留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

穿孔泡沫夹芯复合材料灌注工艺仿真与方案优选

施赫荣 王继辉 倪爱清 冯雨薇 李想

施赫荣, 王继辉, 倪爱清, 等. 穿孔泡沫夹芯复合材料灌注工艺仿真与方案优选[J]. 复合材料学报, 2022, 40(0): 1-12
引用本文: 施赫荣, 王继辉, 倪爱清, 等. 穿孔泡沫夹芯复合材料灌注工艺仿真与方案优选[J]. 复合材料学报, 2022, 40(0): 1-12
Herong SHI, Jihui WANG, Aiqing NI, Yuwei FENG, Xiang LI. Simulation and optimization of infusion process for perforated foam sandwich composite[J]. Acta Materiae Compositae Sinica.
Citation: Herong SHI, Jihui WANG, Aiqing NI, Yuwei FENG, Xiang LI. Simulation and optimization of infusion process for perforated foam sandwich composite[J]. Acta Materiae Compositae Sinica.

穿孔泡沫夹芯复合材料灌注工艺仿真与方案优选

基金项目: 中央高校基本科研业务费专项资金(20211h0310)
详细信息
    通讯作者:

    倪爱清,博士,副研究员,硕士生生导师,研究方向为树脂基复合材料性能及模拟仿真  E-mail: ani@whut.edu.cn

  • 中图分类号: TB332

Simulation and optimization of infusion process for perforated foam sandwich composite

  • 摘要: 以穿孔泡沫夹芯复合材料为研究对象,对其真空辅助树脂灌注(VARI)工艺进行了实验研究、仿真分析和方案优选。首先,通过实验测试与数值计算分别得到穿孔夹芯结构织物与芯材孔洞的渗透率;然后,对穿孔夹芯结构灌注过程进行三维仿真模拟,并通过实尺度灌注实验验证了仿真模拟的可靠性;最后,基于验证的仿真模型进行工艺参数优选,拟合得到了灌注时间的预测模型。结果表明:数值仿真与实验值基本吻合,能较准确地模拟穿孔夹芯结构成型时的流动过程和孔隙分布;灌注时间的预测模型可用于指导实际生产;通过优化成型工艺参数可控制树脂的流动行为,达到缩短成型时间和降低构件孔隙率的目的。

     

  • 图  1  穿孔夹芯结构中树脂流动区域

    Figure  1.  Resin flow area in perforated sandwich composite

    图  2  孔洞渗透率计算模型

    Figure  2.  Calculation model of pore permeability

    图  3  宏观/微观孔隙产生机制

    Figure  3.  Generation mechanism of macro/micro void

    图  4  穿孔泡沫夹芯复合材料仿真模型

    Figure  4.  Simulation model of perforated foam sandwich composite

    图  5  树脂黏度与时间关系

    Figure  5.  Relation of resin viscosity and time

    图  6  实验装置示意图

    Figure  6.  Schematic of experimental setup

    图  7  穿孔泡沫夹芯复合材料上、下层纤维层金相图

    Figure  7.  Metallographic diagram of top surface and bottom surface of perforated foam sandwich composite

    图  8  穿孔泡沫夹芯复合材料孔隙率实验结果

    Figure  8.  Experimental results of porosity of perforated foam sandwich composite

    图  9  34 s、78 s、260 s穿孔泡沫夹芯复合材料上表面树脂流动情况对比

    Figure  9.  Comparison of resin flow on top surface of perforated foam sandwich composite between simulation and experiment at 34 s、78 s、260 s

    图  10  350 s、500 s、700 s穿孔泡沫夹芯复合材料下表面树脂流动情况对比

    Figure  10.  Comparison of resin flow on bottom surface of perforated foam sandwich composite between simulation and experiment at 350 s、500 s、700 s

    图  11  穿孔泡沫夹芯复合材料上、下纤维层孔隙分布

    Figure  11.  Porosity distribution of top surface and bottom surface of perforated foam sandwich composite

    图  12  穿孔泡沫夹芯复合材料VARI成型9种模型充模时间与最大孔隙率对比

    Figure  12.  Comparison of filling time and maximum porosity of 9 models of VARI for perforated foam sandwich composite

