Construction of nano Au-nitrogen doped carbon nanotubes integrated composite cathode and performance study for lithium-oxygen batteries
-
摘要:
碳材料具有多孔性、轻质、高导电性和可调谐电子结构等优点,广泛应用于锂氧气电池正极催化剂, 然而碳正极与放电中间体之间的副反应产生一系列副产物在正极上积累,导致正极钝化,催化活性降低,过电位升高;同时传统悬浮液正极制备法中粘结剂的使用使得电极机械稳定性低,导致电极脱落等问题,严重影响了电极的电化学稳定性,使得电池的倍率性能、循环性能差。本文通过化学气相沉积、光还原两步合成工艺,将具有高催化活性的Au纳米粒子原位负载在具有三维贯穿结构的氮掺杂碳纳米管/不锈钢网上,得到了具有互相渗透孔道结构的一体化正极Au/N-CNT/SS。Au-N-CNT/SS正极具有合适的孔道结构、高电导率、超强的机械性能、结构稳定性等,克服了传统电极机械稳定性差、碳电极易分解、副反应严重等问题。将Au-N-CNT/SS电极用作锂氧气电池正极,一体化电极的设计避免了粘结剂的使用,极大地提高了电池的机械强度,提升了电池的电化学/化学稳定性;正极的高导电率和互相渗透的电极结构为电荷转移提供了通道;充足的孔道结构确保了氧气活性物质和锂离子的快速扩散;Au纳米粒子高效催化剂的使用,有效地提升了正极的氧还原/氧析出反应动力学,加快了放电产物的生成与分解,有效提升了电池的倍率性能(1.0 mA·cm−2的高电流密度下放电电压保持在2.4 V)、放电容量(8.47 mA·h·cm−2)和循环性能(160圈)。 Au-N-CNT/SS、N-CNT/SS、N-CNT-SS电极的(a)充放电曲线、(b)倍率性能和(c)循环性能对比 Abstract: Highly efficient, stable cathode is crucial to lithium-oxygen battery. A high performance, integrated Au-N-CNT/SS cathode with interpermeable channels was constructed by chemical vapor deposition and photoreduction, in which the high catalytic Au nanoparticles were loaded on nitrogen doped carbon nanotubes with three-dimensional permeable of stainless steel mesh. The morphology and composition of the Au-N-CNT/SS were investigated by SEM, TEM, XPS, XRD and Raman spectrum. The problems of poor mechanical stability, carbonaceous cathode decomposition and serious side reactions were avoided by the suitable channel structure, high conductivity, superior mechanical properties, structural stability of Au-N-CNT/SS. Taking Au-N-CNT/SS as the integrated cathode for lithium-oxygen battery, the utilization of binder is avoided. The mechanical strength of the lithium-oxygen battery is enhanced, and the side reactions are effectively reduced, contributing to the enhanced electrochemical/chemical stability. The high conductivity, interpenetrated structure and sufficient pores provide a fast electron transport and mass transfer channel. The highly efficient Au nanoparticles are favorable to improving the oxygen reduction/oxygen evolution reaction kinetics on cathode, accelerating the generation and decomposition of discharge products. The rate performance (keeping the discharge voltage at 2.4 V with a high current density of 1.0 mA·cm−2), specific capacity (8.47 mA·h·cm−2) and cycle performance (160 cycles) of lithium-oxygen battery are greatly improved. -
图 3 (a-b)不同放大倍数下N-CNT-SS电极的SEM图,(c) Au-N-CNT/SS的TEM图,(d) Au-N-CNT/SS的高分辨TEM图,(e) Au-N-CNT/SS电极中Au 4 f的XPS谱图,(f) N-CNT/SS的紫外可见吸收光谱图
Figure 3. (a-b) SEM images of N-CNT-SS at different magnifications, (c) TEM image of the Au-N-CNT/SS, (d) High resolution TEM image of the Au-N-CNT/SS, (e) XPS spectra of Au 4 f in Au-N-CNT/SS, (f) UV-vis absorption spectra of Au-N-CNT/SS and N-CNT/SS
图 4 基于Au-N-CNT/SS, N-CNT/SS及N-CNT-SS电极的锂氧气电池(a)首圈充放电曲线,(b) 循环伏安曲线,(c)不同电流密度下的放电电压变化,(d) 电化学交流阻抗谱图,(e)放电容量, (f)循环性能
Figure 4. (a) The first discharge-charge curves, (b) cyclic voltammetry curves, (c) discharge voltage variation at different current densities, (d) electrochemical impedance spectroscopy, (e) discharge capacity, (f) cycling performance of the lithium-oxygen battery with Au-N-CNT/SS, N-CNT/SS and N-CNT-SS
