基于遗传算法和神经网络的C/C复合材料等温CVI工艺参数优化模型

李妙玲, 仝军锋, 赵红霞

李妙玲, 仝军锋, 赵红霞. 基于遗传算法和神经网络的C/C复合材料等温CVI工艺参数优化模型[J]. 复合材料学报, 2016, 33(11): 2666-2673. DOI: 10.13801/j.cnki.fhclxb.20160414.001
引用本文: 李妙玲, 仝军锋, 赵红霞. 基于遗传算法和神经网络的C/C复合材料等温CVI工艺参数优化模型[J]. 复合材料学报, 2016, 33(11): 2666-2673. DOI: 10.13801/j.cnki.fhclxb.20160414.001
LI Miaoling, TONG Junfeng, ZHAO Hongxia. Optimization model for isothermal CVI process parameters for C/C composites based on genetic algorithm and neural network[J]. Acta Materiae Compositae Sinica, 2016, 33(11): 2666-2673. DOI: 10.13801/j.cnki.fhclxb.20160414.001
Citation: LI Miaoling, TONG Junfeng, ZHAO Hongxia. Optimization model for isothermal CVI process parameters for C/C composites based on genetic algorithm and neural network[J]. Acta Materiae Compositae Sinica, 2016, 33(11): 2666-2673. DOI: 10.13801/j.cnki.fhclxb.20160414.001

基于遗传算法和神经网络的C/C复合材料等温CVI工艺参数优化模型

基金项目: 国家自然科学基金(51472203);河南省科技攻关计划(132102210136)
详细信息
    通讯作者:

    李妙玲,博士,副教授,研究方向为炭/炭复合材料组织结构表征及计算机模拟与识别。E-mail:miaolingli1970@163.com

  • 中图分类号: TB330.1

Optimization model for isothermal CVI process parameters for C/C composites based on genetic algorithm and neural network

  • 摘要: 建立了基于遗传算法和误差反传(GA-BP)神经网络的化学气相渗透(CVI)工艺参数优化模型。以新型等温CVI工艺制备C/C复合材料时采集的实验数据作为模型评价样本,分析了主要可控影响因素(沉积温度、前驱气体分压与滞留时间等)对C/C复合材料制件密度及其密度均匀性的作用规律。在该模型指导下,样本的期望密度和实测密度最大误差不超过6.2%,密度差最大误差不超过8.2%。实验结果也证明了该模型具有较高的精度和良好的泛化能力,可以用于CVI工艺参数的优化。
    Abstract: An optimization model of the process parameters during a chemical vapor infiltration (CVI) was established based on genetic algorithm and back propagation (GA-BP) neural network. The experimental data from the novel isothermal CVI process of carbon/carbon (C/C) composites were selected as the samples to evaluate the model. The effect of the main controllable factors, such as infiltration temperature, part pressure of precursor gas and resident time etc, on the density and uniformity of C/C composites were analyzed. Under the guidance of the model, the maximum errors between the desired densities and the tested densities of the experiment samples are not larger than 6.2% and those between their density differences were not larger than 8.2%. The results show that the established optimization model has high precision and good generalization. It can be efficiently applied for optimizing CVI process parameters.
  • 期刊类型引用(4)

    1. 陈安才. 基于光催化法的焦化废水处理技术研究. 山西化工. 2023(09): 232-233+236 . 百度学术
    2. 张犇,张瑞峰,杨川云,杨世莲. 锰镁氢氧化物碳基复合材料催化臭氧化降解亚甲基蓝. 功能材料. 2023(09): 9123-9132 . 百度学术
    3. 刘宝河,王智,李政辉,孟冠华,余浩然. TiO_2/MWCNTs光催化氧化法深度处理焦化废水生化尾水. 环境科学与技术. 2022(01): 92-100 . 百度学术
    4. 李恒,罗秋艳,王光辉,黄正根,胡德玉,滕鹏飞. 石墨烯复合光催化材料在环境治理中的应用研究进展. 应用化工. 2021(04): 1113-1117 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  1127
  • HTML全文浏览量:  72
  • PDF下载量:  261
  • 被引次数: 10
出版历程
  • 收稿日期:  2015-12-23
  • 修回日期:  2016-04-07
  • 刊出日期:  2016-11-14

目录

    /

    返回文章
    返回