    图  13  穿孔泡沫夹芯复合材料VARI成型导流网铺放模型

    Figure  13.  Layout model of DM of VARI for perforated foam sandwich composite

    图  14  不同导流网铺放位置的穿孔泡沫夹芯复合材料孔隙率分布

    Figure  14.  Porosity distribution of perforated foam sandwich composite with different laying positions of diversion network

    图  15  穿孔泡沫夹芯复合材料灌注时间预测模型

    Figure  15.  Prediction of the filling time of perforated foam sandwich composite

    表  1  材料参数测试结果

    Table  1.   Test results of material parameters

    Resin viscosity/ (Pa·s)Silicone oil viscosity/ (Pa·s)Fiber volume fraction/%Permeability/(10-11m2)
    KxKyKz
    0.210.149.23.263.260.1987
    Notes:Kx and Ky are the in-plane permeability, Kz is the permeability in thickness direction.
    下载: 导出CSV

    表  2  穿孔泡沫夹芯复合材料典型位置孔隙率结果对比

    Table  2.   Porosity measurement results in typical locations of perforated foam sandwich composite

    Position123456
    Porosity/%Simulation2.311.633.561.451.660.90
    Experiment2.301.683.271.411.961.08
    下载: 导出CSV

    表  3  穿孔泡沫夹芯复合材料VARI工艺设计方案

    Table  3.   Different VARI process setups for perforated foam sandwich composite

    Distribution medium (DM) locationInjection form
    Short side
    Long side
    Central section
    下载: 导出CSV
  • [1] 朱基炜. 穿孔泡沫夹层复合材料力学性能研究及应用 [D]. 南京航空航天大学, 2017.

    ZHU Jiwei. Study and application of mechanical properties of perforated foam sandwich composites [D]. Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese).
    [2] Mohamed M, Anandan S, Huo Z, et al. Manufacturing and characterization of polyurethane based sandwich composite structures[J]. Composite Structures,2015,123(5):169-179.
    [3] Yang BX, Ouyang J, Li XJ. Simulation of fiber reinforced composite materials mold filling process and mechanical properties analysis[J]. Fuel and Energy Abstracts,2011,166(7):1129-1136.
    [4] Yalkin HE, Icten BM, Alpyildiz T. Enhanced mechanical performance of foam core sandwich composites with through the thickness reinforced core[J]. Composites Part B Engineering,2015,79(9):383-391.
    [5] Yalkin HE, Icten BM, Alpyildiz T. Tensile and compressive performances of foam core sandwich composites with various core modifications[J]. Journal of Sandwich Structures & Materials,2017,19(1):49-65.
    [6] Tao J, Li F, Zhao QL, et al. In-plane compression properties of a novel foam core sandwich structure reinforced by stiffeners[J]. Journal of Reinforced Plastics & Composites,2018,37(2):134-144.
    [7] Steeves CA, Fleck NA. In-plane properties of composite laminates with through-thickness pin reinforcement[J]. International Journal of Solids and Structures,2006,43(10):3197-3212. doi: 10.1016/j.ijsolstr.2005.05.017
    [8] Grossing H, Stadlmajer N, Fauster E, et al. Flow front advancement during composite processing: predictions from numerical filling simulation tools in comparison with real-world experiments[J]. Polymer Composites,2016,37(9):2782-2793. doi: 10.1002/pc.23474
    [9] Shah M, V Chaudhary. Flow modeling and simulation study of vacuum assisted resin transfer molding (VARTM) process: A review[J]. IOP Conference Series: Materials Science and, Engineering,,2020,872(1):012087(18pp).
    [10] 马彦旭, 王继辉, 倪爱清, 等. 大厚度复合材料曲面典型构件的工艺优化 [J]. 复合材料学报, 2021, 38(10): 3302-3313.

    MA Yanxu, WANG Jihui, NI Aiqing, et al. Process optimization of typical components with large thickness composite curved surface [J] Acta Materiae Compositae Sinica, 2021, 38 (10) : 3302-3313 (in Chinese).
    [11] 金世奇, 李文晓, 刘昊鑫. 缝合夹层结构复合材料树脂传递模塑成型工艺充模仿真[J]. 复合材料学报, 2018, 35(12):3342-3349.