图 5 首次放电和充电后Au-N-CNT/SS正极(a-b)、N-CNT/SS正极(c-d)和N-CNT-SS (e-f)正极的SEM图,(g) 首次放电和充电后Au-N-CNT/SS、N-CNT/SS和N-CNT-SS正极的红外光谱图,其中Li2O2,Li2CO3,HCO2Li和CH3CO2Li的光谱供参考
Figure 5. SEM images of the recharged Au-N-CNT/SS cathode (a-b), N-CNT/SS cathode (c-d) and N-CNT-SS cathode (e-f) after 1 st discharged and charged process, (g) FTIR spectra of the Au-N-CNT/SS, N-CNT/SS, and N-CNT-SS cathodes after 1 st discharged and charged process, in which the spectra for Li2O2, Li2CO3, HCO2Li, and CH3CO2Li are also shown for reference
图 7 第20次充电后Au-N-CNT/SS(a)、N-CNT/SS(b)和N-CNT-SS正极(c)的SEM图(电流密度为0.2 mA cm−2,充电容量为1.0 mA h cm−2),(d) 第20次充电后Au-N-CNT/SS、N-CNT/SS和N-CNT-SS正极的1H核磁共振谱图,其中TEGDME,CH3COOD和HCOOD的谱图供参考
Figure 7. SEM images of the Au-N-CNT/SS (a), N-CNT/SS (b), and N-CNT-SS cathodes (c) at a current density of 0.2 mA cm−2 with a charge capacity of 1.0 mA h cm−2 after the 20 th recharge. (d) 1H NMR spectra of the Au-N-CNT/SS, N-CNT/SS and N-CNT-SS cathodes after the 20 th recharge, in which the spectra for TEGDME, CH3COOD and HCOOD are also shown for reference
-
[1] MA J-M, Li Y-T, Editorial for advanced energy storage and conversion materials and technologies[J]. Rare Metals, 2021, 40(2): 246–248. [2] PENG G S, HUANG J, GU Y C, et al. Self-corrosion, electrochemical and discharge behavior of commercial purity Al anode via Mn modification in Al-air battery[J]. Rare Metals,2021,40(12):3501-3511. doi: 10.1007/s12598-020-01687-9 [3] ZHU Q C, DU F H, Xu S M, et al. Hydroquinone resin induced carbon nanotubes on Ni foam as binder-free cathode for Li-O2 batteries[J]. ACS Applied Materials & Interfaces,2016,8:3868-3873. [4] ZHAO G Y, ZHANG L, LV J X, et al. A graphitic foam framework with hierarchical pore structure as self-supported electrodes of Li-O2 batteries and Li ion batteries[J]. Journal of Materials Chemistry A,2016,4:1399-1407. doi: 10.1039/C5TA09033D [5] YANG W, QIAN Z, DU C, et al. Hierarchical ordered macroporous/ultrathin mesoporous carbon architecture: A promising cathode scaffold with excellent rate performance for rechargeable Li-O2 batteries[J]. Carbon,2017,118:139-147. doi: 10.1016/j.carbon.2017.03.037 [6] QIU Z M, BAI Y, LIU C L, et al. MXenes nanocomposites for energy storage and conversion[J]. Rare Metals,2022,41(4):1101-1128. doi: 10.1007/s12598-021-01876-0 [7] LENG L, LI J, ZENG X, et al. Enhancing the cyclability of Li-O2 batteries using PdM alloy nanoparticles anchored on nitrogen-doped reduced graphene as the cathode catalyst[J]. Journal of Power Sources,2017,337:173-179. doi: 10.1016/j.jpowsour.2016.10.089 [8] XU J J, CHANG Z W, YIN Y B, et al. Nanoengineered ultralight and robust all-metal cathode for high-capacity, stable lithium–oxygen batteries[J]. ACS Central Science,2017,3(6):598-604. doi: 10.1021/acscentsci.7b00120 [9] QIN Y C, WANG F Q, WANG XM, et al. Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion[J]. Rare Metals,2021,40(9):2354-2368. doi: 10.1007/s12598-021-01727-y [10] LI Z, GANAPATHY S, XU Y, et al. Fe2O3 nanoparticle seed catalysts enhance cyclability on deep (dis)charge in aprotic Li–O2 batteries[J]. Advanced Energy Materials,2018,8(18):1703513. doi: 10.1002/aenm.201703513 [11] LIU X, ZHAO L, XU H, et al. Tunable cationic vacancies of cobalt oxides for efficient electrocatalysis in Li–O2 batteries[J]. Advanced Energy Materials,2020,10(40):2001415. doi: 10.1002/aenm.202001415 [12] 李华, 李靖靖, 王焕锋. 多孔Co3O4纳米纤维用作锂空气电池高性能正极催化剂[J]. 复合材料学报, 2021, 38(7): 2305–2312.LI Hua, LI Jingjing, WANG Huanfeng. Porous Co3O4 nanofibers applied as an efficient cathode catalyst for Li–air batteries[J]. Acta Material Compositae Sinica, 2021, 38(7): 2305–2312(In Chinese). [13] SUN Z, HE J, YUAN M, et al. Li+-clipping for edge S-vacancy MoS2 quantum dots as an efficient bifunctional electrocatalyst enabling discharge growth of amorphous Li2O2 film[J]. Nano Energy,2019,65:103996. doi: 10.1016/j.nanoen.2019.103996 [14] WANG P, ZHAO D, HUI X, et al. Bifunctional catalytic activity guided by rich crystal defects in Ti3C2 mxene quantum dot clusters for Li–O2 batteries[J]. Advanced Energy Materials,2021,11(32):2003069. doi: 10.1002/aenm.202003069 [15] YANG Z D, YANG X Y, LIU T, et al. In situ CVD derived Co-N-C composite as highly efficient cathode for flexible Li-O2 batteries[J]. Small,2018,14(43):1800590. doi: 10.1002/smll.201800590 [16] WANG Y, SONG L-N, WANG Y-F, et al. A TEMPO-grafted multi-functional cathode with strong anchoring ability towards redox mediators for high energy efficiency Li-O2 batteries[J]. Energy Storage Materials,2022,45:191-200. doi: 10.1016/j.ensm.2021.11.038 [17] LI J, DING S, ZHANG S, YAN W, et al. Catalytic redox mediators for non-aqueous Li–O2 battery[J]. Energy Storage Materials,2021,43:97-119. doi: 10.1016/j.ensm.2021.08.036 [18] LIU X, ZHANG P, LIU L, et al. Inhibition of discharge side reactions by promoting solution-mediated oxygen reduction reaction with stable quinone in Li–O2 batteries[J]. ACS Applied Materials & Interfaces,2020,12(9):10607-10615. [19] KIM C H, VARANASI C V, LIU J. Synergy of polypyrrole and carbon x-aerogel in lithium–oxygen batteries[J]. Nanoscale,2018,10(8):3753-3758. doi: 10.1039/C7NR08494C [20] WANG H, FAN X, ZHANG X, et al. In situ growth of NiO nanoparticles on carbon paper as a cathode for rechargeable Li–O2 batteries[J]. RSC Advances,2017,7(38):23328-23333. doi: 10.1039/C7RA02932B [21] WANG P, LI C, DONG S, et al. One-step route synthesized Co2P/Ru/N-doped carbon nanotube hybrids as bifunctional electrocatalysts for high-performance Li–O2 batteries[J]. Small,2019,15(30):1900001. doi: 10.1002/smll.201900001 [22] CHAI A-H, Ji C-H, YUAN D, et al. Fluidic Ga–In liquid metal-modified cathode with improved cyclic performance and capacity of Li–O2 batteries[J]. Rare Metals,2022,41(7):2223-2229. doi: 10.1007/s12598-021-01903-0 [23] YOOH K R, SHIN K, PARK J, et al. Brush-like cobalt nitride anchored carbon nanofiber membrane: Current collector-catalyst integrated