9):154-164(in Chinese). doi: 10.3969/j.issn.2095-1744.2022.09.21 [30] ABED A H, OUDAH A M. Rheological properties of modified asphalt binder with nanosilica and SBS[J]. IOP Conference Series:Materials Science and Engineering,2018,433(1):012031. [31] REZAEI S, ZIARI H, NOWBAKHT S. High-temperature functional analysis of bitumen modified with composite of nano-SiO2 and styrene butadiene styrene polymer[J]. Petroleum Science and Technology,2016,34(13):1195-1203. doi: 10.1080/10916466.2016.1188112 [32] REZAEI S, KHORDEHBINAN M, FAKHREFATEMI S-M-R, et al. The effect of nano-SiO2 and the styrene butadiene styrene polymer on the high-temperature performance of hot mix asphalt[J]. Petroleum Science and Technology,2017,35(6):553-560. doi: 10.1080/10916466.2016.1270301 [33] American Society for Testing and Materials. Standard test method for Multiple Stress Creep and Recovery (MSCR) of asphalt binder using a Dynamic Shear Rheometer: ASTM D7405-10[S]. West Conshohocken, PA: ASTM International, 2010. [34] XIA T, CHEN X, XU J, et al. Key role of network formation in Rutting, fatigue and brittle performance of bitumen/PEG/MDI/SiO2 composites[J]. Construction and Building Materials,2021,296:123739. doi: 10.1016/j.conbuildmat.2021.123739 [35] American Association of State Highway and Transportation Officials. Standard Method of Test for Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR): AASHTO T 313[S]. USA: AASHTO, 2022. [36] American Society for Testing and Materials. Standard test method for determining the rheological properties of asphalt binder using a Dynamic Shear Rheometer: ASTM D 7175[S]. West Conshohocken, PA: ASTM International, 2017. [37] SOENEN H, BESAMUSCA J, FISCHER H R, et al. Laboratory investigation of bitumen based on round robin DSC and AFM tests[J]. Materials and Structures,2014,47(7):1205-1220. doi: 10.1617/s11527-013-0123-4 [38] MIRSEPAHI M, TANZADEH J, GHANOON S A. Laboratory evaluation of dynamic performance and viscosity improvement in modified bitumen by combining nanomaterials and polymer[J]. Construction and Building Materials,2020,233:117183. doi: 10.1016/j.conbuildmat.2019.117183 [39] 罗蓉, 许苑, 刘涵奇, 等. DCLR改性沥青的流变力学性质[J]. 中国公路学报, 2018, 31(6):165-171. doi: 10.3969/j.issn.1001-7372.2018.06.002LUO R, XU Y, LIU H Q, et al. Rheological mechanical properties of DCLR-modified asphalt binders[J]. China Journal of Highway and Transport,2018,31(6):165-171(in Chinese). doi: 10.3969/j.issn.1001-7372.2018.06.002 [40] 周鑫, 易玉华. 气相二氧化硅的异氰酸酯改性及其对浇注型聚氨酯弹性体力学性能的影响[J]. 复合材料学报, 1-102023-02-02]. DOI: 10.13801/j. cnki. fhclxb. 20220303.002. ZHOU X, YI Y H. Isocyanate modified fumed silica and its effects on the mechanical properties of casting polyurethane elastomer[J]. Acta Materiae Compositae Sinica, 1-10 [2023-02-02]. DOI:10.13801/j.cnki.fhclxb.20220303.002 (in Chinese). [41] ZHU C Z, ZHANG H L, XU G Q, et al. Aging rheological characteristics of SBR modified asphalt with multi-dimensional nanomaterials[J]. Construction and Building Materials,2017,151:388-393. doi: 10.1016/j.conbuildmat.2017.06.121 [42] CHERAGHIAN G, WISTUBA M P, KIANI S, et al. Rheological, physicochemical, and microstructural properties of asphalt binder modified by fumed silica nanoparticles[J]. Scientific Reports,2021,11(1):11455. doi: 10.1038/s41598-021-90620-w [43] BALDINO N, GABRIELE D, ROSSI C O, et al. Low temperature rheology of polyphosphoric acid (PPA) added bitumen[J]. Construction and Building Materials,2012,36:592-596. doi: 10.1016/j.conbuildmat.2012.06.011 [44] MESHAL A S, FATMA A A. Comparative analysis of the mechanical, thermal and barrier properties of polypropylene incorporated with CaCO3 and nano CaCO3[J]. Surfaces and Interfaces,2022,31:102055. doi: 10.1016/j.surfin.2022.102055 [45] CHAN C M, WU J S, LI J X, et al. Polypropylene/calcium carbonate nanocomposites[J]. Polymer,2002,43(10):2981-2992. doi: 10.1016/S0032-3861(02)00120-9 [46] American Society for Testing and Materials. Standard test method for assignment of the glass transition temperatures by differential scanning calorimetry: ASTM E1356-08[S]. West Conshohocken, PA: ASTM International, 2014. [47] American Society for Testing and Materials. Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by Differential Scanning Calorimetry: ASTM D 3418-12[S]. West Conshohocken, PA: ASTM International, 2021. -

计量
- 文章访问数: 179
- HTML全文浏览量: 115
- 被引次数: 0