    JIN Shiqi, LI Wenxiao, LIU Haoxin. Filling simulation of resin transfer molding process for stitched sandwich structure composites[J]. Acta Materiae Compositae Sinica,2018,35(12):3342-3349(in Chinese).
    [12] ZHAO Chenhui, ZHANG Guangcheng, WU Yibo. Resin flow behavior simulation of grooved foam sandwich composites with the vacuum assisted resin infusion (VARI) molding process[J]. Materials,2012,5(12):1285-1296.
    [13] Halimi F, Golzar M, Asadi P, et al. Core modifications of sandwich panels fabricated by vacuum-assisted resin transfer molding[J]. Journal of Composite Materials,2013,47(15):1853-1863. doi: 10.1177/0021998312451763
    [14] Petrescue L. An investigation of defect evolution in foam core sandwich structures produced using vacuum assisted resin transfer molding[D]. University of Ottawa, 2007.
    [15] 王科, 赖家美, 鄢冬冬, 等. 缝合泡沫夹芯结构复合材料VARTM工艺树脂充填模拟及验证[J]. 高分子材料科学与工程, 2015, 31(11):124-129.

    WANG Ke, LAI Jiamei, YAN Dongdong, et al. Simulation and verification of resin filling for stitched foam sandwich composite VARTM process[J]. Polymer Materials Science & Engineering,2015,31(11):124-129(in Chinese).
    [16] 魏俊伟, 张兴刚, 郭万涛. 典型夹芯结构复合材料VARI工艺成型仿真计算研究[J]. 材料开发与应用, 2013, 28(5):71-78.

    WEI Junwei, ZHANG Xinggang, GUO Wantao. Simulation calculation of VARI process for typical sandwich structure composites[J]. Development and Application of materials,2013,28(5):71-78(in Chinese).
    [17] Jhan YT, Lee YJ, Chung CH. Experimental and numerical investigation of the VARTM process with a sandwich structure[J]. Journal of Composite Materials,2012,46(12):1417-1430. doi: 10.1177/0021998311418703
    [18] Poodts E, Minak G, Dolcini E, et al. FE analysis and production experience of a sandwich structure component manufactured by means of vacuum assisted resin infusion process[J]. Composites Part B,2013,53(10):179-186.
    [19] Falaschetti MP, Rondina F, Zavatta N, et al. Material characterization for reliable resin transfer molding process simulation[J]. Journal of Applied Sciences,2020,10(5):1814. doi: 10.3390/app10051814
    [20] YAN Chao, WU Hailiang, REN Xueming, et al. Experimental and numerical study on the permeation behavior of foam-core sandwich panels in LCM[J]. Fibers and Polymers,2021,22(9):2612-2625. doi: 10.1007/s12221-021-0310-9
    [21] 刘金良, 吴晓青. RTM工艺中树脂流动管道的优化设计[J]. 玻璃钢/复合材料, 2008, 0(6):41-43.

    LIU Jinliang, WU Xiaoqing. Optimal design of resin flow pipeline in RTM process[J]. Fiber reinforced plastics/ Composites,2008,0(6):41-43(in Chinese).
    [22] 徐绍良, 岳湘安, 侯吉瑞, 等. 边界层流体对低渗透油藏渗流特性的影响[J]. 西安石油大学学报(自然科学版), 2007, 22(2):26-28.

    XU Shaoliang, YUE Xiangan, HOU Jirui, et al. Effect of boundary layer fluid on seepage characteristics of low permeability reservoir[J]. Journal of Xi'an Shiyou University (Natural Science Edition),2007,22(2):26-28(in Chinese).
    [23] Porto T N, Barbosa d L A G, De Amorim Júnior, W. F. Multiphase fluid flow in porous-fibrous media: fundamentals, mathematical modeling and applications on polymeric composites manufacturing[J]. Diffusion Foundations,2018,20:55-77. doi: 10.4028/www.scientific.net/DF.20.55
    [24] 张浩, 李书欣, 王继辉, 等. 基于新型测试装置的网孔板层开孔率对纤维厚度方向渗透率的影响[J]. 复合材料学报, 2020, 37(05):1175-1183.