cathode for long cycle Li–O2 batteries[J]. ACS Nano,2018,12(1):128-139. doi: 10.1021/acsnano.7b03794 [24] Nam J S, Jung J-W, Youn D-Y, et al. Free-standing carbon nanofibers protected by a thin metallic iridium layer for extended life-cycle Li–oxygen batteries[J]. ACS Applied Materials & Interfaces,2020,12:55756. [25] LIU Q C, XU J J, XU D, et al. Flexible lithium–oxygen battery based on a recoverable cathode[J]. Nat. Commun.,2015,6(1):7892. doi: 10.1038/ncomms8892 [26] SONG L N, ZHANG W, WANG Y, et al. Tuning lithium-peroxide formation and decomposition routes with single-atom catalysts towards lithium-oxygen batteries[J]. Nature Communations,2020,11:2191. doi: 10.1038/s41467-020-15712-z [27] MENG Y, ZHANG J-K, LU H-Y, et al. High performance lithium oxygen batteries based on a phosphorous-doped holey graphene cathode[J]. Rare Metals,2022,41(12):4027-4033. doi: 10.1007/s12598-022-02089-9 [28] GUO X J, ZHANG Q, LI Y N, Nanosized Rh grown on single-walled carbon nanohorns for efficient methanol oxidation reaction[J]. Rare Metals, 2022, 41(6): 2108–2117. [29] Wang H-F, Li J-F, Sun X-X, et al. Stabilizing electrochemical Li-O2 batteries with a metal-based cathode of PdNi on Ni nonwoven fabric[J]. Nanoscale,2019,11:11513-11520. doi: 10.1039/C9NR02390A [30] Wang H, Li J, Li F, Li J, Xu J. Facile route to constructing ternary nanoalloy bifunctional oxyegn cathode for metal-air batteries[J]. Chemical Research in Chinese Universities,2020,36(6):1153-1160. doi: 10.1007/s40242-020-0199-7 [31] CHEN J J, HAO R, WANG Z Y, et al. Co single atoms and nanoparticles dispersed on N-doped carbon nanotube as high-performance catalysts for Zn-air batteries[J]. Rare Metals,2022,41(6):2055-2062. doi: 10.1007/s12598-022-01974-7 [32] MANG X-B, YAO L-Q. Grazing-incidence small-angle X-ray scattering property of double-layered gold nanoparticle arrays[J]. Rare Metals,2022,41(10):3585-3590. doi: 10.1007/s12598-016-0736-1 [33] MANG X-B, YAO L-Q. Hexagonal packing lattice formed by functionalized gold nanoparticles[J]. Rare Metals,2022,41(11):3858-3864. doi: 10.1007/s12598-016-0744-1 [34] LI Y-R, LI M-X, LI S-N, et al. A review of energy and environment electrocatalysis based on high-index faceted nanocrystals[J]. Rare Metals,2021,40(12):3406-3441. doi: 10.1007/s12598-021-01747-8 [35] WANG P, LI C, DONG S, et al. One-step route synthesized Co2P/Ru/N-doped carbon nanotube hybrids as bifunctional electrocatalysts for high-performance Li-O2 batteries[J]. Small,2019,15(30):1900001. doi: 10.1002/smll.201900001 [36] Song L N, ZOU L C, WANG X X, et al. Realizing formation and decomposition of Li2O2 on its own surface with a highly dispersed catalyst for high round-trip efficiency Li-O2 batteries[J]. iScience,2019,14:36-46. doi: 10.1016/j.isci.2019.03.013 [37] WU H, SUN W, WANG Y, et al. Facile synthesis of hierarchical porous three-dimensional free-standing MnCo2O4 cathodes for long-life Li-O2 batteries[J]. ACS Applied Materials & Interfaces,2017,9(14):12355-12365. -

计量
- 文章访问数: 97
- HTML全文浏览量: 88
- 被引次数: 0