    ZHANG Hao, LI Shuxin, WANG Jihui, et al. Influence of ratio of hole area for mesh plate layer on through-thickness permeability based on a new designed test bench[J]. Acta Materiae Compositae Sinica,2020,37(05):1175-1183(in Chinese).
    [25] 杨旭静, 王跃飞, 韦凯, 等. 基于孔隙控制的车身结构树脂传递模塑成型工艺设计[J]. 复合材料学报, 2017, 34(05):970-977.

    YANG Xujing, WANG Yuefei, WEI Kai, et al. Process design of resin transfer molding for body structure based on pore control[J]. Acta Materiae Compositae Sinica,2017,34(05):970-977(in Chinese).
    [26] LABAT L, BREARD J, PILUT L S. Void formation previ sion in LCM parts[J]. European Physical Journal Appliedphvsics,2001,16(2):.157-164.
    [27] PATEL N, LEE L J. Modeling of void formation in liquid composite molding. Part I: wettability analysis[J]. Polymer Composites,1996,17(1):96-103. doi: 10.1002/pc.10594
    [28] PATEL N, LEE L J. Modeling of void formation in liquid composite molding. Part II: model development and impregnation[J]. Polymer Composites,1996,17(1):104-114. doi: 10.1002/pc.10595
    [29] 中国国家标准化管理委员会. 碳纤维增强塑料孔隙含量和纤维体积含量试验方法: GB/T 3365-2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Carbon fiber reinforced plastics-Determination of void content and fiber volume content: GB/T 3365-2008 [S]. Beijing: Standards Press of China, 2008 (in Chinese).
    [30] 戴福洪, 张博明, 杜善义, 等. RTM工艺注模过程模拟的有限元/控制体积方法和流动分析网络技术比较[J]. 复合材料学报, 2004, 21(2):92-98.

    DAI Fuhong, ZHANG Boming, DU Shanyi, et al. Comparison of finite element/control volume method and flow analysis network technology for injection molding process simulation of RTM process[J]. Acta Materiae Compositae Sinica,2004,21(2):92-98(in Chinese).
    [31] 詹明樊, 王继辉, 倪爱清, 等. 基于数字图像技术的纤维织物面内渗透率表征[J]. 复合材料学报, 2021, 38(12):38-4209.

    ZHAN Mingfan, WANG Jihui, NI Aiqing, et al. In-plane permeability characterization of fiber fabric based on digital image technology[J]. Acta Materiae Compositae Sinica,2021,38(12):38-4209(in Chinese).
    [32] 秦贞明, 陈以蔚, 李树虎, 等. 复合材料夹芯泡沫开孔对树脂充模的影响分析[J]. 材料工程, 2009(S2):6.

    QIN Zhenming, CHEN Yiwei, LI Shuhu, et al. Influence of composite foam core opening on resin filling process[J]. Journal of Materials Engineering,2009(S2):6(in Chinese).
    [33] 肖飞, 姜茂川, 刘强, 等. 复合材料副翼典型结构件的 VARI 工艺模拟及试验验证[J]. 航空材料学报, 2015, 35(3):69-76.

    XIAO Fei, JIANG Maochuan, LIU Qiang, et al. Vari process simulation and experimental verification of typical structural parts of composite aileron[J]. Journal of aeronautical materials,2015,35(3):69-76(in Chinese).
    [34] Shen Y, Guo ZW, Feng YQ, et al. Ultrasonic estimation of porosity in composite materials using acoustic attenuation[J]. Insight-Non-Destructive Testing and Condition Monitoring,2019,61(6):310-315. doi: 10.1784/insi.2019.61.6.310
  • 加载中
计量
  • 文章访问数:  91
  • HTML全文浏览量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-29
  • 录用日期:  2022-03-09
  • 修回日期:  2022-02-24
  • 网络出版日期:  2022-03-30

目录

    /

    返回文章
    返回